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Is there any possibility to identify directed 
causal relationships from two observed data 
series, without experimental intervention?

We surely can measure correlation, but 
correlation and causality are different things. 
Moreover correlation is an asymmetrical 
relation while causality can be unidirectional. 

Is there a way to distinguish directional and 
bidirectional (circular) causality or to reveal
hidden common cause?

Determination of causal effects in time series
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Is there a (multiple) Seizure Onset Zone (SOZ) 
or rather an epileptic network?

The SOZ is causal source during the seizure?

What about during interictal periods?

Personalized medicine:
Causality analysis in epilepsy

Seizure onset zone

Epileptic network
Sabesan, S., Good, L.B., Tsakalis, K.S., Spanias, A., Treiman, 
D.M., Iasemidis, L.D.: Information flow and application to 
epileptogenic focus localization from intracranial EEG. IEEE 
Trans Neural Syst Rehabil Eng 17(3), 244–253 (2009)

Epstein, C.M., Adhikari, B.M., Gross, R., Willie, J., Dhamala, 
M.: Application of high-frequency Granger causality to 
analysis of epileptic seizures and surgical decision making. 
Epilepsia 55(12), 2038–2047 (2014)



Judea Pearl

With interventions: Bayesian networks, graphical 
models, Conditional independence

The theory allows to reveal the direction of the dependencies 
only in specific cases or the direction of the relationships 
assumed a priory!

http://en.wikipedia.org/wiki/Bayesian_networks


Bayesian networks with just observations
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Times series: predictive causality

The original idea of 
predictive causality 
came from Norbert 
Wiener 

x → y, if the inclusion 
of past x values 
improves the 
prediction quality on y

X Y

Clive Granger implemented
it via autoregressive linear 
models in 1969

Nobel price in 
Economic Sciences 2003

Assuming time delay 
via the concept of 
prediction helps to 
reveal direction!



  

It is sensitive to the model used for the prediction. The limitations of 

linear autoregressive models can be ameliorated by using nonlinear 

extensions, kernel solutions or model free transfer entropy method.

Granger- causality

X Y

Linear autoregression:

FX→Y=

var (ϵ1)−var (ϵ3)
m

var (ϵ3)
T−2m−1

Evaluation F test:



The model-free predictive causality: Transfer Entropy

The framework of Judea Pearl 
(Bayesian nets) can not handle 
circular causal relationships.

Neither the Bayesian nets nor the 
predictive causality principle can 
not reveal the existence of 
unobserved hidden common causes
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Cross Convergence Map:
A new framework for causality analysis

A new model-free approach, 
promising:

● Detection of circular causality
● Detection of nonlinear coupling

It utilizes the Taken's time 
delay embedding theorem:

The trajectory reconstructed 
in the state space is 
topologically equivalent
With the trajectory of the 
system's original trajectory in 
its real space. 

Science 338, 496 (2012)



  

Cross Convergence Map:
A new framework for causality analysis

● Sugihara’s method is based on 
that the consequence is an 
observation of the cause, thus 
the cause can be reconstructed 
from the consequence.

● Points that are neighbors in the 
state-space of the consequence 
should be neighbors in the state 
space of the cause as well.

● This topology preserving 
property can be tested by the 
cross mapping method.    

Science 338, 496 (2012)



  

xt+1=r xt(1-xt)

Our first model system: The logistic map

A one dimensional, discreet-time 
dynamical system implementing
stretching an folding 
transformations. 

It can exhibit different dynamical 
behavior, from stable fixpoint, 
through periodic oscillations to 
chaos, depending on the 
parameter r.

We choose r = 3.8 which ensures chaotic behavior.



  

Two coupled logistic maps

xn+1=rxxn((1-xn)+byxyn) yn+1=ryyn((1-yn)+bxyxn)

rx=ry=3.8 so both maps are in the chaotic regime

Case I.: Circular, nonlinear coupling



  

Phase-space reconstruction based on delayed maps

Reconstructed state-space from the
first data series in 3 embedding dimension

Reconstructed state-space from the
second data series in 3 embedding dimension

Both dataset formed a 2D manifold in the 3D embedding space.

xn+1=rxxn((1-xn)+byxyn) yn+1=ryyn((1-yn)+bxyxn)

xnxn+1

xn+2

ynyn+1

yn+2



  

Phase-space reconstruction based on delayed maps

Reconstructed state-space from the
first data series in 3 embedding dimension

Reconstructed state-space from the
second data series in 3 embedding dimension

Both dataset formed a 2D manifold in the 3D embedding space.

xn+1=rxxn((1-xn)+byxyn) yn+1=ryyn((1-yn)+bxyxn)

xnxn+1

xn+2

ynyn+1

yn+2



  

Reconstructed state-space from the
first data series in 3 embedding dimension

Reconstructed state-space from the
second data series in 3 embedding dimension

In case of causal connections, the reconstructed manifold
sholud be topologically equivalent according to the Takens' theorem.

But, how to test it?

Existence of a diffeomorphism

Both dataset formed a 2D manifold in the 3D embedding space.

xnxn+1

xn+2

ynyn+1

yn+2



  

Reconstructed state-space from the
first data series in 3 embedding dimension

Reconstructed state-space from the
second data series in 3 embedding dimension

Both dataset formed a 2D manifold in the 3D embedding space

Choose a point!

Sugihara's method: Convergent Cross mapping

xnxn+1

xn+2

ynyn+1

yn+2



  

Reconstructed state-space from the
first data series in 3 embedding dimension

Reconstructed state-space from the
second data series in 3 embedding dimension

Find its neighborhood!

Sugihara's method: Convergent Cross mapping

Both dataset formed a 2D manifold in the 3D embedding space.

xnxn+1

xn+2

ynyn+1

yn+2



  

Reconstructed state-space from the
first data series in 3 embedding dimension

Reconstructed state-space from the
second data series in 3 embedding dimension

Lets do it for many points! If the neighbors in the first space are neighbors
in the the second space as well, then the second variable is causal to the
first one.

Find the same time points in the other state space

Sugihara's method: Convergent Cross mapping

The images of the neighbors remained close to each other and
to the image of the original point 

xnxn+1

xn+2

ynyn+1
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In case of circular causality the mapping should work in both directions!

Reconstructed state-space from the
first data series in 3 embedding dimension

Reconstructed state-space from the
second data series in 3 embedding dimension

Let us do it into the other direction! 

Sugihara's method: Convergent Cross mapping

xnxn+1

xn+2

ynyn+1

yn+2



  

Reconstructed state-space from the
first data series in 3 embedding dimension

Reconstructed state-space from the
second data series in 3 embedding dimension

Let us do it into the other direction! 

The chosen point

Sugihara's method: Convergent Cross mapping
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xn+2

ynyn+1

yn+2



  

Reconstructed state-space from the
first data series in 3 embedding dimension

Reconstructed state-space from the
second data series in 3 embedding dimension

The neighborhood

Sugihara's method: Convergent Cross mapping

Let us do it into the other direction! 

xnxn+1

xn+2

ynyn+1
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Reconstructed state-space from the
first data series in 3 embedding dimension

Reconstructed state-space from the
second data series in 3 embedding dimension

The mapping worked well into both directions!
This is the sign of circular causality. 

Mapping

Sugihara's method: Convergent Cross mapping

xnxn+1

xn+2

ynyn+1

yn+2



  

Cross mapping in case of unidirectional interactions

The consequence The cause

While the consequence formed a 2D manifold, the cause resulted an 
only 1D manifold in the 3D embedding space!

yn+1=ryyn(1-yn)xn+1=rxxn((1-xn)+byxyn)

Case II.: Unidirectional, nonlinear coupling
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While the first dataset formed a 2D manifold, the second dataset resulted
an only 1D manifold in the 3D embedding space!

Mapping works well from consequence to cause

Cross mapping in case of unidirectional interactions

The consequence The cause

xnxn+1

xn+2

ynyn+1

yn+2



  

The mapping worked well from x to y but failed from y to x, showing,
that y is causal to x but x is not causal to y. 

But spread out in the other direction!

Cross mapping in case of unidirectional interactions

The consequence The cause

xnxn+1

xn+2

ynyn+1

yn+2



Detecting causality based on the quality of the 
cross convergence map

Quality of crossmapping described by the linear 
correlation coefficient between the estimated and the 
observed variable

Causality appears as 
convergence of correlation
coefficient as the length of data
increases.  

Based on the weighted average of the mapped neighborhood, and estimation for the
second variable is generated. As the length of the data series increases, the neighborhood
(the closest simplex) shrinks to the base point (of which neighborhood is mapped).



Comparison 
between 3 
methods

Sugihara’s CCM,
Granger causality and 
transfer entropy (TE)
were tested on coupled
logistic maps.
1000 simulated systems,
random parameters.

Neither method can
reveal hidden common 
causes.

Concluding CCM is
Problematic in the
unidirectional case,
no statistical test,
false positive circular 
detections



LFP vs IOS

During the long (1 hour) recording, epileptiform bursts appeared with 
increasing frequency. Parallel, the optical reflectance (and the transmittance) 
of the tissue changes for visible light, without any additional dying. The 
process is clearly activity dependent, but slow.

Epileptiform activity was evoked by 
low Mg+ environment in vivo slice 
preparation. The local field potential 
was recorded together with the 
intrinsic optical signal (IOS), which 
is possibly a result of swelling of 
cells during over excitation.

Ildikó Világi

Sándor Borbély

Kinga Moldován

Eötvös Loránd 
University
Department of
Physiology and 
Neurobiology 



LFP vs IOS

The faster component 
were inverted 
comparing reflected 
and transmitted light, 
while the slow 
component was 
negative both cases.
 
Different mechanisms:

IOS low → absorbtion

IOS high → transmittance



LFP vs IOS

The sampling 
frequency of the IOS 
was only 2Hz, much 
lower than the 1kHz of 
the LFP!!!

In order to make the 
causality analysis 
applicable:  

The faster and slow component 
of the IOS were divided by 
subtracting a moving window 
average,to get stationary time 
series.

The LFP has been 
downsampled by summing up 
the V2 for every 500 ms 
 



LFP-IOS cross correlation

The instantaneous correlation is nearly zero, the cross correlation 
function has two significant peaks: a higher negative one at -2s (LFP 
leads) and a smaller positive one at +2.5s (IOS leads). This could be 
the sign of a well delayed interaction.

LFP leads?

IOS leads?



Delayed cross map function

Instead: 
Delayed Cross Map function shows a 
causal effect from LFP to IOS with 
500ms delay, corresponding to 1 
sample time for IOS.
Although, the time scale of the two 
signals were very different, the 
unidirectional causal effect was 
revealed.

LFP→IOS Delay: 500 ms



Delayed cross map function

The causal relationship was significant and independent from the form of 
evoking the epileptic activity.



Autonomous dynamics between epileptic bursts

dIOSh=
−IOSh(t)

τ1

In lack of detectable epileptic activity, the amplitude of the IOS decay 
exponentially in all the three cases.
From this observation, a simple linear differential equation can describe the 
autonomous dynamics of IOS:
 



Reverse engineering 

The IOS time series was 
reconstructed, based on 
the LFP recording with 

high precision during the 
1h long session.

dIOSh
dt

=W (t )∗LFP2−
IOSh(t )

τ1

Where:

W (t)=W 0∗e
−t
τ2



Reverse engineering 

The same model, 
with different 
parameters 

describes the 4AP 
activity as well. 

dIOSh
dt

=W (t )∗LFP2−
IOSh(t )

τ1

Where:

W (t)=W 0∗e
−t
τ2

4AP case



  

Delayed cross map function

We have extended Sugihara’s method for time-dependent 
and delayed connections. The method was tested on simulated 
coupled dynamical systems. Peaks positions on the negative 
axis mark the correct delay times.

Case I:
Unidirectional coupling

The method precisely: 
identified the direction and 
the delay of the coupling:

Delay: 0

Chaotic
oscillator

Exponetial
Decay

X→Y
Delay: 0

X Y

X(t+1)=3.8X(t)(1-X(t))

Y(t+1)=0.8Y(t)+F(X(t-delay))

F(X)=e(1-X)10

Non-linear coupling

Driver Driven

Zsigmond Benkő



  

The peak of the cross map functions follows precisely the delay of the effect

Delay: 5

Chaotic
oscillator

Exponetial
Decay

X→Y
Delay: 5

X Y

X(t+1)=3.8X(t)(1-X(t))

Y(t+1)=0.8Y(t)+F(X(t-delay))

F(X)=e(1-X)10

Non-linear coupling

Case I:
Unidirectional coupling

Delayed cross map function

Driver Driven



  

The positive axis marks the anti-causal direction of the time shifts.
This effect is stronger in deterministic systems and in case of strong
couplings. In these cases, the future of the driven system can be 
predicted from the cause as well.  

Delay: 10

Chaotic
oscillator

Exponetial
Decay

X→Y
Delay: 10

X Y

X(t+1)=3.8X(t)(1-X(t))

Y(t+1)=0.8Y(t)+F(X(t-delay))

F(X)=e(1-X)10

Non-linear coupling

Case I:
Unidirectional coupling

Delayed cross map function

Driver Driven



  

In case of bidirectional coupling, the peak positions mark the correct 
delay times in both directions. The coupling coefficients could be 
different, and the delays could be the same or different into the two 
directions.

Delay: 1

Chaotic
oscillator

X→Y Delay: 1
Y→X Delay: 1

X Y

X(t+1)=3.8X(t)(1-X(t)+Y(t-delay))

Y(t+1)=3.8Y(t)(1-Y(t)+X(t-delay))

Chaotic
oscillator

Non-linear coupling

Delay: 1

Delayed cross map function

Driver Driven



  

Delay: 5

Chaotic
oscillator

X→Y Delay: 5
Y→X Delay: 5

X Y

X(t+1)=3.8X(t)(1-X(t)+Y(t-delay))

Y(t+1)=3.8Y(t)(1-Y(t)+X(t-delay))

Chaotic
oscillator

Non-linear coupling

Delay: 5

In case of bidirectional coupling, the peak positions mark the 
correct delay times in both directions. The coupling coefficients 
could be different, and the delays could be the same or different 
into the two directions.

Delayed cross map function

Driver Driven



  

Delay: 10

Chaotic
oscillator

X→Y Delay: 10

X Y

X(t+1)=3.8X(t)(1-X(t)+Y(t-delay))

Y(t+1)=3.8Y(t)(1-Y(t)+X(t-delay))

Chaotic
oscillator

Non-linear coupling

Delay: 15

Y→X Delay: 15

In case of bidirectional coupling, the peak positions mark the 
correct delay times in both directions. The coupling coefficients 
could be different, and the delays could be the same or different 
into the two directions.

Delayed cross map function

Driver Driven



  

Task dependent causal connectivity networks 
based on fMRI dataseries  

Vaibhav Diwadkar
Wayne State University 

1. Visuo-Motor task:
Fingertapping in the rhythm of the flashing light stimulus (with 
different frequencies)

2. Working memory task:
N-Back (now N=2) push the button if the actual picture is the 
same as the one 2 stimuli before.

The data: fMRI records from 20-20 patients with obsessive-
compulsive disorder at 0.5 Hz sampling rate.

The causal connections were calculated for 8 ROIs 
corresponding to brain areas:
V1, SPC, SMA, M1, dACC, dLFPC, BG, Hip   
  



  

Task dependent causal connectivity networks 
based on fMRI dataseries  

Vaibhav Diwadkar
Wayne State University 

1. Visuo-Motor task:

2. Working memory task:  

Each time series 
contains only 
208-289 
samples

M1

SMA

dACC

V1

BG

Hip

SPC

dlpfc

M1

SMA

dACC

V1

BG

Hip

SPC

dlpfc



  

Causal network  during visuo-
motor task, delay 0s  

Causal network during working 
memory task, delay 0s  

During the visuo-motor task, only three 
significant causal interactions were revealed: 
V1 →  M1, and a bidirectional, circular 
connection V1↔ SPC and a weaker one: 
dLFPC → V1.

The working memory task induced much richer 
functional structure, revealing a more extended 
cortical network of significant uni- and bi-
directional causal interactions between regions 
including the SPC, dLFPC SMA and dACC, while 
strong unidirectional interactions were observed 
from the SPC to BG, from BG to dLFPC and from 
SMA to dLFPC.



  

Revealing hidden common cause

Neither Granger’s nor Sugihara’s method is able to detect 

the existence of a hidden common cause or distinguish it 

from the direct interaction.

We have developed a new method which can!

It is based on the joint dimension measure:

X Y

Z

xt

Time series

Xt

yt Yt

Xt
Yt

Time delay
embedding

Joint state-space

Dj

Joint dimension

Time series

Dx

Dy

András Telcs

Ádám Zlatniczky

Zsigmond Benkő

Marcell Stippinger



  

The consequence The cause and the consequence 
together in the joint space

The consequence formed a 2D manifold both in its own and the together with the 
cause in the joint state space. The lack of dimensionality increase in the joint 
dimension is the sign of the existing causal link (x depends on y).

yn+1=ryyn(1-yn)xn+1=rxxn((1-xn)+byxyn)

Key point: the cause does not increases the dimension of the consequence 
in the joint space, the information is already there! 

[xn;xn+1;xn+2] [xn;xn+1;yn]

Revealing hidden common cause



  

yn+1=ryyn(1-yn)

[yn;yn+1;xn][yn;yn+1;yn+2]

The cause formed a 1D manifold in its own, but a 2D manifold together 
with the consequence in the joint state space. The dimensionality 
increase in the joint state space is the sign of the independence (x 
contains different information compared to y, thus x does not cause y).

xn+1=rxxn((1-xn)+byxyn)

Revealing hidden common cause

The cause and the consequence 
together in the joint space

The cause



  

Revealing hidden common cause

Causal cases and the relations between the single and the joint dimensions:

X Y

Z

Unidirectional causality:

Circular causality:

Common  cause:

Dj = Dx+ Dy

Dj = Dy< Dx+ Dy

Independence: xt⊥ yt

xt→ yt

xt↔ yt Dj = Dx= Dy

Max( Dx ,Dy )< Dj < Dx+ Dy
xt yt

The type of the causal connection can be revealed by measuring the 

relations between the joint and the individual dimensions.  



  

How to measure the dimension of the manifold?

Let’s take two radii and count the number of points within 

the spheres: the exponent of the increase with respect to 

the radius gives us the dimension.

N(r) = N0·r
D



  

Bayesian model: a simplified version

Dj mean
distribution

Dy=Dj

Dy Dx+Dy

Dy<Dj<Dx+Dy

Dx+DyDy

Dj=Dx+Dy

Dx+DyDy

Sample
distributions
σ=0.1

Dx+DyDy

Conditional
distributions
P(Dj|Ai)

Dx+DyDy Dx+DyDy Dx+DyDy

Pr
ob

ab
ilit

y

X→Y

Causal cases (Ai)

X⊥YX   Y

Demon
Prior P(Ai)=1/3

Dj
Dx+DyDy Dx+DyDy



  

Bayesian inference: a simplified version

Causal cases

Pr
ob

ab
ilit

y

Likelihood
P(Dj|Ai)

Conditional
posterior
distribution
P(Ai|Dj)

Bayes-theorem

P (A i∣D j)=
P (D j∣Ai)P (A i)

∑ P (D j∣A i)P (Ai)

Dj observed

X→Y X⊥YX   Y

Dy Dx+Dy

Dj observed

Pr
ob

ab
ilit

y
Lik

eli
ho

od



  

1 - Time-delay embedding

2 - Joining manifolds

3 - Estimating dimensions

4 - Bootstrapping

5 - Calculating conditional
probabilities

6 – Calculating causal relation probabilities

The workflow



  

Test I.
Coupled logistic maps 

3 Logistic maps
coupled in all 
possible cases.
We used both linear 
and nonlinear 
couplings



Comparison between 4 methods

Truth:



Comparison of the confusion matrices with Granger
N
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Test II.  Coupled Lorentz systems

• 3 Lorenz systems: X, Y, C
• Each subsystem has 3 coordinates
• They are related through the

first coordinates by a coupling

ẋ1=σ(x2−x1)+m y→x(x2− y1)+mz→x(x2−z1)
ẋ2=x1(ρ−x3)−x2
ẋ3=x1 x2−β x3

ẏ1=σ( y2− y1)+mx→ y( y2−x1)+mz→ y ( y2−z1)
ẏ2= y1(ρ− y3)− y2
ẏ3= y1 y2−β y3

ċ1=σ(c2−c1)
ċ2=c1(ρ−c3)−c2
ċ3=c1 c2−β c3

The system is defined by the following
differential equations:

Causal relation probabilities



  

Test III: Hindmarsh-Rose model   



  

Intra- and inter hippocampal 
connectivity during seizure  

Péter Halász

Dániel Fabó

Boglárka Hajnal

In order to find out the 
lateralization of the 
seizure onset, two 
near-hippocampal 
electrodes inserted 
through the foramen 
ovale into the lateral 
ventricles.  

Loránd Eröss

László Entz

Emilia Tóth

National Institute of 
Clinical Neurosiences Virág BokodiMárta Virág



  

Real world test:  Analysis of EEG during photostimulation



  

Interictal Seizure

Application: localization the origin of the epilepsy

The 20-year-old patient suffered 
from a drug resistant epilepsy with 
frequent seizures.
 
The finding of a cortical dysplasia 
(at GrF4 electrode site) raised the 
possibility of the surgical treatment

GrB6 and GrF4 were only slightly involved (red ellipses). Based on the 
pronounced seizure activity, and the sensitive position of GrB6, only the frontal 
and orbitobasal parts were cut (purple signs).
 



  

Application: 
localization 
the origin of 
the epilepsy



  

Interictal periods



  

 Multiple seizures



  

Future directions of methodical development 

● Time and Delay dependent Dimensional Causality

● Dimensional Causality between point processes (spike 
trains) or between a continuous signal and a spike train

● Frequency resolved DC

● Reconstruction of the hidden common cause
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