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The example of search on a Scientific Publication
Database
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Searching on a Scientific Publication Database
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Visualizing facets I

Clique view Extra-node view

Figures from Ouvrard et al. [2017]
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From graphs to hypergraphs
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Motivation for a new structure I

• Background question:

How to coarsen a hyper(bag)-graph?

• Task to be solved:
• spot out the important structures of a hypergraph

• Important for
• spraying the information shown
• give focus on important information, at vertex and edge level

• Approach taken: diffusion approach
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Motivation for a new structure II

At which level the diffusion process occurs?
• At graph level => Laplacian matrix ... linked to adjacency matrix
• At hyper(bag)-graph level => incidence matrix

Pitfalls: HHT take us back to pairwise relationships => n-adicity not totally
taken into account

• An adjacency tensor is needed:
•Well defined for uniform hypergraphs
• For general hypergraphs:
• Adjacency has to be refined
• Convenient adjacency tensor to ensure diffusion and Laplacian tensor
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On adjacency in general hypergraphs

Refining adjacency in hypergraphs
• Adjacency is more than pairwise notion
• Two distinct concepts:
• e-adjacency: vertices of a given

hyperedge are said e-adjacent
• k-adjacency: k given vertices are

k-adjacent if it exists a hyperedge that hold
them
• k-adjacency: the maximal k-adjacency a
hypergraph holds
• In k-uniform hypergraph:
• k-adjacency corresponds to k-adjacency
• The e-adjacency corresponds to

k-adjacency
• In general hypergraphs:

k-adjacency 6= e-adjacency

Hypergraph H = (V,E)
• V = {v1, v2, v3, v4, v5, v6}
• E = {e1, e2, e3, e4}

• v2 and v3 are 2-adjacent
• v2, v3 and v4 are 3-adjacent
• v1 and v2 are e-adjacent
• k-adjacency corresponds to 4-adjacency
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Tensor for general hypergraphs: the art of filling or
how to obtain cubic form from a non cubic object
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First way: cut everything in small pieces...
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First way: ... and gather

11/36



First way: ... and gather

• Uniformisation process based on hyperedge splitting
=> push everything in a tensor of order |rH| and size |V | .
=> Banerjee & al2: split the storage in the elements of the tensor that is not occupied
The ([Author’s note]: e-) adjacency hypermatrix of H written
AH =

(
ai1...ikmax

)
16i1,...,ikmax6n

is such that for a hyperedge: e = {vl1 , ..., vls} of

cardinality s 6 kmax.

ap1...pkmax
=
s

α
, where α =

∑
k1,...,ks>1∑

ki=kmax

kmax!
k1!...ks!

with p1, ..., pkmax chosen in all possible way from {l1, ..., ls} with at least once from
each element of {l1, ..., ls}.
=> Sun & al3: similarly the same, but not symmetric.

2Banerjee et al. [2017]
3Sun et al. [2018]
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Second way: the art of filling
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e-adjacency tensor of a general hypergraph I

• split the hypergraph in layers of uniformity:
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e-adjacency tensor of a general hypergraph II

• hypergraph uniformisation process based on hyperedge filling:
Various filling options:
• Always add the same vertex
=> straightforward approach
• Add a different vertex per uniform hypergraph layer up to fulfillment
=> silo approach
• Add a vertex for each layer (previous approach)
=> iterative approach
In the first two approaches, multisets are required to keep interpretability

First two approaches require multisets
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A parenthesis on multisets

Multisets:
Multiset: a universe and a multiplicity function Am = (A,m)
Natural multiset: the range of the multiplicity function is a subset of N.

In natural multisets: two views:
weighted set: Am =

{
xm1

1 , . . . , xmn
n

}
collection of objects


x1, . . . , x1︸ ︷︷ ︸

m1 times

, . . . , xn, . . . , xn︸ ︷︷ ︸
mn times



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Hb-graphs I

Hb-graph H = (V,E): family of multisets E = (ei)i∈I , with I = JpK- called hb-edges - where
the hb-edges have:
• same universe V = {v1, . . . , vn}, called vertex set.
• support a subset of V .
• each hb-edge has its own multiplicity function me : V →W where W ⊂ R+.

Incidence matrix of hb-graphs:

H = [mj (vi)]16i6n
16j6p

.
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Hb-graphs II

Different application of hb-graphs:
• General hypergraph e-adjacency tensor
• Network of co-occurrences and the hb-graph framework
• Prime decomposition and hb-graphs
• Text and hb-graphs:
=> bag of words to represent text are efficient modeling for information retrieval
• Image and hb-graphs:
=> bag of visual words are often used in image.
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ML interest of hb-graphs

Exchange-based diffusion in hb-graphs:
• Stochastic process
• Allows generalised random walk
• Defines a ranking of vertices and hb-edges (akin to PageRank)
• Enables coarsening of hb-graphs and thus data landscape
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Exchange-based diffusion algorithm
Given:

A hb-graph H = (V,E,we) with |V | = n and |E| = p

Number of iterations: T
Initialisation:

For all vi ∈ V : αi :=
1
n

For all ej ∈ E : εj := 0
DiffuseFromVerticesToHbEdges():

For j := 1 to p:
εj := 0
For vi ∈ e?

j :

εj := εj +
mj (vi)we (ej)
dw,m (vi)

αi

DiffuseFromHbEdgesToVertices():
For i := 1 to n:

αi := 0
For ej such that vi ∈ e?

j :

αi := αi +
mj (vi)
#mej

εj

Main():
Calculate for all i : dw,m (vi) and for all j : #mej

For t = 1 to T :
DiffuseFromVerticesToHbEdges()
DiffuseFromHbEdgesToVertices()

Time complexity:

O (T (dHn+ rHp))

where:
dH = max

vi∈V
(di)

rH = max
ej ∈E

∣∣e?
j

∣∣
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Hb-graph m-uniformisation process and diffusion

Using a m-uniformisation process modifies the exchange-based diffusion:
• Explainable in the case of the hb-edge filling
• Unclear how it is modified in the case of the hb-edge splitting
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In a Scientific Publication Database

Reference: Publication, Facet: Organization
Pub A Org 2, Org3, Org 4

Pub B Org 1, Org 2

Pub C Org 3, Org 4

Pub D Org2, Org 3, Org 5
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In a Scientific Publication Database

Reference: Keywords, Facet: Organization
scene reconstruction

{{
Org 11, Org 21

}}
computer vision

{{
Org11, Org21, Org 31, Org 41

}}
augmented reality

{{
Org 22, Org 33, Org 42, Org 51

}}
3D

{{
Org 22, Org 32, Org 41, Org 51

}}

23/36



Facets of the information space

Facet choice

Authors Processed keywords Arxiv Categories
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Aggregating the information

Aggregating the information obtained on the different facets:
•We have proposed a modified MC4, called WT-MC4
=> allows ranking of references using weights on facets
•We also proposed a biased ranking of the information on facets, to put emphasize on
some kind of features
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A proposal

On each facet F1,...,Fm=> a hb-graph Hk = (Vk, Ek) with 1 6 k 6 m
1. Exchange-base diffusion on each facet hb-graph => hb-edges εk (ej)
2. Each hb-edge is linked to different physical references: 1 to many. => ranking Rk of
references ri with possible ties = rank of the corresponding hb-edge.
3. Facets have associated weights (tunable)w1,..., wm such that

∑
i∈JmK

wi = 1, wi > 0.

4. We start by computing a weighted majority matrix for each couple of references:

M (ri1 , ri2 ) =
∑

k∈JKK

wk1Rk(ri1 )<Rk(ri2 ) −
∑

k∈JKK

wk1Rk(ri1 )>Rk(ri2 )

5. We use a modified MC4 of Dwork et al. [2001] with teleportation and weights:
Current state reference: rcurrent.
• Choose a random number γ
• Choose an other reference rnextuniformly among all the references ranked.
If γ > γ0:

go to rnext
else:

If M (rnext, rcurrent) > 0
go to rnext

else:
stay in rcurrent.
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Methodology of evaluation

• 2 parts in experimentation:
• generation of random hb-graphs => 1 per facet

Nmax vertices are generated

V0 V1 Vj Vk

Nj,1
important vertices

Nj,2
remaining vertices

N0 interconnected vertices Nmax −N0 vertices in k groups

Nj,1 � Nj,2

• a generated reference hb-graph is built out of the facets
• Perform diffusion on each facet separately (multi-diffusion)
• Aggregation using the modified MC4 and comparison to Borda results
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Results for our modified MC4 I

On the generated information space, we observe for 100 generated information spaces, the
following results for Kendall tau between Borda ranking and rankings obtained by:

Current τ (σBorda, σcurrent) σ (τ (σBorda, σcurrent))
Facet 0 0.262 0.09

Facet 1 0.261 0.08

Facet 2 0.237 0.104

References 0.317 0.283

WT-MC4{’0’: 0.33, ’1’: 0.33, ’2’: 0.33} 0.649 0.116
WT-MC4{’0’: 0.5, ’1’: 0.5, ’2’: 0.0} 0.581 0.114

WT-MC4{’0’: 0.5, ’1’: 0.0, ’2’: 0.5} 0.549 0.115

WT-MC4{’0’: 0.0, ’1’: 0.5, ’2’: 0.5} 0.563 0.123

WT-MC4{’0’: 0.0, ’1’: 0.0, ’2’: 1.0} 0.261 0.107

WT-MC4{’0’: 0.0, ’1’: 1.0, ’2’: 0.0} 0.279 0.084

WT-MC4{’0’: 1.0, ’1’: 0.0, ’2’: 0.0} 0.286 0.096
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Results for our modified MC4 II

Average Kendall tau of the WT-MC4 ranking aggregation compared to the
non-zero equal weight facet rankings (average on 1000 information spaces)

depending on the number of facets having non-zero weights.
# non-zero weight facets⇒ 1 2 3 4 5 6

# facets ⇓ Mean StDev Mean StDev Mean StDev Mean StDev Mean StDev Mean StDev
2 0.357 0.096 0.821 0.050
3 0.303 0.094 0.585 0.127 0.650 0.112
4 0.272 0.093 0.485 0.116 0.545 0.116 0.771 0.066
5 0.250 0.091 0.424 0.108 0.480 0.109 0.650 0.094 0.690 0.085
6 0.239 0.086 0.393 0.096 0.455 0.101 0.592 0.089 0.628 0.090 0.755 0.058
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Results for our modified MC4 III
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Results for our modified MC4 IV

• Putting weight on only one facet: ’authors’
Comparison of rankings obtained by Dwork_MC4 with weights:

{’authors’ : 1.0, ’keywords’ : 0, ’tags’ : 0}

and rankings on the facet:

Kendall’s Tau
coefficient

Scaled Spearman
Footrule coeff

Jaccard Index @10 /
@25

authors 0.819 0.125 0.818 / 0.923
keywords 0.076 0.598 0.125 / 0.231

tags -0.112 0.710 0.171 / 0.315

• Same kind of results for putting all the weight on keywords or tags

31/36



Results for our modified MC4 V

• Putting equal weights on each facet:
Comparison of rankings obtained by Dwork_MC4 with weights:{

’authors’ :
1
3
, ’keywords’ :

1
3
, ’tags’ :

1
3

}
and other rankings:

Kendall’s Tau
coefficient

Scaled Spearman
Footrule coeff

Jaccard Index @10 /
@25

authors 0.315 0.444 0.333 / 0.515

keywords 0.508 0.327 0.385 / 0.455

tags 0.228 0.612 0.242 / 0.449

Borda 0.818 0.127 0.636 / 0.846
Refs -0.438 0.995 0.044 / 0.192
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Results for our modified MC4 VI

• Comparison of rankings obtained by Dwork_MC4 with weights:

{’authors’ : 0.5, ’keywords’ : 0, ’tags’ : 0.5}
and other rankings:

Kendall’s Tau
coefficient

Scaled Spearman
Footrule coeff

Jaccard Index @10 /
@25

authors 0.354 0.434 0.333 / 0.471

keywords 0.441 0.369 0.385 / 0.455

tags 0.264 0.620 0.242 / 0.449

Borda 0.811 0.134 0.636 / 0.846
Refs -0.486 0.984 0.043 / 0.212
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Perform visual queries

A demo is worth a thousand words...
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Thank you for your attention!

Leveraging insight into your data network by viewing co-occurrences while navigating
across different perspectives.

The HbGraphDataEdron:
• Is part of the Collaboration Spotting family
• Collspotting Project leader: Dr Jean-Marie Le Goff
• Team members: Dimitrios Dardanis, Richard Forster, André Rattinger and
Xavier Ouvrard

More information:
• http://collspotting.web.cern.ch
• https://www.infos-informatique.net
• xavier.ouvrard@cern.ch
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