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Machine Learning in High-Energy Physics: 
Successes and Future Directions



Overview and Acknowledgements
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• Machine learning and artificial intelligence 
are extremely active topics in High-Energy 
Physics

• Summarising the work in the field in 45 
minutes is essentially impossible

• So you need to live with my particular selection

• I have drawn on the work or many, many 
colleagues, to whom I am extremely 
grateful

• Of course, all mistakes I own

• In particular I’d like to thank James 
Catmore, Kyle Cranmer, Sergei Gleyzer, 
Lorenzo Moneta, David Rousseau, Andi 
Salzburger, Ariel Schwartzman, Jean-Roch
Vilment

• Particle Physics Overview

• Future Challenges for HEP

• Including Computing Hardware

• Classification Problems and Physics 
Analysis

• HiggsML Challenge

• HEP Data as Images

• Machine Learning for Generation

• Future Tracking Challenges and 
GraphNN

• Practical ML

• Or How Can This All Work…?

• The Future and Conclusions



Introduction to Particle 
Physics
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Particle Physics and Big (Data) Science
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◦ Particle physics is trying to 

help answer questions 

◦ From the earliest moments of the 

Big Bang

◦ Through to the universe as we see it 

today



Key Questions
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By MissMJ - Own work by uploader, PBS NOVA [1], Fermilab, Office of 

Science, United States Department of Energy, Particle Data Group, Public 

Domain, https://commons.wikimedia.org/w/index.php?curid=4286964

• How good is the Standard Model

• Properties of the Higgs boson

• Why is it so light?

• Dark Matter

• If not SUSY, what is it?

• Dark Energy

• Anti-matter

• Understand the asymmetry of the universe

• Quark gluon plasma at the Big Bang

• Starting conditions for the universe we see 

today



• Extreme Data Challenge:

• 40MHz collision rate

• ~6M seconds physics per year

• 4 major exeriments with 1000s 

of collaborators

The Large Hadron Collider



The ATLAS Experiment
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Diameter 26m

Length 50m

Weight 7000tn

Field 
Strength

2T



An LHC Collision Event
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Data Rates – now and the future…
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Parameter ATLAS LHC Run 2 (2015-

2018)

ATLAS HL-LHC Run 4 

(2026 and beyond)

Collision Rate 40MHz 40MHz

Collision Energy 13TeV 14TeV

Pile-up 40 200

Level 1 Trigger 100kHz 1MHz

Data Accept Rate 1kHz 10kHz

Data Size 1MB 2MB

RAW Data Size (1 Year) 1PB 20PB

• Considering the lifetime of the LHC we are only at the start of the journey

• Roughly x20 more data will be collected by the end of the project

Event complexity

Event rate



What Are We Looking For?
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• Interesting physics events 

for the ATLAS 

experiment are 

relatively rare

• Very high backgrounds 

of well understood 

physics

• Background rejection has 

to be high

• And also be fast

• This is the experiment trigger 

system



There is not just

more data, it’s harder

to analyse!



Technology Evolution and HEP Computing
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• Moore’s Law continues to deliver increases in transistor 

density

• But, doubling time is lengthening, and probably the end is in sight…

• Clock speed scaling failed around 2006

• No longer possible to ramp the clock speed as process size shrinks

• Leak currents become important source of power consumption

• So we are basically stuck at ~3GHz clocks from the 

underlying Wm-2 limit

• This is the Power Wall

• Limits the capabilities of serial processing

• Memory access times are now ~100s of clock cycles

• This is a serious headache for our software stack



A New Landscape for Data Analysis
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• Transition to concurrent execution for 
HEP software has been hard

• Even just on CPUs

• Now technology pushes us towards 
different architectures

• GPUs have become “standard”

• FPGAs, TPUs also exist

• Prediction is for ever more diverse 
architectures

• One of the major drivers of new 
architectures is modern machine 
learning

• How can HEP best take advantage of 
that transition?

https://cacm.acm.org/magazines/2019/2/234352-a-new-golden-age-for-computer-architecture/fulltext


HEP Computing Workflow
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• Far from a homogeneous problem

• Many different phases to HEP 
computing today

• Mature code, with decades of physics 
experience built into it

• About 50M lines of C++ and Python

• Machine learning finds many niches in 
the current workflow to be useful

• Doing things better, improved outcomes

• Doing things faster, quicker outcomes

• Doing things cheaper, less resources

• Possibility that advanced machine 
learning may be a disruptive 
technology

• Change the entire workflow in the future

LHC experiment computing scale:

• Use 1M CPU cores every hour of every day

• Store 1000PB of data (600/400PB tape/disk split)

• We are in the exabyte era already

• Run at 100s of computing centres worldwide

• Make 100PB of data transfers per year (10-100Gb links)



Classification and 
Analysis
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Classification and Analysis
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• A large part of physics analysis is 

signal/background discrimination

• Signal can be at the 10−10 level

• Reducible and irreducible backgrounds

• For many years we used cut based 

analysis techniques

• 𝑝(𝑠𝑖𝑔𝑛𝑎𝑙) higher if 𝑣𝑙𝑜 < 𝑣 < 𝑣ℎ𝑖

• A lot of effort went into defining higher 

level variables from lower level 

reconstruction outputs

Thanks to James Catmore, Oslo, for these graphics



Classification and Analysis
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• Multi-variate analysis was a way to 

improve this

• Define signal and background from 

considering multiple variables at the 

same time

• Shallow neural networks often used

• Boosted decision trees became 

extremely popular in the field

• Conceptually easy to understand the algorithm

• Performance as good as shallow NNs

• Efficient to store and quick to evaluate

• We have a standard toolkit for this

• TMVA toolkit in ROOT



Classification and Analysis
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• Effectively ML defines a new 

discrimination variable

• 𝑣𝑚𝑙 = 𝑓(𝑣1, 𝑣2, 𝑣3, 𝑣4, 𝑣5, …)

• Improvement in the discrimination power 

measured by the usual Receiver-

Operator Curve (ROC)

• Although nothing will beat the Baysiean Limit

• But ML very useful when underlying PDFs are not 

known

• These techniques have were a 

significant success at both the Tevatron

and at the LHC



Multi-Variate Success for HEP
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Top quark mass measurement  @Tevatron Shallow NNs, BDTs

Single top quark discovery @ Tevatron Shallow NNs, BDTs

Higgs discovery (H→γγ) @ CMS BDT

Observation of H→bb @ ATLAS, CMS BDT

Observation of Bs→μμ @ ATLAS, CMS, LHCb BDT

Observation of associated Higgs and top 

quark pair production (“ttH”) @ ATLAS, CMS

BDT (XGBoost @ ATLAS)

Jet flavour tagging Shallow NNs, BDT, Recurrent NNs

• Papers from at least 30 

years ago

• As old as the world 

wide web!

• A huge success for the 

field



Getting Better: Machine 
Learning Challenge

20



Higgs Discovery
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• Discovery of the Higgs boson in 2012 has 

been the greatest achievement of the LHC 

programme so far

• Machine learning provided significant 

increase in sensitivity

• If we had not used such techniques, we would 

have needed to collect significantly more 

data

• LHC data is expensive!

• However, one can ask the question could we 

have done even better…?

Machine learning at the energy and intensity frontiers of particle 

physics, https://doi.org/10.1038/s41586-018-0361-2

https://doi.org/10.1038/s41586-018-0361-2
https://doi.org/10.1038/s41586-018-0361-2


Higgs Machine Learning Challenge
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• Hosted on Kaggle platform

• Used 800k ATLAS simulated events

• 𝐻 → 𝜏𝜏 plus background events

• 30 features per-event

• Mix of low level reconstruction and derived features

• Huge excitement on the platform

• 1785 teams took part

• Physicists and data scientists

• 35772 solutions were submitted

• This was the largest challenge that they had hosted at the time

• Simple solution (untuned TMVA) beaten on day 1

• ‘Reasonable’ solution (multi-boost benchmark) beaten 

by day3



HiggsML Outcomes
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• Winners were from the computer science 

domain, not physicists

• Deep Neural Network solution was the winner

• XGBoost implementation proved to be highly successful

• Winner of the HEP meets ML prize

• Has gone on to be used in subsequent HEP analyses

• We learned a lot from this

• Nice boost for public interest in HEP!



Lessons for Analysis
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• Minimal super-symmetric model at the LHC

• Signal 𝐻0 → 𝑊𝑊𝑏𝑏 vs. background 𝑡𝑡 → 𝑊𝑊𝑏𝑏

• Low level variables

• 4-momentum vector

• High level variables

• Pair-wise invariant masses

• Deep NN outperforms NN, and does not need 

high level variables

• DNN learns the physics…?

Baldi, Sadowski, Whiteson

https://arxiv.org/abs/1402.4735

Thanks to David Rousseau, LAL for this example

https://arxiv.org/abs/1402.4735


𝐻→𝜏𝜏 Do-over
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• LHC 𝐻 → 𝜏𝜏 analysis with Z → 𝜏𝜏
background

• 100M fast simulation training events from 
Delphes (this is a lot!)

• Low level variables

• 4 momentum

• High level variables

• transverse mass, delta R, centrality, jet 
variables, etc…

• Here the Deep Neural Network 
consistently outperforms the shallow 
NN

• But high level variables always 
improve the significance

Baldi, Sadowski, Whiteson

https://arxiv.org/abs/1410.3469

Thanks to David Rousseau, LAL for this example

https://arxiv.org/abs/1410.3469


Image Recognition 
Problems
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Image Recognition in HEP
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• Many advances in machine learning have been driven 

by the image recognition problem

• Development of new convolutional neural networks and 

powerful training methods

• Convolutional networks scale better than fully connected layers

• Now exceed human accuracy on ImageNet database

• Can image recognition techniques be useful in HEP?

Chihuahua or muffin?



HEP events as Images
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• Generally HEP events are not much like images at 
all

• Very different detector elements

• Complex geometry

• Occupancy low

• i.e. most detector elements are not activated in each event

• However, unfolded calorimeter deposits do look 
rather regular and ‘image-like’

Not very much like a normal 2D image…

𝐻 → 𝑍𝑍 → 𝑒𝑒𝜇𝜇



Jet Tagging at the LHC
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• Important problem at the LHC is to distinguish jets, i.e. 

showers of multiple particles in the tracker and 

calorimeter

• Those produced from the decay of b-quarks 

• Those produced by soft QCD processes

• Jets are a key observable

• Can identity quarks and gluons in high-energy interactions

• In combination can identify unstable heavy particles

• Top quarks, Z, W or Higgs bosons

• At high LHC energies jets become more boosted

• i.e. significant momentum parallel to the LHC beam

• This causes jet elements to point close together and being to merge

• Makes jet identification more challenging

W jet signal 

contaminated 

by QCD jets

https://arxiv.org/abs/1510.05821

https://arxiv.org/abs/1510.05821


Jets as Images

30

• Jets impact at random places in the 

calorimeter

• This variation in coordinates is not interesting

• Data preparation consists of

• Centring

• Rotating

• Translate

• Need to be careful to make a physics 

preserving transformation

• Calorimeter deposits measure energy, but the invariant 

quantity is transverse momentum

• Caveat emptor: Naive application of image recognition 

techniques may get things wrong



Learning and Tuning

31

Use of larger filters than for normal image classification gives 

better results



Results
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• Results are significantly better than classical 

physics approaches (n-subjettiness) and 

classical image recognition ones (Fisher faces)

• Kernels indicate that many different features 

are being identified in the image-jets

N-subjet

Fisher

Image



CNNs for Neutrino Physics
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DUNE Experiment



Generative Models
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From Classification to Generation
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• Looking at LHC computing today the lion’s share of resources go into detector simulation

• LHC detectors are highly complex devices and must be simulated in great accuracy for 

physics

• From sensitive detectors to dead material for electronics, cables, cooling

• Many different types of primary and daughter particles

• Huge range of energies and different physics processes

• Embedded in a complex magnetic field

• LHC produces a real particle collisions in just 0.000 000 025 seconds

• It may take 100 seconds to simulate this collision



Electromagnetic Showers
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• When a high energy photon or electron hits the calorimeter in 

a HEP experiment it produces an electromagnetic cascade

• The ATLAS calorimeter is a very complicated arrangement of 

liquid argon and accordion plates

• Very time consuming to simulate with particle transport, ~75% of Geant4 

simulation time for ATLAS



Machine Learning Inspiration: GAN
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• Generative Adversarial Networks

• Two neural networks play a game

• The generator tries to generate events that look ‘real’

• The discriminator tries to tell the difference between the real 

events and the generated ones

• Can now generate extremely realistic looking faces

Thanks to Kyle 

Crammer, NYU



Machine Learning Inspiration: VAE
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• Variational Auto Encoders are networks that map 

input data into a lower dimensional latent space

• Then remap that latent space back out to the 

original event

• Relatively easy to train

• New events can be generated by sampling from the 

latent space to get new, unseen events

• These should model the statistical properties of the original set of 

events

• VAE applications

• Dimensionality reduction

• Anomaly detection

• This technique has also been used in HEP N.B. VAE’s ‘smoother’ than GANs, but may be good for physics?



ATLAS ML Fast Simulation
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◦ Training times

◦ VAE: 100 epochs, 2 minutes on CPU

◦ GAN: 50 epochs, 7 hours on GPU

◦ VAE is very fast to train

◦ Fairly broad hyperparameter scans feasible

◦ GAN adversarial step is long and increases 

the training time a lot

◦ GAN also suffers from unstable training, may not 

converge to good results at all

◦ Hyperparameter scans very expensive

ATL-SOFT-PUB-2018-001

VAE

GAN

https://cds.cern.ch/record/2630433/files/ATL-SOFT-PUB-2018-001.pdf


ATLAS ML CaloSim Results
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• Modeling of energy response of calorimeter is fairly 

good

• Note log scale for y-axis

• Difficulty in matching the energy in the tails

• Energy deposition is small, therefore small in the loss function

• Shower width is good

• Shower depth deviates from expectation

ATL-SOFT-PUB-2018-001

https://cds.cern.ch/record/2630433/files/ATL-SOFT-PUB-2018-001.pdf


Improving the GAN
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• Shower energy spread in the GAN did not 

match that from Geant4

• Add a second critic to the training process

• Targets total energy of the showers

• Condition on the particle position in the 

target cell

• Important to get energy deposition between central 

cells correct

• Re-optimise generator architecture

• Improved mean and width of energy 

distribution

• Good performance for interpolated 

energies



Improving the VAE
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• Train on relative energies

• ൗ
𝐸𝑐𝑒𝑙𝑙

𝐸𝑙𝑎𝑦𝑒𝑟 , ൗ
𝐸𝑙𝑎𝑦𝑒𝑟

𝐸𝑡𝑜𝑡𝑎𝑙 , ൗ𝐸𝑡𝑜𝑡𝑎𝑙
𝐸𝑡𝑟𝑢𝑡ℎ

• This re-weighting allows the network to balance 
energies more easily between layers

• Optimise loss function and architecture

• Much better energy matching

• Next steps

• Use voxelization for modelling
of internal cell structure

• Different particle types

• Expand eta range

• Reapply conditioning to reduce
network size



Tracking Challenge
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A Future Challenge
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• High-Luminosity LHC will 

squeeze proton bunches 

together more tightly

• Instead of 40-60 pp 

collisions at a time we get 

200

• x4 chance of interesting physics

• x4 background events, a.k.a pile-up

• But combinatorics mean much worse 

than x4 increase in complexity



Tracking In A Few Pictures
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• Naïve tracking can almost be done ‘by eye’

• Human visual system quickly overwhelmed in this case

• Static points, no movement

• Challenge for pile-up 200 is considerable

• Many important physics effects that make this hard

• Multiple scattering

• Bremsstrahlung

• Real detector geometry with inclined sensors, gaps, cables, …  

Pictures thanks to Andi Salzburger, CERN



TrackML Challenge
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• Launched 30 April 2018

• Attempt to engage the ML community with this HEP problem

• One phase based on accuracy

• Hosted on Kaggle

• One phase based on performance

• Accuracy plus time

• Hosted on Codalab
Thanks to David Rousseau, Andi Salzburger, Jean-Roch Vilmant in 

particular



TrackML Dataset
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◦ Realistic model of a HEP tracking detector

◦ Pixels, short strips, long strips

◦ Realistic simulation including multiple scattering, energy loss and hadronic interactions 

◦ Detector and track data provided as CSV files

◦ Actually useful for HEP as this has become a reference dataset for testing algorithmic improvements



Accuracy
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• Accuracy scored in a very physics relevant way

• Favour tracks which pass right through the detector

• High-momentum tracks are worth more

• At least 50% hits from the same ground truth particle

• At least 50% hits of the ground truth particle in the track

• Score normalised to sum over all possible tracks

• Perfect score is 1



Accuracy Winners
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• Steady improvements in the scores over time

• A number of very innovative approaches

Jury pick

Jury pick

Jury pick

Prize

Prize

Prize



Accuracy Insights
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• First: Top Quarks

• Johan Sokrates is an industrial Mathematics master student

• Pair seeding, triplet extension, trajectory following, track cleaning, all with machine learning for quality selection

• Second: Outrunner

• Pei-Lien Chou is a software engineer in image-based deep learning in Taïwan

• Machine learning to predict the adjacency matrix

• Third: Sergey Gorbunov

• Sergey Gorbunov is a physicist, expert in tracking

• Iterative steps, triplet seeding, trajectory following

• Jury Picks

• Density Based Spatial Clustering (DBSCAN) appeared twice

• LSTM and ML classifiers used to improve results



Throughput Phase
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• Score based on accuracy and time

• log(1 + Τ𝑡𝑖𝑚𝑒
600 × (𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 − 0.5)2



Throughput Winners
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• Best accuracy and best speed went hand in hand in the solution

• It was much harder for non-HEP people to compete on speed

• Many innovative ideas are interesting, but currently slow

• Classical HEP methods worked well, but ML used to boost accuracy, e.g. track cleaning



Graph Neural Networks
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• Approach that was developed during the process 

of the challenge

• Albeit independently by the HEP.TrkX project

• Recognise that current HEP approaches have 

excellent physics performance

• But scale badly with resources when event complexity rises

• Represent tracker output as a graph

• One track hit per node

• Directed edges, inside → outside

Deep Neural Network that reasons 

directly on a graph



Tracking and GraphNN
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• Outstanding performance

• 97% of GNN reconstructible tracks are found

• N.B. this is a subset of all possible tracks!

• A very natural representation for HEP tracker data

• cf. image representation

• Graph is huge

• 120k nodes

• 4.4B edges

• Serious investigation underway in a 

number of areas

• High-granularity calorimeter reconstruction, where 

the calorimeter is so fine if becomes like a tracker

Blue true edge, red false



Practical ML for HEP
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Practical Machine Learning for HEP
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• Today HEP (really LHC) consumes huge computing resources, very costly

• 1M CPU cores, 24x7x365 usage

• 1EB of total storage

• These resources are mostly dedicated to our needs, fairly homogeneous and structured 
around traditional computing solutions

• CPU cores

• Mostly 2GB memory per core, few 100GB of local scratch space

• Evolving from single core slots to multi-core (usually 8)

• Essentially no inter-slot communication

• HEP computing is traditionally embarrassingly parallel, because events are independent

• How is Machine Learning done?

• Some organised production for development of BDTs and NNs in reconstruction

• A lot of ‘private’ resources used for development and for training

• Integration of inference into larger frameworks is still a moving target (lwtnn, TensorFlow, frugally-deep), but ongoing



Future HEP Computing
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• LHC will not be the only exascale science in the future

• Other HEP experiments: DUNE, FAIR

• Can have important differences in their requirements

• Other big science experiments: SKA, LSST, CTA

• Different computing approaches, pipeline driven

• Future resources may look very different from those we have today

• New generations of supercomputers are coming

• Pressure from funding agencies to use these for HEP computing

• Anticipated that 90-95% of potential throughput will be in GPUs here

• Better have some idea what to do with them…

• Traditional computing approaches are not generally
easy to adapt to these architectures

• One of the big attractions of ML from a practical point of view is that
it is optimised for these homogeneous high-FLOP architectures

• And this work is being done by other people!

• Q. Do we have scaleable ML problems for supercomputers?



Portable ML and Data Preservation
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• How to combine the latest advances in ML toolkits with running on 
managed grid resources?

• Sites will not be installing TensorFlow on demand!

• Containers have started to revolutionise the portability of software 
stacks

• Can build central containers for users

• Who can tweak them if needed

• Now running and available on ATLAS grid resources

• Bonuses for

• Reproducibility (still a significant issue at the training stage)

• Continuous integration (testing and versioning)

• Data preservation

• Still, we do continue to worry about the relatively short lifetime of 
Machine Learning software cf. a HEP experiment

• What if software products just get abandoned?



Future Directions
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The Future
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◦ Machine learning: better, faster, cheaper… or different?

Mostly inspired by Kyle Crnmaer, NYU

Sketch by Vincenzo Innocente, CERN

Always 

looking for 

shortcuts!



Physics Aware Machine Learning
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• Physics motivates the kernel used for the ML process

• Vocabulary of kernels + grammar for composition 

• Example is using a recursive neural network (RNN) 

for QCD jets

• Encodes the topology of the event in a way that respects physical 

process

• Given better results than image based approaches

https://arxiv.org/abs/1702.00748

https://arxiv.org/abs/1702.00748


Machine Learning for Structured Data
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• Standard deep learning toolkits are not well suited to reasoning over structured 
representations

• Multi-layer perceptron, convolutional neural network, recurrent neural network – how do I make my data fit the 
model?

• However, graph neural networks are suited to this topic

• Encode fundamental physics (or physical process) in the structure of the graph

• Output of the graph network respects topology, changes weights

Peter Battaglia, Google Deep Mind

https://indico.cern.ch/event/858670/


GraphNNs for Physics
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• Modeling that naturally represents structured data

• Available in TensorFlow

• Powerful toolkit for simulation and interpretation of behaviour
Peter Battaglia, Google Deep Mind

Results after 

1000 steps

• GraphNN encoding a 

Hamiltonian

• This is extremely 

general!

https://indico.cern.ch/event/858670/


Conclusions
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• Machine learning has been part of the toolkit for High-Energy Physics for a long time

• Advances in the field, driven by industry and academic research are opening up new opportunities 
for applications

• Improved discriminators are a natural application for HEP

• Already we got important boosts to the statistical power of our analyses

• Applications are moving out to other parts of the HEP computing domain

• Reconstruction applications, such as low level tracking – emphasis on speed of inference (even using FPGAs)

• Generative networks for speeding up simulation

• Applying the techniques developed for other fields takes quite some care

• Fruitful engagement with data science community through Physics ML challenges

• Machine Learning fits well into the evolution of computing hardware

• That alone would be an important driver and brings practical better, faster and cheaper improvements 

• Encoding domain knowledge of physics naturally into machine learning takes time and effort

• This is the most radical option to really revolutionise HEP computing – will take years to be fully proven


