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Overview

• Introduction

• Origins of deep belief networks (DBNs)

• Large-scale challenges for DBNs

– Genetics of multimorbidities

– Laboratory diagnostic tests in sequential decisions

– Drug-multitarget interaction prediction

• Artificial creativity

– De novo molecule generation using complex priors
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Artificial intelligence and machine learning
in computational biomedicine

• Knowledge engineering

• Study design

• Genetic measurements

• Data engineering

• Data analysis

• Interpretation

• Decision support

Computational Biomedicine Laboratory (ComBine.Lab): http://bioinfo.mit.bme.hu/

http://chttp/bioinfo.mit.bme.hu/


ComBineLab.hu: tools

• BayesEye: Bayesian, systems-based data analysis
– Bayesian model averaging over causal structures.

• BayesCube: Probabilistic decision support
– Semantically enriched Bayesian and decision network models.

• BysCyc/QSF (Bayesian Encyclopedia): 
– Large-scale quantitative, semantic data and knowledge fusion

• QDF: Kernel-based fusion methods for drug repositioning
– Multi-aspect rankings and multi-aspect metrics in drug discovery

• Variant Meta Caller: precision NGS
– Next-generation sequencing pipelines

• VB-MK-LMF: drug-target interaction prediction

– Variational Bayesian Multiple Kernel Logistic Matrix Factorization

• ... see Tools @ http://bioinfo.mit.bme.hu/

http://bioinformatics.mit.bme.hu/


Probabilistic graphical models: 

Bayesian Networks
• A directed acyclic graph (DAG)

• Nodes are random variables

• Edges represent direct 

dependence (causal 

relationship)

• Local models: P(Xi|Pa(Xi))

• Offers three interpretations

)()|()|( ModelPModelDataPDataModelP 
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Thomas Bayes 
(c. 1702 – 1761)



Generative models

Antal, P., Fannes, G., Timmerman, D., Moreau, Y. and De Moor, B., Using literature 

and data to learn Bayesian networks as clinical models of ovarian tumors. Artificial 

Intelligence in medicine, 30(3), pp.257-281, 2004



„Informed” conditional models

7

P. Antal, G. Fannes, D. Timmerman, Y. Moreau, B. De Moor: Bayesian Applications of 

Belief Networks and Multilayer Perceptrons for Ovarian Tumor Classification with 

Rejection, Artificial Intelligence in Medicine, vol. 29, pp 39-60, 2003

Informed selection of:

• structure,

• hyperparameters,

• parameters,

• output combination,

• etc.



From deep belief networks 

to deep learning

8

Neal, R.M., 1992. Connectionist learning of belief networks. Artificial 

intelligence, 56(1), pp.71-113.

Neal, R.M. and Hinton, G.E., 1998. A view of the EM algorithm that justifies 

incremental, sparse, and other variants. In Learning in graphical models (pp. 355-

368). Springer, Dordrecht.
Hinton, G.E., Osindero, S. and Teh, Y.W., 2006. A fast learning algorithm for deep 

belief nets. Neural computation, 18(7), pp.1527-1554.

LeCun, Y., Bengio, Y. and Hinton, G., 2015. Deep learning. Nature, 521(7553), 

pp.436-444.



DBN biomed challenge (1):

genetics of multimorbidities



Multimorbidity: prevalence

10
Pefoyo, Anna J. Koné, et al. "The increasing burden and complexity of 

multimorbidity." BMC public health 15.1 (2015): 415.

Ontario, Canada: 2003 (n = 12,242,273), 2009 (n = 13,068,845).

Simultaneous occurrence of multiple chronic conditions.



Multimorbidity: 2015-2035

11

Kingston, Andrew, et al. "Projections of multi-morbidity in the older 

population in England to 2035: estimates from the Population Ageing and 

Care Simulation (PACSim) model." Age and ageing 47.3 (2018): 374-380.



Polipharmacy

12Guthrie, Bruce, et al. "The rising tide of polypharmacy and drug-drug interactions: 

population database analysis 1995–2010." BMC medicine 13.1 (2015): 74.



„Multiple chronic conditions:

an emerging healthcare challenge”
• Between 2015 and 2035, the number of older people with more than 

two illnesses (‘multi-morbidity’) will almost double, from 5.2 million in 

2015 to 9.8 million in 2035.

• Increases of more than 50% are projected in the number of older 

people affected by most individual diseases and impairments –the 

largest increases being for numbers having cancer (179.4%, or 2.2 

million) and diabetes (118.1%, or 1.7 million).

• The number of older people in the population with more than four 

diseases (‘complex multi-morbidity’) will increase from 9.8% 

(952,400) in 2015 to 17.0% (2,453,200) in 2035.

• Two-thirds of those with more than four diseases will have mental ill-

health (dementia, other cognitive impairment, depression) by 2035 –

a total of 1.75 million people, an increase of 600,000 from 2015.
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https://esrc.ukri.org/news-events-and-publications/evidence-

briefings/multiple-chronic-conditions-an-emerging-healthcare-challenge/



Multimorbidity: depression

14

Smith, Daniel J., et al. "Depression and multimorbidity: a cross-sectional 

study of 1,751,841 patients in primary care." The Journal of clinical 

psychiatry 75.11 (2014): 1202-8.



UK Biobank

2006-2010

15

UK Biobank is a national and international health resource with unparalleled 

research opportunities, open to all bona fide health researchers. …. It is 

following the health and well-being of 500,000 volunteer participants and 

provides health information....

Collins, R. (2012). What makes UK Biobank special?. The Lancet, 

379(9822)

Elliott, P., & Peakman, T. C. (2008). The UK Biobank sample handling and 

storage protocol for the collection, processing and archiving of human blood and 

urine. International Journal of Epidemiology, 37(2), 234-244.
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From associations 

to direct dependencies II. (off:80%)

Marx, P., Antal, P., Bolgar, B., Bagdy, G., Deakin, B. and Juhasz, G., 2017. Comorbidities in the 

diseasome are more apparent than real. PLoS computational biology, 13(6), p.e1005487.



Depression multimorbidity cluster
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http://bioinformatics.mit.bme.hu/UKBNetworks/full/index.html#/



Genetics of 

depression multimorbidities

18

Nora Eszlari Andras Millinghoffer, Peter Petschner, Xenia Gonda, Daniel Baksa, Attila

J. Pulay, Janos Rethelyi, John Francis William Deakin, Peter Antal, Gyorgy Bagdy,

Gabriella Juhasz, Genome-wide association analysis reveals KCTD12 and miR-383-

binding genes in the background of rumination, Translational Psychiatry (9: 119), 2019

Brooding



Envirome - life style - depression

19

Hullam, G., Antal, P., Petschner, P., Gonda, X., Bagdy, G., Deakin, B.

and Juhasz, G., 2019. The UKB envirome of depression: from

interactions to synergistic effects. Scientific reports, 9(1), pp.1-19.



GxExLS multimorbidity cluster
Environment Genetics

?

Lifestyle

Bruncsics, B. and Antal, P., 2019, July. A multi-trait evaluation of network propagation 

for GWAS results. In 2019 IEEE Conference on Computational Intelligence in 

Bioinformatics and Computational Biology (CIBCB) (pp. 1-6). IEEE.

[Deep] conditional generative model



DBN biomed challenge (2):

clinical laboratory parameters of 

multimorbidities



Laboratory testing

Large-scale laboratory test data sets are untapped resources, but they are complex:

• incomplete,

• continuous, but with establised reference thresholds,

• longitudinal,

• heterogeneous medical scenarios:

• Prevention: recognition of a pre-disease state.

• Screening: early diagnosis of a given disease.

• Exploratory diagnostics:, inference of cause(s).

• Differential diagnostics: select most plausible explanation.

• Monitoring: track effect of intervention.

Hypothesis: Laboratory tests have a complex, rich dependency structure.



Goals & Data

In cooperation with the Central Laboratory of Semmelweis University:​

• Prune requested tests: Predict that certain requested tests are confidently 

predictable based on earlier measurements from the patient's history and from 

current measurements.

• Extend requested tests: Predict that the value of certain not requested tests 

are abnormal with high confidence.

• Data set:

• Patients: 202,976

• Laboratory tests: 2078

• Visits (~orders): 1,376,758

• Valid tests: 37,354,817 (now: 70 million)



Bayesian map of laboratory tests

24

We estimated the a posteriori probabilities of edges using a DAG-based 
Markov Chain Monte Carlo simulation.

The map of edges with posteriors between [0.75-1.0].

Guenfoud, Z. and Antal, P., 2018, October. Bayesian exploration of dependencies of 

laboratory tests and evaluation of test redundancy. In 2018 3rd International 

Conference on Pattern Analysis and Intelligent Systems (PAIS) (pp. 1-6). IEEE.



Prediction of laboratory tests

• In silico/virtual laboratory test is based on the calculation of the 
conditional probability distribution of a laboratory test given the 
outcome(s) of other test(s).
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Multimorbidities laboratory tests

[Deep] conditional generative model



DBN biomed challenge (3):

drug-target interaction prediction



Drug-target interaction prediction

28

Kövesdi, I., Dominguez‐Rodriguez, M.F., Ôrfi, L., Náray‐Szabó, G., Varró, A., 

Papp, J.G. and Mátyus, P., 1999. Application of neural networks in structure–

activity relationships. Medicinal research reviews, 19(3), pp.249-269.

Colwell, L.J., 2018. Statistical and machine learning approaches to predicting 
protein–ligand interactions. Current opinion in structural biology, 49, pp.123-128.



Machine learning

in 

chemoinformatics

29

Lo, Y.C., Rensi, S.E., Torng, W. and 

Altman, R.B., 2018. Machine 

learning in chemoinformatics and 

drug discovery. Drug discovery 

today.



• Discovery Platform for cross-domain fusion. 

• Public, curated, linked data.

– The data sources you already use, integrated and 

linked together: compounds, targets, pathways, 

diseases and tissues.

• Everything in triples: Subject-predicate-object 

30

Open Pharmacological Space

Precursor: Gene Ontology: tool for the unification of biology, Nature, 2000



@gray_alasdair Big Data Integration 31



Open Targets I.

32

https://www.opentargets.org/

Khaladkar, M., Koscielny, G., Hasan, S., Agarwal, P., Dunham, I., Rajpal, D. and Sanseau, P., 2017. 

Uncovering novel repositioning opportunities using the Open Targets platform. Drug discovery today.

Koscielny, G., An, P., Carvalho-Silva, D., Cham, J.A., Fumis, L., Gasparyan, R., Hasan, S., Karamanis, N., 

Maguire, M., Papa, E. and Pierleoni, A., 2016. Open Targets: a platform for therapeutic target identification 
and validation. Nucleic acids research, 45(D1), pp.D985-D994.

https://www.opentargets.org/


Open Targets II.

33



Bioactivity databases I.
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•Targets: 10,774

•Compound records: 1,715,667

•Distinct compounds: 1,463,270

•Activities: 13,520,737

•Publications: 59,610 

ChEMBL is a database of bioactive drug-like small molecules, it contains 2-D 

structures, calculated properties (e.g. logP, Molecular Weight, Lipinski 

Parameters, etc.) and abstracted bioactivities (e.g. binding constants, 

pharmacology and ADMET data).

https://www.ebi.ac.uk/chembl



Bioactivity databases II.

Compounds: 97,127,348

Substances: 252,300,917

BioAssays: 1,067,565

Tested Compounds: 3,417,415

Tested Substances: 5,591,261

RNAi BioAssays: 173

BioActivities: 239,680,570

Protein Targets: 12,159

Gene Targets: 58,186
35



Bioactivity databases III:ExCAPE-DB

36

Sun, J., Jeliazkova, N., Chupakhin, V., Golib-Dzib, J.F., Engkvist, O., 

Carlsson, L., Wegner, J., Ceulemans, H., Georgiev, I., Jeliazkov, V. and 

Kochev, N., 2017. ExCAPE-DB: an integrated large scale dataset 

facilitating Big Data analysis in chemogenomics. Journal of 

cheminformatics, 9(1), p.17.



Drug-target interaction prediction I.

• Drug/compound information

– Fingerprints, pharmacophore properties, etc.

– Similarities

• Target information

– Protein vs. binding site/pocket

– Sequence/../complete structure

– Similarities

• Interaction data

– Indirect/direct

– Binary/rank/scalar

– IC50, Ki,..

– Complete/incomplete
37



Drug-target interaction prediction II.

• Goal

– New drugs for a given target

– New targets for a given compound

– Multitask learning

• Targets for a novel drug

• Drugs for a novel target

• Interaction between novel drugs and targets.

• (Sequentiality)

38



A benchmark DTI task

39

Yamanishi Y, Araki M, Gutteridge A, Honda W, Kanehisa M. Prediction of drug-

target interaction networks from the integration of chemical and genomic spaces. 

Bioinformatics. 2008; 24(13):232–40. doi:10.1093/bioinformatics/btn162.

http://dx.doi.org/10.1093/bioinformatics/btn162


Multitask DTI prediction

• Approaches

– Network methods

– ….

– Pairwise conditional approaches or 

pairwise kernel methods

– Matrix factorization methods

40



Fusion of drugs, targets and 

interactions

41

Bolgár, Bence, and Péter Antal. "VB-MK-LMF: fusion of drugs, targets and 

interactions using variational Bayesian multiple kernel logistic matrix 

factorization." BMC Bioinformatics 18.1 (2017): 440.



DBNs in DTI

• Wang, Y. and Zeng, J., 2013. Predicting drug-target interactions using restricted 

Boltzmann machines. Bioinformatics, 29(13), pp.i126-i134.

• Liang, M., Li, Z., Chen, T. and Zeng, J., 2014. Integrative data analysis of multi -

platform cancer data with a multimodal deep learning approach. IEEE/ACM 

transactions on computational biology and bioinformatics, 12(4), pp.928-937.

• Sridhar, D., Fakhraei, S. and Getoor, L., 2016. A probabilistic approach for collective 

similarity-based drug–drug interaction prediction. Bioinformatics, 32(20), pp.3175-

3182.

• Hamanaka, M., Taneishi, K., Iwata, H., Ye, J., Pei, J., Hou, J. and Okuno, Y., 2017. 

CGBVS‐DNN: Prediction of Compound‐protein Interactions Based on Deep Learning. 

Molecular informatics, 36(1-2), p.1600045.

• Ghasemi, F., Mehridehnavi, A., Fassihi, A. and Pérez-Sánchez, H., 2018. Deep 

neural network in QSAR studies using deep belief network. Applied Soft Computing, 

62, pp.251-258.

• Lee, I., Keum, J. and Nam, H., 2019. DeepConv-DTI: Prediction of drug-target 

interactions via deep learning with convolution on protein sequences. PLoS 

computational biology, 15(6), p.e1007129.
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Fingerprints target activities

[Deep] conditional generative model



DBN biomed challenge (+):

de novo molecule generation



Automated discovery systems
• Langley, P. (1978). Bacon: A general discovery system. Proceedings of the 

Second Biennial Conference of the Canadian Society for Computational 
Studies of Intelligence (pp. 173-180). Toronto, Ontario.

• D. R. Swanson et al.: An interactive system for finding complementary 
literatures: a stimulus to scientific discovery, Artificial Intelligence, 1997

• Chrisman, L., Langley, P., & Bay, S. (2003). Incorporating biological 
knowledge into evaluation of causal regulatory hypotheses. Proceedings of 
the Pacific Symposium on Biocomputing (pp. 128-139). Lihue, Hawaii.

• R.D.King et al.: The Automation of Science, Science, 2009

• Rzhetsky, A. et al.: 2015. Choosing experiments to accelerate collective 
discovery. PNAS, 112(47), pp.14569-14574.

Artificial creativity???

Boden, M.A., 2009. Computer models of creativity. AI Magazine, 30(3), pp.23-23.



Automating drug discovery

Schneider, Gisbert. "Automating drug discovery." Nature Reviews Drug 
Discovery 17.2 (2018): 97.

Automated drug discovery facility

Active learning with microfluidics



De novo molecular design I.

47

Olivecrona, M., Blaschke, T., Engkvist, O. and Chen, H., 2017. Molecular de-novo 

design through deep reinforcement learning. Journal of cheminformatics, 9(1), 

p.48.



De novo molecular design II.

48

Blaschke, T., Olivecrona, M., Engkvist, O., Bajorath, J. and Chen, H., 2018. 

Application of generative autoencoder in de novo molecular design. Molecular 

informatics, 37(1-2), p.1700123.

Autoencoder

Variational autoencoder



De novo molecular design III.

49

Blaschke, T., Olivecrona, M., Engkvist, O., Bajorath, J. and Chen, H., 2018. 

Application of generative autoencoder in de novo molecular design. Molecular 

informatics, 37(1-2), p.1700123.

Generative adversarial autoencoder neural network



Chemical syntheses

by deep artificial intelligence I.

50

Segler, M.H., Preuss, M. and Waller, M.P., 2018. Planning chemical syntheses 

with deep neural networks and symbolic AI. Nature, 555(7698), p.604.



Chemical syntheses

by deep artificial intelligence II.

51Segler, M.H., Preuss, M. and Waller, M.P., 2018. Planning chemical syntheses 

with deep neural networks and symbolic AI. Nature, 555(7698), p.604.



DBNs in our research



Genetics of multimorbidities
• OTKA 119866: Bayesian, systems-based 

methods for analyzing large health data sets, 

2016-2020

• UK Biobank – research project No.1602, 2013-

2017, 2017-2020

• Participants: Gabriella Juhász (SE), Péter Antal 

(BME)
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Complex models of laboratory tests

in sequential decision support

• In cooperation with Department of Laboratory 

Medicine, Semmelweis University

54

Data



Drug-target interaction prediction

55

https://www.imi.europa.eu/projects-results/project-factsheets/melloddy
MELLODDY: privacy-preserving federated learning in drug discovery

• IMI2 project:

• Participants

• 10 big pharmas

• 2 universities

• 4 companies
• 1 global IT company

• 2019-2021

https://www.imi.europa.eu/projects-results/project-factsheets/melloddy


Automated (early) drug discovery

• Schneider, Gisbert, et al. "Virtual screening for bioactive molecules by evolutionary 

de novo design." Angewandte Chemie International Edition 39.22 (2000): 4130-4133.

• Schneider, Gisbert, and Uli Fechner. "Computer-based de novo design of drug-like 

molecules." Nature Reviews Drug Discovery 4.8 (2005): 649.

• Schneider, Gisbert, ed. De novo molecular design. John WileySons, 2013.

• Schneider, Gisbert. "Generative Models for Artificially-intelligent Molecular Design." 

Molecular informatics 37.1-2 (2018)

• Sanchez-Lengeling, Benjamin, and Alán Aspuru-Guzik. "Inverse molecular design 

using machine learning: Generative models for matter engineering." Science 

361.6400 (2018): 360-365.

• Merk, Daniel, et al. "De novo design of bioactive small molecules by artificial 

intelligence." Molecular informatics 37.1-2 (2018): 1700153.

• Schneider, Gisbert, and David E. Clark. "Automated De Novo Drug Design–“Are we 

nearly there yet?”." Angewandte Chemie (2019).
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De novo molecule generation: learning

572018.01.29.
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Google: Deep dream

De novo molecule generation: 
artificial creativity



Intelligent de novo generation: 

polypharmacology and multitargets

• L Bolognesi, M. "Polypharmacology in a single drug: multitarget 

drugs." Current medicinal chemistry 20.13 (2013): 1639-1645.

• Medina-Franco, José L., et al. "Shifting from the single to the 

multitarget paradigm in drug discovery." Drug discovery today 18.9-

10 (2013): 495-501.

• Zhang, Weilin, Jianfeng Pei, and Luhua Lai. "Computational 

multitarget drug design." Journal of chemical information and 

modeling 57.3 (2017): 403-412.

• Proschak, Ewgenij, Holger Stark, and Daniel Merk. 

"Polypharmacology by Design: A Medicinal Chemist’s Perspective 

on Multitargeting Compounds." Journal of medicinal chemistry 62.2 

(2018): 420-444.
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Summary

• Complex generative models in biomedicine

– Standard models for general decision support

– Flexible models for highly incomplete data

– Artificial creativity
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Computational Biomedicine 

(ComBine) lab

http://bioinfo.mit.bme.hu/

Team
Bence Bolgár
Bence Bruncsics
András Gézsi
Gábor Hullám
András Millinghoffer
Péter Sárközy
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Thank you for you attention!
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