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Overview and Acknowledgements

* Particle Physics Overview * Machine learning and artificial intelligence
« Future Challenges for HEP s;e ?xfremely active topics in High-Energy
ysics

* Including Computing Hardware
* Summarising the work in the field in 45

* Classification Problems and Physics ; i , ) ,
minutes is essentially impossible

Analysis
* So you need to live with my particular selection
* HiggsML Challenge
* | have drawn on the work or many, many

* HEP Data as Images colleagues, to whom | am extremely

* Machine Learning for Generation grateful

* Future Tracking Challenges and * Of course, all mistakes | own

GraphNN * In particular I'd like to thank James
. Catmore, Kyle Cranmer, Sergei Gleyzer,
* Practical ML Lorenzo Moneta, David Rousseau, Andi
* Or How Can This All Work...2 Salzburger, Ariel Schwartzman, Jean-Roch

* The Future and Conclusions Vilment




Introduction to Particle
Physics




Particle Physics and Big (Data) Science

o Particle physics is trying to
help answer questions

Dark Energy
Accelerated Expansion

Afterglow Light

° From the earliest moments of the 380 Ol:)%tt;r: Batk Agee 32‘:':4?!2"'3&25 po
Big Bang

o Through to the universe as we see it Inflation
today >

1st Stars
about 400 million yrs.

Big Bang Expansion

13.7 billion years




Key Q Ues.ﬁons Standard Model of Elementary Particles

three generations of matter interactions I force carriers
(fermions) (bosons)
o I I "
¢ H OW g OOd IS The STG n d CI rd MOd el mass  =2.2 MeV/c2 =1.28 GeV/c? =173.1 GeV/c? 0 =124.97 GeV/c?
charge % u EE] C EE] t 0 0 H
* Properties of the Higgs boson il ’ ’ @ |
up charm top gluon higgs
¢ Why IS |1. SO Ilght? =4.7 MeVi/c2 =96 MeV/c? ~4.18 GeVic? 0
- d - S - b 0
Y% % % 1
* Dark Matter v
down strange bottom photon
* If not SUSY, what is it? '
=0511 MeV/c2 =105.66 MeVic2 =1.7768 GeV/c2 =91.19 GeV/c2
-1 =i il 0
* Dark Energy . & @ |- & . &
. electron muon tau Z boson \
* Anti-matter
<1.0 eVic2 <0.17 MeV/c2 <18.2 MeV/c2 =80.39 GeV/c2
. 0 0 0 +1
* Understand the asymmetry of the universe G |- & |- C W
. electr_on muon tau_ W boson
° QUCII’k gluon plqsmq at fhe B|g Bdng neutrino neutrino neutrino I
) S-l-q r-ﬁng Condilﬁons for ll-he Unive rse we see By MissMJ - Own work by uploader, PBS NOVA [1], Fermilab, Office of
Science, United States Department of Energy, Particle Data Group, Public
1-Od qy Domain, https://commons.wikimedia.org/w/index.php2curid=4286964




v i T Rt ek o N e MRl i

Collider

e

hallenge: = . 37
O =

te
S

2




The ATLAS Experiment

Muon Detectors Electromagnetic Calorimeters

712260497

" Forward Calorimeters
Solenoid

| End Cap Toroid

i Inner Detector ieldi
Bame! Tenoid Hadronic Calorimeters S




An LHC Collision Event




Data Rates — now and the future...

Event complexity

Collision Rate 40MHz 40MHz

Collision Energy 13TeV 14TeV

Pile-up 40 200

Level 1 Trigger 100kHz 1MHz

Data Accept Rate 1kHz 10kHz <— Event rate
Data Size 1MB 2MB

RAW Data Size (1 Year) 1PB 20PB

* Considering the lifetime of the LHC we are only at the start of the journey
* Roughly x20 more data will be collected by the end of the project




What Are We Looking For?

"""""""""""""""""" ATLAS Preliminary Theory E * Interesting physics events
Run12 ys=7,8,13 TeV N = for the ATLAS
Bl Data 45-29f" E .
: experiment are
o LHC pp Vs=8 TeV -
0 Bl Daa 2036 3 reld’rlvely rare
A& o ]
10 LHC pp Vs =13 TeV 1 ° .
10 R on oo sin Very high backgrounds
: of well understood
“ E physics
a0 )
‘o e . 0 * Background rejection has
O o E
v ] .
....................................................................................................................... (Jll.l ..nn---go..q...._. 1-0 be hlgh
o ‘ 3
ver i 3 * And also be fast
a i
- I g g’ * This is the experiment trigger
" g . ; system
w z tt ot WW H Wt WzZ ZZ t tiW tiZ tZj




LHC Science Facebook
data uploads SKA Phase 1 -
~200 PB 180 PB 2023
~300 PB/year
Google science data

searches
98 PB

LHC — 2016
50 PB raw data

Google
Internet archive
~15 EB

Yearly data volumes

HL-LHC — 2026
~600 PB Raw data

There is not just
more data, it's harder
to analyse!

—

SKA Phase 2 — mid-2020’s HL-LHC — 2026
~1 EB science data ~1 EB Physics data

@1 0 Billion of these



Technology Evolution and HEP Computing

42 Years of Microprocessor Trend Data

* Moore’s Law continues to deliver increases in transistor 7 ! ‘ ‘ —
. L i e o a " aug #77| Transistors
density TS S R S *h:::f, | (thousands)
; i VY Yoty
OO USROS SRRSO .....‘AAA‘A .. Single-Thread
* But, doubling time is lengthening, and probably the end is in sight... 10° : | s > el .5\. Pertormance
104 | . [ I ‘ ‘.‘ S | (SpecINTx10)
° ° : LAk wl u V4
* Clock speed scaling failed around 2006 Y _-g'.w"*" A g | ey e
> | L A ® _lv . "‘xi' ] Typical Power
* No longer possible to ramp the clock speed as process size shrinks 121 i C . s ?'.‘! 7 "::?t,"§ K+ I‘\‘I’L’:zrgf
.t L IR S ‘ * ¢ Logical Cores
* Leak currents become important source of power consumption 109 _‘; R PR S0 ...................1‘.“’“‘ .
* So we dre basically stuck at ~3GHz clocks from the 1o T e 00 Bl o
underlying Wm-2 limit
* This is the Power Wall 10000 et

* Limits the capabilities of serial processing

k=]
S
S

Processor I
Processor-Memory
/ Performance Gap

10 .

Memory

Performance

=}
=]

Memory access times are now ~100s of clock cycles

This is a serious headache for our software stack

1980 1985 1990 1995 2000 2005 2010
Year




A New Landscape for Data Analysis

Transition to concurrent execution for ,
End of the Line = 2X/20 years (3%/yr)

HEP software has been hard Amdahl's Law = 2X/6 years (12%/year) ¢
* Even just on CPUs End of Dennard Scaling = Multicore 2X/3.5 years (23%/year) ¢
CISC 2X/2.5 years ? RISC 2X/1.5years
* Now technology pushes us towards | o%ryear) 52%year)
different architectures 100,000
* GPUs have become “standard” o
. ® 10,000
* FPGAs, TPUs also exist o
=
* Prediction is for ever more diverse E 1000
architectures g
@
L] ° u
* One of the major drivers of new . 100
. . . £
architectures is modern machine 5
learning k: 10

How can HEP best take advantage of .
that transition? 1980 1985 1990 1995 2000 2005 2010 2015



https://cacm.acm.org/magazines/2019/2/234352-a-new-golden-age-for-computer-architecture/fulltext

HEP Computing Workflow

* Far from a homogeneous problem
* Many different phases to HEP

computing today

* Mature code, with decades of physics
experience built into it

* About 50M lines of C++ and Python

* Machine learning finds many niches in
the current workflow to be useful

Simulation

* Doing things better, improved outcomes

|

LHC experiment computing scale:
* Use TM CPU cores every hour of every day
* Store 1000PB of data (600/400PB tape/disk split)
* We are in the exabyte era already
* Run at 100s of computing centres worldwide
* Make TO0PB of data transfers per year (10-100Gb links)

* Doing things faster, quicker outcomes
* Doing things cheaper, less resources
* Possibility that advanced machine

learning may be a disruptive
technology

* Change the entire workflow in the future




Classification and
Analysis




Classification and Analysis

* A large part of physics analysis is
1 variable 1 signal /background discrimination
* Signal can be at the 10710 [evel

Background MC * Reducible and irreducible backgrounds

* For many years we used cut based
analysis techniques

* p(signal) higher if v;, < vV < vp;

* A lot of effort went into defining higher

Signal MC level vquq.bles from lower level
reconstruction outputs

» variable 2

Thanks to James Catmore, Oslo, for these graphics




Classification and Analysis

* Multi-variate analysis was a way to
1 variable 1 improve this

* Define signal and background from
considering multiple variables at the

‘ same time
Boundary defined by a
machine learning algorithm * Shallow neural networks often used
/ * Boosted decision trees became

extremely popular in the field

* Conceptually easy to understand the algorithm

* Performance as good as shallow NNs

* Efficient to store and quick to evaluate
» variable 2 * We have a standard toolkit for this
* TMVA toolkit in ROOT




Classification and Analysis

* Effectively ML defines a new

New ML discriminat; bl
- iscrimination vari
variable sC ation variable
* Ui = f(v11v21 U3, V4, Us, '")
R * Improvement in the discrimination power
measured by the usual Receiver-
Operator Curve (ROC)
* Although nothing will beat the Baysiean Limit
‘ * But ML very useful when underlying PDFs are not
S . | [ : . known
N Perfect | | .
S ol N - * These techniques have were a
S osr T significant success at both the Tevatron
B oo Neveter™- % i1 and at the LHC

0 D.IE 0.‘4 O.IE 0.‘8 1
Signal efficiency




Multi-Variate Success for HEP

Top quark mass measurement @Tevatron Shallow NNs, BDTs ‘
Single top quark discovery @ Tevatron Shallow NNs, BDTs |
Higgs discovery (H—Yy) @ CMS BDT
Observation of H—bb @ ATLAS, CMS BDT i
Observation of Bs—Ud @ ATLAS, CMS, LHCb BDT
* Papers from at least 30
Observation of associated Higgs and top BDT (XGBoost @ ATLAS) years ago
quark pair production (“ttH”) @ ATLAS, CMS * Asold as the world
wide web!
Jet flavour tagging Shallow NNs, BDT, Recurrent NNs * A huge success for the
field




Getting Better: Machine
Learning Challenge




Table 1 | Effect of machine learning on the discovery and study of
the Higgs boson

H i g g S D i Scove ry Sensitivity Sensitivity Ratio Additional

Years of data without machine with machine of P data

Analysis  collection learning learning values required
. . . CMS%  2011-2012 2.2, 270, 40 519
* Discovery of the Higgs boson in 2012 has H— oy P=0014 P =0.0035
. ATLAS*®  2011-2012 250, 3.4, 18 85
been the greatest achievement of the LHC el P 00062 P 000034 7
programme so far ATLAS?®  2011-2012 1.9g, 2.50, 47  73%
VH — bb P = 0.029 P = 0.0062
* Machine learning provided significant ATLAS*  2015-2016 2.80, 3.00, 19 15%
) ) S VH — bb P = 0.0026 P =0.00135
Increase In sensitivity CMSI®  2011-2012 1.4, 210, 45  125%
VH — bb P —0.081 P=0.018

If we had not used such techniques, we would

Machine learning at the energy and intensity frontiers of particle

have needed to collect significantly more
data

physics, https://doi.org/10.1038/s41586-018-0361-2

* LHC data is expensivel!

However, one can ask the question could we
have done even better...2



https://doi.org/10.1038/s41586-018-0361-2
https://doi.org/10.1038/s41586-018-0361-2

Higgs Machine Learning Challenge

. * Host K le platf
HigosH the HiggsML challenge osted on Kaggle plattorm
May to September 2014 e Used 800k ATLAS simulated events

When High Energy Physics meets Machine Learning

* H — 17 plus background events
* 30 features per-event

* Mix of low level reconstruction and derived features
* Huge excitement on the platform
* 1785 teams took part
* Physicists and data scientists

35772 solutions were submitted

* This was the largest challenge that they had hosted at the time
* Simple solution (untuned TMVA) beaten on day 1

TN &.‘ \\\ B * ‘Reasonable’ solution (multi-boost benchmark) beaten
info to participate und compefe : =/ www kaggle. by dqys




HiggsML Outcomes

Rank Team Score | Entries | Method
1 Gabor Melis 3.80581 100 DNN
2 Tim Salimans 3.78913 57 RGF and meta ensemble
° Winners were from fhe Compufer science 3 nhlx5haze 3.78682 254 Ensemble of neural networks
. .. 8 Lubos Motl’s team | 3.76050 589 XGboost and Intensive feature engi-
domain, not physicists neering
31 Mymo 3.72594 73 Ensemble of cascades and non-
* Deep Neural Network solution was the winner cascaded models
. . . 45 Crowwork 3.71885 94 XGBoost Tuned
e XGBoost lmplemen’rq’rlon proved to be hlghly successful 7892 Eckhard 349945 29 TMVA Tuned
. . 902 Benchmark 3.40488 NA MultiBoost
* Winner of the HEP meets ML prize 991 Bonchmark 319956 | NA | TMVA
* Has gone on to be used in subsequent HEP analyses
° 3'9 T 1 T T T 1 1
* We learned a lot from this T UDOS
. .. . — ChoKo
* Nice boost for public interest in HEP! — Gabor
quantify
— Roberto |
g — Plermre
< — multiboost
3.5}F R
‘\
3.4 ! ] ] Do ! \l. !
80 82 84 86 88 90 92 94

% rejected




Baldi, Sadowski, Whiteson

Lessons fo r An q Iysis https://arxiv.org/abs/1402.4735

c
S i
(0]
> 0.9 —
g w - % 0.8 -
{Jf * Minimal super-symmetric model at the LHC 3 o7 1
s 0 0.6~ —— NN lo+hi-level (AUC=0.81) -
1o N  Signal Hy = WWbb vs. background tt = WWbb S L |
(ﬁ ik b . m 0.4~ —— NN hi-level (AUC=0.78) .
. o * Low level variables oal i
NN lo-level (AUC=0.73)
* 4-momentum vector o2r | u
b 0 02 04 06 0.8 1
* High level variables Signal efficiency
* Pair-wise invariant masses - :
o
e f
* Deep NN outperforms NN, and does not need S
C 08 .
high level variables 2
o 0.6 .
* DNN learns the physics...? g S
& 04 L
S DN lo-level (AUC=0.88) l
0.2+ T
ol --- DN hi-level (AUC=0.80) ]
0 0,12 D.I4 0.16 0.‘8 1I

Signal efficiency

Thanks to David Rousseau, LAL for this example



https://arxiv.org/abs/1402.4735

Baldi, Sadowski, Whiteson

H ) TT DO_ove r https://arxiv.org/abs/1410.3469

* LHC H = 7T analysis with Z — 17T
background

Shallow networks Deep networks

3.5

* 100M fast simulation training events from
Delphes (this is a lot!)

* Low level variables

* 4 momentum

* High level variables

* transverse mass, delta R, centrality, jet
variables, efc...

* Here the Deep Neural Network
consistently outperforms the shallow

NN

* But high level variables always
improve the significance

Discovery significance (o)

Thanks to David Rousseau, LAL for this example



https://arxiv.org/abs/1410.3469

Image Recognition
Problems




ImageNet Large Scale Visual Recognition Challenge Accuracy

Image Recognition in HEP . — e

== Human

90

* Many advances in machine learning have been driven &

80

by the image recognition problem

75

* Development of new convolutional neural networks and

2010 2012 2014 2016

powerful training methods

* Convolutional networks scale better than fully connected layers
* Now exceed human accuracy on ImageNet database

* Can image recognition techniques be useful in HEP?

ImageNet Large Scale Vlsual Recogmtlon %

Challenge (ILSVRC)

Chihuahua or muffine




HEP events as Images

Generally HEP events are not much like images at

all & /L H; ¢ H - 7ZZ - eeuu
* Very different detector elements EXPERI

Run Number: 182796,
Event Number: 74566644
Date: 2011-05-30, 06:54:29 CET

Complex geometry

Occupancy low

* j.e. most detector elements are not activated in each event

However, unfolded calorimeter deposits do look
rather regular and ‘image-like’

Not very much like a normal 2D image...




Jet Tagging at the LHC

* Important problem at the LHC is to distinguish jets, i.e.
showers of multiple particles in the tracker and
calorimeter
* Those produced from the decay of b-quarks

* Those produced by soft QCD processes

* Jets are a key observable

) ) o ) ) 8 O O st T e
* Can identity quarks and gluons in high-energy interactions £ 0.14[ 's8Tev s loada o) -
G e —Gamn iy
* In combination can identify unstable heavy particles :% 0125 200 <rr™ <o oY =080k, 007
. © Trimmed (f_=5%R_,=02) cn=065¢e5p=01 1
* Top quarks, Z, W or Higgs bosons £ 0.1 W ]
< 0.08- W . .
. ° ° L et SI nql
* At high LHC energies jets become more boosted 0.06F ST 519
TR contaminated
* i.e. significant momentum parallel to the LHC beam 0.041 .
9 P < by QCD jets
* This causes jet elements to point close together and being to merge 0.021:,

0 20 40 60 80 100120 140160180200

* Makes jet identification more challenging M [GeV]
e

https://arxiv.org/abs/1510.05821



https://arxiv.org/abs/1510.05821

Jets as Images

* Jets impact at random places in the
calorimeter

* This variation in coordinates is not interesting

* Data preparation consists of
* Centring
* Rotating

* Translate

* Need to be careful to make a physics
preserving transformation

* Calorimeter deposits measure energy, but the invariant
quantity is transverse momentum

* Caveat emptor: Naive application of image recognition
techniques may get things wrong

[Translated] Azimuthal Angle (¢)

[Translated] Azimuthal Angle (¢)

i ]
) . o .= g
10 10 ! 1.0
05 v 0.5 “\ v // 0 .l
LA AL % e
0.0 oo KK 0.0 k
00 05 10 15 20 25 00 0 10 ~15 20 2 00 05 10 1 20 25
Relative 5
240 < pT/GeV <260 GeV, 65 < mass/GeV <95 240 < pT/GeV <260 GeV, 65 < mass/GeV <95
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240 < pT/GeV <260 GeV, 65 < mass/GeV <95 240 < pT/GeV <260 GeV, 65 <mass/GeV <95
Pythia 8, QCD dijets, vs=13 TeV Pythia 8, QCD dijets, \s =13 TeV
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Learning and Tuning

Convolutional Neural Networks

- . . . B i
............................ eSS EEEsssessesessssae, seemsmsennn
' 2: feature maj .
' ~ H °
' o L .
input ’ . ' \' e
' . 1 "a““d"" el S2:featuremap  £3%ayer OUtpUt layer s o
) > il (16x) 5x5 categories ¢
'\ | (— e o’ (— ©0 : ome °
'B = = (= ~
: f - : l f tio

= ; —\ _: ciassiricarion

\J y L] .
! x

6% 5 { . ' -
L | | : "
convolution
X cgnvoluts
sul in ' ”
» » - - -
.

Filter size | (3x3) (5x5) (7x7) (11x11)
(1¢t layer)
AUC 14.8 12.5 11.1 13.3 17.3 20.3 18.1

Use of larger filters than for normal image classification gives

Pythia 8, W'— WZ, Vs =13 TeV

240 < pI/‘GeV <260 GeV, 65 < mass/GeV <95

[Translated] Azimuthal Angle (¢)

better results bt J
-1 -0.5 0 05 1

[Translated] Pseudorapidity (n)




Convolved
Convolutions Feature Layers

Results

* Results are significantly better than classical __
physics approaches (n-subjettiness) and W WZevent
classical image recognition ones (Fisher faces) Repeat

Max-Pooling

250 < pT/GeV <300 GeV, 65 < mass/GeV <95

i - H /s = 13 TeV, Pythia 8

y)

e Mass

T21

a
[ “i.
Vo
E'T'
-"h

I
II
B
. |
e

Eec
g

=T

m T'I IE b
ro— i I- - t " " ' = AR
".'.. H :‘ - A E - Fisher
- ~ o 2 100; -~ MaxOut
L] [ ] - "
B~ "RRET : | o
.! '. . L = —— Gonvnet-norm

Random
-- '

1 "
. -

e : : L
- - - - . -
AT T TR - - o5

(a) (11 x 11) convolutional kernels from first layer (b) Convolved Jet Image differences
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5
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—
=
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-

-
L
[
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B
k.2
m T

* Kernels indicate that many different features 2 04 06 08

Signal Efficienc
are being identified in the image-jets i '




CNNs for Neutrino Physics

DUNE Experiment

Underground 1 I = Fermilab
Research

Facility o == ) - : /
3 ey

Deep Underground Neutrino Experiment

Sanford Underground
Research Facility

Run 3493 Event 41075, October 23", 2015 Lead, South Dakota

Sanford Underground

Fermllab Research Facility

Batavia, lllinois °®
-q-~-..-...»-._.._, (Proposed)

R
s TSRS
@

Fermilab

selected pixel and

; Convolutional Neural Network
surrounding patch

input image

o probability:
EM-like

track-like

RIR

empty

convolutional layers dense layers output



Generative Models




From Classification to Generation

* Looking at LHC computing today the lion’s share of resources go into detector simulation

* LHC detectors are highly complex devices and must be simulated in great accuracy for
physics
* From sensitive detectors to dead material for electronics, cables, cooling
* Many different types of primary and daughter particles
* Huge range of energies and different physics processes

* Embedded in a complex magnetic field

* LHC produces a real particle collisions in just 0.000 000 025 seconds
* [t may take 100 seconds to simulate this collision

Event GenM_




ABSORBER

Electromagnetic Showers o

When a hlgh. energy photon or electron hits the .calorlme’rer in : %‘mki_ My e
a HEP experiment it produces an electromagnetic cascade — o =

* The ATLAS calorimeter is a very complicated arrangement of
liquid argon and accordion plates Towers in Sampling 3

amplin
AQxAN =0.0245-0.05

Try er
* Very time consuming to simulate with particle transport, ~75% of Geant4 P Hgfn:a‘:a
simulation time for ATLAS /\

gl
Y
&

-l

&5 16X

/

.
4

=0
A‘P;‘O,
3.
=14

a' - g
&
Xe ’. lP \H_‘__‘_
e 2
: 37'5'“11\!8 -
il =469
. R 4n “*0.(}03]%
1 e _-/5-’ R
S n
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=002
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Machine Learning Inspiration: GAN

[Image from |. Goodfellow]

e Generative Adversarial Networks

* Two neural networks play a game

* The generator tries to generate events that look ‘real’

* The discriminator tries to tell the difference between the real
events and the generated ones

* Can now generate extremely realistic looking faces

generated distribution true data distribution

B(x)

unit gaussian

generative
model

redshank ant monastery
(neural net)

i

W | BN .
e S

volcano Crammer, NYU

oss| ,’
’

image space image space




Machine Learning Inspiration: VAE

* Variational Auto Encoders are networks that map

input data into a lower dimensional latent space

* Then remap that latent space back out to the
original event
* Relatively easy to train

* New events can be generated by sampling from the
latent space to get new, unseen events

* These should model the statistical properties of the original set of

svens decoder
* VAE applications
* Dimensionality reduction
* Anomaly detection
* This technique has also been used in HEP N.B. VAE’s ‘smoother’ than GANs, but may be good for physics?




ATL-SOFT-PUB-2018-001

ATLAS ML Fast Simulation

Latent space z (10 dim.)

° Training times
° VAE: 100 epochs, 2 minutes on CPU
o GAN: 50 epochs, 7 hours on GPU

‘ £ o VAE is very fast to train
' : ° Fairly broad hyperparameter scans feasible

> GAN adversarial step is long and increases

Dense
150
ELU

Dense
100
ELU

Dense
150
ELU

VAE

Dense
200
Sigmoid
Generated
shower

Geant4
simulation
Dense
200
ELU

]
@
n
@
@

T the training time a lot
e o
— li‘ . 3 3 3 8 Generated
i B2 B2 B2 88| shower o GAN also suffers from unstable training, may not
8% 8§ 8§ aia
F——— / s s s 5 converge to good results at all
Calo. config.
GAN ' Generated o Hyperparameter scans very expensive

image

Discriminator
output

Geant4
simulation

n1edAdes
8zt
asuag
n1edAes
82t
asuag

Ieaur
I
asuag
n1edAes
82t
asuag

w
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https://cds.cern.ch/record/2630433/files/ATL-SOFT-PUB-2018-001.pdf

ATL-SOFT-PUB-2018-001

ATLAS ML CaloSim Results

% ,oo| ATLAS Simulation Preliminary + Geantd | 2 [ ATLAS Simulation Preliminary '+ Geantd
° H . . f o S Benss ey 020 <Inl <025 w2 VAE S 10 St g 020 <in <025 - \é,:EN E
Modeling of energy response of calorimeter is fairly | prea s g L e
S0 Indf = 60 (GAN) Bl | x*mdf=20 @AN) ]
£ F w
[73) L
good ] , ,
F 10°F E!
b coro '3% E
L] [ -
* Note log scale for y-axis N ]
+ [ E
PY ° ° ° o ° h ° I r +f" ,
Difficulty in matching the energy in the tails o .
* Energy deposition is small, therefore small in the loss function S SN ¢
14
10 15 20 25 30 35
Energy [GeV] Energy [GeV]
(] [ ]
* Shower width is good
(a) Presampler (b) Front layer
L] L] = — — — S— — — — —— — — — —— . .
¢ ShOwer de Th deVICﬂ'eS from eX eC1'Cl1'|0n E s ATL)lSSim'ulation'PrelimFinary '-+- G'eant4 % LATLAISSimuI.'l\tion Pre‘liminarg) + ‘Gean147
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https://cds.cern.ch/record/2630433/files/ATL-SOFT-PUB-2018-001.pdf
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Improving the GAN |

Shower energy spread in the GAN did not
match that from Geant4

Esim/Etruth
[*S)

05 3 15 5 25

Add a second critic to the training process 10910 G0V

* Targets total energy of the showers

Condition on the particle position in the N 4
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Tracking Challenge




A Future Challenge
ATLAS

EXPERIMENT

o o o o HL-LHC tt event in ATLAS ITK
* High-Luminosity LHC will at <u>=200

squeeze proton bunches
together more tightly

* Instead of 40-60 pp
collisions at a time we get
200
* x4 chance of interesting physics
* x4 background events, a.k.a pile-up

* But combinatorics mean much worse
than x4 increase in complexity




Tracking In A Few Pictures

fpoo
- I por 1 .
» o e
6} o o’ -
] / "o
o) I~ . .‘om.‘
= 3 - F -
T o 500(— ¢ s o, -~
- () X : o. \ .t
o | - f LU
- o @@ E 3: : t 1
. » o3 s 3
% ° ° ¢
) B \ I s
- .° [} $ ’
S I R Y , \/ VA
. . . , -500}— ." \. ,/ ¢
Naive tracking can almost be done ‘by eye i Y .. o -
* Human visual system quickly overwhelmed in this case i e ™ ) P
* Static points, no movement I~ i N i .’
B . . —-1000— * ey
* Challenge for pile-up 200 is considerable L by by
-1000 -500 0 500 1000
* Many important physics effects that make this hard StepX

*  Multiple scattering
* Bremsstrahlung

* Real detector geometry with inclined sensors, gaps, cables, ...

Pictures thanks to Andi Salzburger, CERN
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TrackML Pé‘rt|c1é-'r:a{|imgc allenge : e\ 525,000
High Energy Physics particlé:’t?&;;’kigg_lg N ¢ " s AR Prize Money

) CERN - 651teams - a year-ago

SZA

LCIUhChed 30 Apl’il 20] 8 Domain e.g. HEP Challenge Challenge

organisation

Attempt to engage the ML community with this HEP problem [ Problem | Slymphfy N [ Problem |
V]

* One phase based on accuracy bonin The
lv solves
* Hosted on Kaggle the domain ~ months the
problem Chatl)llenge
problem
* One phase based on performance PR

* Accuracy plus time - N reimport -

* Hosted on Codalab

Thanks to David Rousseau, Andi Salzburger, Jean-Roch Vilmant in
particular




TrackML Dataset
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o

1
1000

o Realistic model of a HEP tracking detector
o Pixels, short strips, long strips
o Realistic simulation including multiple scattering, energy loss and hadronic interactions

o Detector and track data provided as CSV files

o Actually useful for HEP as this has become a reference dataset for testing algorithmic improvements




Accuracy

truth track

strip detector found track

high weight

[
O

mid weight

low weight
low weight

o
N

low weight

mid weight

high weight o e 2' 0 Pr [GeV]

highest weight

v

track weight

particle origin

Accuracy scored in a very physics relevant way
* Favour tracks which pass right through the detector

* High-momentum tracks are worth more

At least 50% hits from the same ground truth particle

At least 50% hits of the ground truth particle in the track
* Score normalised to sum over all possible tracks

* Perfect score is 1




Accuracy Winners

- # \pub Team Name Notebook Team Members Score Entries Last
1 — Top Quarks Prize j.f D | 0.92182 10

—_ 2 outrunner P rize a 0.90302 9

W o8 . ===

E 3 Sergey Gorbunov  Prize K 0.89353 6

((»] 4 demelian > | 0.87079 35
B 5 Edwin Steiner ) | 0.86395 5
A 6 Komaki . 0.83127 22

N 0.6 .
g 7 Yuval & Trian JUI")’ pICk ﬁ 0.80414 56
O 8 bestfitting = 0.80341 6
o 9 DBSCAN forever Jury pick & 0.80114 23
__r:l__ 0.4 10 Zidmie & KhaVo ﬂ = 0.76320 26

Q 11 — Andrea Lonza ‘ﬁ 0.75845 15

B 12 Finnies JUF)’ pick L ‘ 0.74827 56

g - 13 = Rei Matsuzaki 0.74035 12
45 0.2 14 - Mickey ‘ﬁ 0.73217 10
3

* Steady improvements in the scores over time
0.0 - : : . - o i i
5 0 o s 20 160 A number of very innovative approaches

days from start




Accuracy Insights

* First: Top Quarks
* Johan Sokrates is an industrial Mathematics master student

* Pair seeding, triplet extension, trajectory following, track cleaning, all with machine learning for quality selection

* Second: Outrunner
* Pei-Lien Chou is a software engineer in image-based deep learning in Taiwan

* Machine learning to predict the adjacency matrix

* Third: Sergey Gorbunov
* Sergey Gorbunov is a physicist, expert in tracking
* lterative steps, triplet seeding, trajectory following
* Jury Picks
* Density Based Spatial Clustering (DBSCAN) appeared twice

* LSTM and ML classifiers used to improve results




Throughput Phase

* Score based on accuracy and time

e Jlog(1 4+ time/ - x (accuracy — 0.5)2

1.44
Taka ®
50 1 1.26
= - 1.08
T 40 Sharad °
@ -0.90
o 1
& g
el Vicennial 5 / 0.72 3
=
= L0.54
é 20 1 : ’
q) S
cubusg 10.36
10 i /
cloudkatchén < I
Clouaik4l f/ 8 0.18
: : g0l 0.00
0.5 0.6 0.7 0.8 0.9 1.0

accuracy




Throughpu’r Winners

RESULTS
ao:um:y_ computation time Duration A
(sec) A (sec/event) A
1.1727
HEP 59°’b“"° 03/12/19 a 0.944 (2) 0.00 (14) 28.06 (1) 0.56 (1) 64.00 (1
1.1145
people 2 fastrack 53 03/12/19 > 0.944 (1) 0.00 (15) 55.51 (16) 1.11 (16) 91.00 (6)
: 0.9007
PH+CS 3 cloudkitchen 73 03/12/19 - 0.928 (3) 0.00 (13) 364.00 (18) 7.28 (18) 407.00 (8)
0.7719
4  cubus 8 09/13/18 " 0.895 (4) 0.01 (9) 675.35 (19) 13.51 (19) 724.00 (9)
0.5930 2758.00
5 Taka 11 01/13/19 - 0.875 (5) 0.01 (12) 2668.50 (23) 53.37 (23) e
o 0.5634 1339.00
6 Vicennial 27 02/24/19 o 0.815 (6) 0.01 (10) 1270.73 (20) 25.41 (20) o
0.2918 1986.00
7  Sharad 57 03/10/19 0.674 (7) 0.02 (4) 1902.20 (22) 38.04 (22)

@ (12)

* Best accuracy and best speed went hand in hand in the solution

* It was much harder for non-HEP people to compete on speed

* Many innovative ideas are interesting, but currently slow

* Classical HEP methods worked well, but ML used to boost accuracy, e.g. track cleaning




Graph Neural Networks

. o o6 OO [ ] e
* Approach that was developed during the process SR, PR r—
b o ® o/ °
of the challenge @ o6 oo O
e ® o % o? FP°
* Albeit independently by the HEP.TrkX project ° ° & ®—go 5 %0
@ o o o ® °s
) o o] [ ] 8 ° 0 o)
* Recognise that current HEP approaches have S A%
. ° o ®o ol _®
excellent physics performance o Lt SN Yo
] o P ) o (ole} : L
* But scale badly with resources when event complexity rises °
* Represent tracker output as a graph e
* One track hit per node o N a
* Directed edges, inside = outside , A 1 1. Reu | o _‘_.;:T'i- ReLU

e ) L N r_/]_' el @
\ = \ &

_ X
/

Deep Neural Network that reasons

directly on a graph




Tracking and GraphNN

* QOutstanding performance

e 97% of GNN reconstructible tracks are found

1000 A Grey edge: fake

», Rededge: true

* N.B. this is a subset of all possible tracks!

800
* A very natural representation for HEP tracker data

G * cf. image representation

r{mm]

40 \? * Graph is huge
7 NS K R
200 - \Q)‘kv;”u b7 / * 120k nodes

* 4.4B edges

0 * Serious investigation underway in a

Blue true edge, red false number of areas

* High-granularity calorimeter reconstruction, where
the calorimeter is so fine if becomes like a tracker




Practical ML for HEP




Practical Machine Learning for HEP

* Today HEP (really LHC) consumes huge computing resources, very costly
* 1M CPU cores, 24x7x365 usage
* 1EB of total storage

* These resources are mostly dedicated to our needs, fairly homogeneous and structured
around traditional computing solutions
* CPU cores
* Mostly 2GB memory per core, few 100GB of local scratch space
* Evolving from single core slots to multi-core (usually 8)
* Essentially no inter-slot communication

* HEP computing is traditionally embarrassingly parallel, because events are independent

* How is Machine Learning done?

* Some organised production for development of BDTs and NNs in reconstruction
* A lot of ‘private’ resources used for development and for training

* Integration of inference into larger frameworks is still a moving target (lwinn, TensorFlow, frugally-deep), but ongoing




Future HEP Computing

LHC will not be the only exascale science in the future
* Other HEP experiments: DUNE, FAIR

* Can have important differences in their requirements
* Other big science experiments: SKA, LSST, CTA

* Different computing approaches, pipeline driven

Future resources may look very different from those we have today
* New generations of supercomputers are coming

* Pressure from funding agencies to use these for HEP computing

* Anticipated that 90-95% of potential throughput will be in GPUs here

* Better have some idea what to do with them...

Traditional computing approaches are not generally
easy to adapt to these architectures

* One of the big attractions of ML from a practical point of view is that
it is optimised for these homogeneous high-FLOP architectures

* And this work is being done by other people!
Q. Do we have scaleable ML problems for supercomputers?




Portable ML and Data Preservation

* How to combine the latest advances in ML toolkits with running on
managed grid resources?

* Sites will not be installing TensorFlow on demand!

Containers have started to revolutionise the portability of software @ ===" o ]

Moving (unexpectedly) fast with
STGCkS modernizing the LHC computing
. . infrastructure: GPU-accelerated jobs o
* Can build central containers for users the grid (in containers, no less!)
@HEPfeickert @StewMH
* Who can tweak them if needed @KyleCranmer @peteronyisi1
* Now running and available on ATLAS grid resources "
Destination Lot l"“.:::“ :4
o BonUseS fOI’ “mage docker://lukasheinri
. _vs_b_slim.py %IN 10 gpt
o ofe . . ofe . « o 0 ic.mlongriddemo.v7 --noE
* Reproducibility (still a significant issue at the training stage) i 5 ’
* Continuous integration (testing and versioning) Bulkbase Buil_mibase T e
; - - scos
° DGTG pl’esel’VGflon (¥) build mi-base c. Q L:)bulldallasml-ba Q () tag atlasml-bas Q
(D build mibasec.. © (@ build atlasmi-ba.. O () tag mi-base bio.. ©
* Still, we do continue to worry about the relatively short lifetime of —
Machine Learning software cf. a HEP experiment ~T— —
* What if software products just get abandoned? Dty - (0

(¥)tag mi-base ubu.. Q




Future Directions




The Future

° Machine learning: better, faster, cheaper... or different?

forward modeling

generation MC Data Real Data
simulation }A
GenParticles Particles
PREDICTION
0 MCParticles
d ProtoParticles
parameters of interest p(x, z | 0,v) E
s Tracks
, X 5 Always
observed data & ,
latent variables . = Clust looking for
simulated data MCDeposits usters
\% Monte Carlo truth shortcuts!
nuisance parameters \
(Raw data)
inverse problem Processing
measurement Sketch by Vincenzo Innocente, CERN

parameter estimation
Mostly inspired by Kyle Crnmaer, NYU




Physics Aware Machine Learning

* Physics motivates the kernel used for the ML process N

.| — images

* Vocabulary of kernels + grammar for composition

202 N NN

* Example is using a recursive neural network (RNN)
for QCD jets

* Encodes the topology of the event in a way that respects physical

process

1/ Background efficiency

* Given better results than image based approaches

L 1 l I L L il l
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Signal efficiency

Event embedding Classifier
vity) v(ta) vitar) .
| | | \ . °
T T | hiy(e)
\ I _, — rllch ' .
A :’ h',"[m\ Wt \,)‘ / ® :
VAN AN I
F A N I

https://arxiv.org/abs/1702.00748



https://arxiv.org/abs/1702.00748

Machine Learning for Structured Data

* Standard deep learning toolkits are not well suited to reasoning over structured
representations

* Multi-layer perceptron, convolutional neural network, recurrent neural network — how do | make my data fit the
model?

* However, graph neural networks are suited to this topic

—  — — = — T
Graph Network l

(a type of Graph Neural Network) [
Battaglia et al., 2018, arXiv l

Edge block Node block Global block

* Encode fundamental physics (or physical process) in the structure of the graph

* QOutput of the graph network respects topology, changes weights

Peter Battaglia, Google Deep Mind



https://indico.cern.ch/event/858670/

GraphNNs for Physics

n-body

a  Data b DeltaGGN
(@p)n P4 (Pl Al !
o— | /N / i
GNy \ At
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|: Physics (Aq, AD)EEED Integrator
}
+
Sl =L -
(A P)us ?b (- P)nst (4. P)nts
Predictive accuracy Energy accuracy per °
. H —_ per model model
. _le-3 le—3
Nodes: bodies I3 b0
o 5 a L 1.44 b model
. . . f = £ 2.54 2 1.2 True Ham.
Edges: gravitational forces o %1 | moerson
% 1.5 @ 0.8+ OGN
§ 2 S 0.6 ™ HOGN
45 1.04 g 0.4
2 = I
Results after 3057 S 0.2
0.0 0.0-

1000 steps

* Modeling that naturally represents structured data

* Available in TensorFlow

* Powerful toolkit for simulation and interpretation of behaviour

Q-P)i—:" GN,— Han —*( :

GraphNN encoding a
Hamiltonian

This is extremely
generall

Peter Battaglia, Google Deep Mind



https://indico.cern.ch/event/858670/

Conclusions

Machine learning has been part of the toolkit for High-Energy Physics for a long time

Advances in the field, driven by industry and academic research are opening up new opportunities
for applications

Improved discriminators are a natural application for HEP

* Already we got important boosts to the statistical power of our analyses

Applications are moving out to other parts of the HEP computing domain
* Reconstruction applications, such as low level tracking — emphasis on speed of inference (even using FPGAs)

* Generative networks for speeding up simulation

Applying the techniques developed for other fields takes quite some care

* Fruitful engagement with data science community through Physics ML challenges

Machine Learning fits well into the evolution of computing hardware

* That alone would be an important driver and brings practical better, faster and cheaper improvements

Encoding domain knowledge of physics naturally into machine learning takes time and effort

* This is the most radical option to really revolutionise HEP computing — will take years to be fully proven




