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Considerable progress over last few years

 Results begin to be phenomenologically relevant                          



The QCD phase diagram

from GSI

Fundamental for particle-, nuclear-, astro- physics

Future textbook knowledge 

Non-perturbative problem

“Sign problem” prevents Monte Carlo simulation 
(NP-hard problem?)                             

The ultimate goal:

       Collect all evidence and constraints, obtained in parameter regions of QCD where “something” works; 

Non-perturbative determination from first principles!

Prohibited by the sign problem   

Growing demand from phenomenology:  
 
heay ions, nuclear astrophysics, gravitational waves…

     Vary                                                                  a coherent possible picture emergesT, µ,mq, Nf ,�, Nc
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Collect evidence of QCD parameter regions away from physical point

Vary 
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T, µB ,mq, Nf , Nc, g
2, a

The ultimate goal:

       Collect all evidence and constraints, obtained in parameter regions of QCD where “something” works; 

Non-perturbative determination from first principles!

Prohibited by the sign problem   

Growing demand from phenomenology:  
 
heay ions, nuclear astrophysics, gravitational waves…

     Vary                                                                  a coherent possible picture emergesT, µ,mq, Nf ,�, Nc
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constraints, coherent picture starts to emerge



[Pisarski, Wilczek, PRD 84]: 
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The nature of the phase transition at the physical point Fodor et al. 06

...in the staggered approximation...in the continuum...is a crossover!

The nature of the transition for phys. masses Aoki et al. 06
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The nature of the phase transition at the physical point Fodor et al. 06

...in the staggered approximation...in the continuum...is a crossover!
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Nf � 3 1st order

Can a trace of the chiral transition
(scaling) be detected experimentally?

[Pelissetto, Vicari PRD 13]

[Aoki et al., Nature 06]



…is elusive, massless limit not simulable!

The nature of the QCD chiral transition 

Coarse lattices or unimproved actions: 1st order for 

1st order region shrinks rapidly as                             

Improved staggered actions: no 1st order region so far, even for    
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Details and reference list:   [O.P., Symmetry 13, 2021]
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From the physical point to the chiral limit
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[HotQCD, PRL 19]  HISQ (staggered) [Kotov, Lombardo, Trunin, PLB 21]  Wilson twisted mass

Keep strange quark mass fixed, crossover gets stronger as chiral limit approached

Cannot distinguish between Z(2) vs. O(4) exponents, need exponential accuracy!            

Determination of chiral critical temperature possible, but not the order of the transition

Comparison with fRG:                           ,      ‘’most likely O(4)’’   [Braun et al., PRD 20,21]  
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Figure 3. Left: Pseudo-critical temperature of the crossover defined by the chiral
susceptibility ‰, the inflection point of the chiral condensate D or an additively
renormalised chiral condensate D3, for Nf “ 2 ` 1 ` 1 twisted mass Wilson fermions
close to the continuum. Lines represent chiral extrapolations according to the Op4q
second-order or finite critical Zp2q-mass scenario. From [30]. Right: Columbia plot
expressed in ÷, fi-masses in units of the Wilson flow parameter t0. Critical points
have been determined using an Opaq-improved Wilson action. The first-order region
includes the physical point on coarse lattices, but shrinks drastically as N· is increased.
From [31].

employing either Op4q exponents or Zp2q-exponents and a critical pseudo-scalar mass up
to mfi „ 100 MeV. Again, it is not possible to distunghuish between these scenarios. As
in the previous case, the extrapolated value of the critical temperature in the chiral limit
is therefore robust under changes of the critical exponents and quoted as

T 0
c “ 134`6

´4 MeV, (5)

in remarkable agreement with the staggered result.129

Fig. 3 (right) shows an investigation of sections of the chiral critical line using Opaq130

clover-improved Wilson fermions [31]. Starting point are the data for Nf “ 3 to be131

discussed separately below, and on N· “ 6 further points at larger strange quark masses132

have been added. The critical line is then fitted assuming a tricritical strange quark mass133

as explained in Section 2.5 plus polynomial corrections. Note that this discretisation134

features a much wider first-order region, which even contains the physical point on the135

coarser lattices. This must be a lattice artefact, and the first-order region rapidly shrinks136

as N· is increased.137

Several conclusions can be drawn from these results. Firstly, the width of a potential138

first-order region as in Fig. 1 (left) is bounded to a small fraction of the physical light quark139

(or pion) masses. Second, the numerical proximity of the critical exponent combinations140

1{p—”q for the 3D Op2q, Op4q and Zp2q universality classes appears to allow for a robust141

extrapolation of the chiral transition temperature to the massless limit with remarkably142

small uncertainties. Conversely this statement implies, however, that it is impossible143

to firmly identify the universality class in this way, which would require exponentially144

accurate data. This problem might be avoided by looking at the scaling of energy-like145

variables, which are governed by the critical exponent – that changes sign between the146

Op2q, Op4q and the Zp2q universality classes. It was shown that the Polyakov loop behaves147

as an energy-like observable, but unfortunately a firm distinction betweeen universality148

classes would require a further substantial reduction of the light quark mass [32]. Finally,149

note that the value of Tcpml “ 0q is „ 25 MeV lower than the pseudo-critical temperature150
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Figure 3. Left panel: Comparison of our fRG results for the pseudocritical temperature as a function of the pion mass to
those from the HotQCD collaboration [29]. The various dashed lines represent fits to the numerical data, see main text for
details. The estimates for the critical temperature Tc have been obtained from an extrapolation of the fits to m⇡ ! 0. The
temperatures T (l,s)

60 and T lattice
c are the extrapolated results for the chiral critical temperature obtained from a definition of

the pseudocritical temperature which does not involve the peak position of the susceptibility, see main text for details. Right
panel: Susceptibility as obtained from the reduced condensate as a function of the temperature. The normalisation �̄(l,s)

M is the
maximum of the susceptibility at the physical pion mass, see Eq. (5). The lattice QCD data has been taken from Refs. [29, 62].

pseudocritical temperature on the pion mass. For the
physical pion mass, m⇡ = 140 MeV, this ratio in our
present first-principles fRG study is about a factor of
three smaller than typical values for D(l) found in low-
energy QCD model studies [35, 36]. For example,

DQM
(l) (m⇡ =140 MeV) ⇡ 0.28 (9)

was reported in Ref. [36] for the quark-meson (QM)
model. In our present QCD study, we instead find

DQCD
(l) (m⇡ =140 MeV) ⇡ 0.10 , (10)

where we have employed the value for Tc obtained from

an extrapolation of the pseudocritical temperature T (l)
pc

to the limit m⇡ = 0.
Next, we turn to the reduced susceptibility �(l,s)

M as
defined in Eq. (4). In Fig. 2 (right panel), we show
a comparison of the light-quark susceptibility and the
reduced susceptibility for three pion masses. As ex-
pected, the qualitative behaviour of the reduced suscep-
tibility is the same as the one found for the light-quark
susceptibility. More specifically, the susceptibilities in-
crease for decreasing pion mass, indicating the approach
to a singularity in the chiral limit. Fitting the rela-

tion (7) to our numerical results for T (l,s)
pc (m⇡) for m⇡ =

30, 35, 40, . . . , 140 MeV, we obtain Tc ⇡ 141.6+0.3
�0.3 MeV,

c(l,s) ⇡ 0.17+0.03
�0.03 MeV1�p, and p ⇡ 0.91+0.03

�0.03. Thus, the
critical temperature Tc is in excellent agreement with the
one extracted from our analysis of the light-quark suscep-
tibilities, as it should be. With respect to the exponent p,
we note that it also deviates clearly from the expected

O(4) value. However, we observe that it is consistent
within fit errors with the value for p which we obtained
from our analysis of the light-quark susceptibility. Over-
all, we therefore cautiously conclude that QCD is not
within the scaling regime for the range of pion masses
considered here, providing us with m⇡ ⇡ 30 MeV as a
conservative estimate for the upper bound of this regime.
An actual determination of the size of the scaling regime
is beyond the scope of present work as it requires to study
very small pion masses.

In analogy to the definition (8), we can also define
the relative dependence D(l,s)(m⇡) of the pseudocritical
temperature on the pion mass in case of the reduced sus-
ceptibility. For m⇡ = 140MeV, we then find that this
quantity is only slightly smaller than the corresponding
quantity associated with the light-quark susceptibility.

In Fig. 3 (right panel), we finally compare our fRG
results for the reduced susceptibility to very recent re-
sults from the HotQCD collaboration [29]. We observe
excellent agreement between the results from the two ap-
proaches for pion masses m⇡ & 100 MeV. The deviations
of the results from the two approaches for smaller pion
masses may at least partially be attributed to cuto↵ arte-
facts in the lattice data. Note that cuto↵ e↵ects are ex-
pected to shift the maxima to smaller temperatures. We
refer to Ref. [18] for a respective discussion.

It is also worthwhile to compare the peak positions
of the reduced susceptibilities extracted from the lattice
QCD data with those from our fRG study, see Tab. I
and Fig. 3 (left panel). As discussed above, the peak
position can be used to define a pseudocritical tem-
perature. For the presently available pion masses on
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Nf=3 O(a)-improved Wilson fermions

[Kuramashi et al. PRD 20]  
<latexit sha1_base64="YxeCsed4Vs+63Zgwdqd/8tvYPMA="></latexit>

mc
⇡  110 MeV N⌧ = 4, 6, 8, 10, 12

Re-analysis using:

with fipxq an interpolating operator for the pseudoscalar meson and a renormalisation
factor Z. Approaching the chiral limit, the pseudoscalar meson mass and the quark mass
are related as in the continuum,

am
2
P S 9 amq . (5.4)

It is therefore customary to define Ÿcp—q by the vanishing of the pseudoscalar meson mass in
the vacuum, i.e., amP SpŸcp—q, —q “ 0 at N· “ 8. This is shown schematically as a dashed
line in figure 9 (left). Towards the strong coupling region, this line meets the parity-flavour
violating Aoki phase [40, 41], which ends in a cusp [42, 43] whose location depends on
the lattice action and the value of N· . Around Ÿcp—q, Wilson chiral perturbation for the
theory predicts a metastability region corresponding to a first-order bulk transition between
positive and negative quark mass, while the meson mass stays finite everywhere, both for
untwisted and twisted mass [44, 45]. A metastability region has been identified numerically
at zero temperature [46] as well as at finite temperature [47, 48], but its location and extent
depend strongly on the chosen action and N· [49].

The series of Nf “ 3 data [15, 20, 21], which we re-analyse below, is based on the
RG-improved Iwasaki gauge action [50] and a non-perturbatively Opaq-improved Wilson
clover fermion action [51]. We are not aware of a dedicated study of the bare phase diagram
pertaining to the precise action and parameter tunings used in those simulations, besides
determining the line Ÿcp—, N· “ 8q. However, a previous study using the same action with
a mean-field tuning of the clover coe�cient [52] reports a phase diagram as sketched by the
dashed lines in figure 9, with no additional structures besides an Aoki phase in the strong
coupling region, so we will base our discussion on this situation.

First, it has to be emphasised that for studies of the thermal phase transition we need
the lines Ÿcp—, N· q for the finite N· under consideration, and not Ÿcp—, N· “ 8q, which is
only needed to set the scale. The former marks the vanishing of the pseudoscalar screening
mass in the low temperature phase, and is related to the latter by an expansion in powers
of N

´1
· “ aT ,

Ÿcp—, N· q “ Ÿcp—, 8q ` G1p—q N
´1
· ` G2p—q N

´2
· ` O

`
N

´3
·

˘
. (5.5)

In the literature the di�erence between the two is often dismissed, being of Opaq, whereas
in fact it is qualitatively crucial. The partition function at finite N· has no singularities on
the line Ÿcp—, 8q (except at its crossings with the thermal transition). Furthermore, the
subtracted chiral condensate has finite values with di�erent signs across Ÿcp—, N· q, which
should therefore mark a first-order transition2. Following this line with increasing — at fixed
N· , the thermal chiral phase transition is reached at some critical coupling. From this point
the thermal transition lines Ÿtp—, N· q branch o� into the positve and negative quark mass
directions, respectively, along which the chiral transition weakens to end in a critical point.
At the branching point the line Ÿcp—, N· q should terminate, since on the large-—-side of
the thermal transition the Matsubara modes „ 2fiT produce an always non-zero screening
mass and the subtracted chiral condensate can pass through zero smoothly. The branching

2
For the order of this transition it is immaterial whether the pseudoscalar screening mass is actually

zero on the line, or whether it jumps between finite values.
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                                                          Tricritical scaling!  

Nf=3 consistent with staggered, 2nd order in chiral continuum limit!
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[Cuteri, O.P., Sciarra, JHEP 21]
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What about Pisarski, Wilczek?

Investigated 3d        sigma model,  
i.e.  Ginzburg-Landau-Wilson theory for chiral condensate  
 
Results based on epsilon expansion about

Conclusions confirmed by [Butti, Pelisetto, Vicari, JHEP 03]  
(High order perturbative expansion in fixed d=3)

Support also from simulation of 3d sigma model [Gausterer, Sanielovici, PLB 88]  
 

fRG:  3d      has infrared fixed points and 2nd order transitions [Litim, Tetradis, NPB 96] 

Conformal bootstrap methods:  fixed point also with O(4)xO(2)   
[Nakayama, Ohtsuki PRD 14]                                                                                                                                    

 3d      with t’Hooft term: 2nd order transition for restored anomaly! [Fejos, PRD 22]  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The emerging Columbia plot in the continuum

[HotQCD, PRD 22]

Universality class(es)?

<latexit sha1_base64="l0C2aEtC9+GMbDSZdyg4etSkZ3M=">AAACAXicbVDLSsNAFJ34rPUVdSO4GSxC3ZREqxZBKLhxI1ToC9oYJtNJO3QyCTMToYS68VfcuFDErX/hzr9x0mahrQcuHM65l3vv8SJGpbKsb2NhcWl5ZTW3ll/f2NzaNnd2mzKMBSYNHLJQtD0kCaOcNBRVjLQjQVDgMdLyhtep33ogQtKQ19UoIk6A+pz6FCOlJdfcr7v43rqyT8+KleNugNRABMktaY5ds2CVrAngPLEzUg AZaq751e2FOA4IV5ghKTu2FSknQUJRzMg4340liRAeoj7paMpRQKSTTD4YwyOt9KAfCl1cwYn6eyJBgZSjwNOd6Y1y1kvF/7xOrPyKk1AexYpwPF3kxwyqEKZxwB4VBCs20gRhQfWtEA+QQFjp0PI6BHv25XnSPCnZ56XyXblQvcziyIEDcAiKwAYXoApuQA00AAaP4Bm8gjfjyXgx3o2PaeuCkc3sgT8wPn8ASw+VhA==</latexit>

T 0
c = 135(8)MeV

<latexit sha1_base64="TKv2HRyr9uogWOoWXjrZUhahmEo=">AAACAHicbVDLSsNAFJ3UV62vqAsXbgaLUDclkVKrIBTcuBEq9AVtDJPppB06k4SZiVBCNv6KGxeKuPUz3Pk3TtoutPXAhcM593LvPV7EqFSW9W3kVlbX1jfym4Wt7Z3dPXP/oC3DWGDSwiELRddDkjAakJaiipFuJAjiHiMdb3yT+Z1HIiQNg6aaRMThaBhQn2KktOSaR00XP1jXl7VS9azPkRoJntyRduqaRatsTQGXiT0nRTBHwzW/+oMQx5wECjMkZc+2IuUkSCiKGUkL/ViSCOExGpKepgHiRDrJ9IEUnmplAP1Q6AoUnKq/JxLEpZxwT3dmN8pFLxP/83qx8mtOQoMoViTAs0V+zKAKYZYGHFBBsGITTRAWVN8K8QgJhJXOrKBDsBdfXibt87JdLVfuK8X61TyOPDgGJ6AEbHAB6uAWNEALYJCCZ/AK3own48V4Nz5mrTljPnMI/sD4/AHhepVQ</latexit>

T 0
c = 98(6)MeV

<latexit sha1_base64="/xGDeMw5+QV7k7wh9ULnOqc0idw=">AAACAnicbVDLSsNAFJ3UV62vqCtxM1iEuimJ1iqCUHDjRqjQF7QhTKaTduhMEmYmQgnBjb/ixoUibv0Kd/6Nk7YLbT1w4XDOvdx7jxcxKpVlfRu5peWV1bX8emFjc2t7x9zda8kwFpg0cchC0fGQJIwGpKmoYqQTCYK4x0jbG91kfvuBCEnDoKHGEXE4GgTUpxgpLbnmQcNNIpxe2+fV0tlJjyM1FDy5I63UNYtW2ZoALhJ7RopghrprfvX6IY45CRRmSMqubUXKSZBQFDOSFnqxJBHCIzQgXU0DxIl0kskLKTzWSh/6odAVKDhRf08kiEs55p7uzG6U814m/ud1Y+VfOgkNoliRAE8X+TGDKoRZHrBPBcGKjTVBWFB9K8RDJBBWOrWCDsGef3mRtE7LdrVcua8Ua1ezOPLgEByBErDBBaiBW1AHTYDBI3gGr+DNeDJejHfjY9qaM2Yz++APjM8fyg6WZg==</latexit>

Tpc = 156(3)MeV

<latexit sha1_base64="jUYi9gPTfhgVsOZNE6nEs/f3SN8="></latexit>

mc
⇡ ⇡ 4.0(4) GeV, Tc ⇡ 285(10) MeV

[Cuteri et al., PRD 21]
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[Roberge, Weiss NPB 86]

Exact symmetries:

unimproved staggered      [de Forcrand, O.P., PRL 10, Bonati et al., PRD 11]  
unimproved Wilson          [O.P., Pinke, PRD 14]  
 



 Roberge-Weiss plane 

Unimproved actions: first-order region shrinks on finer lattices  
[Pinke, O.P. PRD 14, O.P.  Sciarra PRD 20]

Improved staggered actions: no first-order region seen, upper bounds: 
 
[Bonati et al., PRD 19]: stout smearing,  light quark mass down to                                          
[HotQCD, PoS LAT 19]: HISQ, light quark mass down to 

m⇡ ⇡ 50 MeV
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m⇡ ⇡ 55 MeV
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Figure 8. Overview of chiral tricritical values of the pion mass in the Roberge-Weiss plane.

lattice spacing, appear to have considerably larger cut-off
effects. For example, comparing amtric

⇡, heavy “ 2.2302p2q
from Ref. 24 with our amtric

⇡, heavy “ 1.7260p3q, the pion-
resolution problem is milder in the present study. It is
also interesting to compare the position of the tricritical
points in physical units,

mtric, Wilson
⇡, light “ 669`95

´81 MeV

mtric, Staggered
⇡, light “ 328`44

´81 MeV
(23)

and

mtric,Wilson
⇡, heavy “ 3659`589

´619 MeV

mtric, Staggered
⇡, heavy “ 2813`235

´261 MeV
. (24)

The large differences between discretizations again imply
being far from the continuum limit, where results from
all discretizations have to merge. The observed trend
is consistent with the findings of simulations with im-
proved staggered actions, where the tricritical points can
only be bounded to be at much smaller masses, as indi-
cated in Figure 8, as well as with the analogous findings
at zero chemical potential (see discussion in the introduc-
tion). In particular the comparison across discretizations
implies enormous cut-off effects in the critical masses,
which could end up being over „100% of an eventual
continuum limit. We remark that cut-off effects in the
critical temperatures are much milder. At present, there
is no theoretical explanation as to why the discretization
effects on critical quark masses in the Columbia plot are
so strong.

In conclusion, we have determined the shift of the tri-
critical points in the Roberge-Weiss plane of unimproved
staggered fermions by changing from N⌧ “ 4 to N⌧ “ 6
lattices. The aspect ratios and statistics required to ex-
tract the correct order of the phase transition are found

to be larger in the Roberge-Weiss plane than at µ “ 0.
We find the cut-off effect on the tricritical masses to be
smaller but qualitatively the same as that observed with
Wilson fermions, and consistent with results for both dis-
cretizations at zero chemical potential. This implies in
particular, that the entire chiral critical surface depicted
in Figure 1 is shifted significantly towards smaller (and
possibly zero) light quark masses, as the lattice spac-
ing decreases, which is also consistent with results from
improved staggered actions. Unfortunately, our study
also implies that much finer lattices at inevitably smaller
quark masses are necessary, before one can hope the re-
sults of the light tricritical mass to stabilize in a contin-
uum limit.
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Figure 2.14: Alternative second-order scenario for the 3D Columbia plot based on Figure 2.5(d).
In this case, the chiral Z2 surface at µ ‰ 0 touches the mu,d “ 0 plane for any value
of the strange quark mass. Refer to Table 2.1 for the colour conventions.

To conclude, it is worth commenting a bit more about the 3D Columbia plots depicted in
Figures 2.12(a) and 2.13(a). If on one hand all the known properties have been included in these
plots – like the correct bending of surfaces going out from the tricritical lines – on the other hand
we had to complete the pictures in a speculative way. In fact, only few features between the µ “ 0
and the Roberge-Weiss planes have been numerically investigated and, moreover, there are zones
not directly accessible in simulations, about which the most natural assumptions have been made.
For example, but this is clearly an exotic possibility motivated more by pure logic than by physics
intuition, the chiral Z2 surface at µ ‰ 0 in Figure 2.13(a) could touch the mu,d “ 0 plane and move
away from it again only below the Columbia plot, allowing a first-order phase transition in the two
flavour massless QCD at µ “ 0. Said in other words, the Op4q region in Figure 2.13(a) could lie
entirely below the Columbia plot, implying the existence of two tricritical points on the mu,d “ 0,
ms “ 8 axis. This scenario, together with even more bizarre ones, is not at first considered as a
concrete possibility. If, in future, numeric studies will rule out all natural alternatives, then more
involved pictures shall be considered.
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weakens to disappear in a Zp2q-critical line, which emanates from the tricritical point by
tricritical scaling [76],

µc
Bpmu,dq “ µtric

B ` A m2{5
u,d ` Opm4{5

u,d q,

Tcpmu,dq “ Ttric ` B m2{5
u,d ` Opm4{5

u,d q . (19)

This implies an ordering of the critical temperatures to be exploited below,

Tcpmu,d “ 0, µB “ 0q ° Ttricpmu,d “ 0, µB “ 0q ° Tceppmphys
u,d , µ

cep
B q . (20)

For completeness, we need to also discuss an alternative scenario, where the chiral
phase transition in the massless limit is second order all the way to T “ 0. At least from a
lattice perspective, this is not excluded so far, but crucially depends on whether there is any
non-trivial mc

u,dpµq-dependence in the continuum limit. Moreover, a recent investigation
of the chiral nucleon-meson and chiral quark-meson models finds the phase transition
for m “ 0 at T “ 0 to turn second order, once fluctuations are included [78]. In such
a scenario there is no tricritical point and no first-order transition anywhere. Instead,
non-vanishing quark masses remove the entire second-order line and the chiral transition
would be analytic crossover exclusively for physical quark masses.

Figure 12. (Left): Relation of the tentative QCD phase diagram with physical light quark masses (back
plane) to the chiral limit (front plane) according to [75,76]. (Right): If the entire chiral transition line
in the massless limit is of second order, the transition at the physical point is crossover everywhere.

5.1. The Crossover at Small Baryon Densities
There are several methods that have been used so far to extract information about the

phase structure at the physical point for small baryon density. All of them introduce some
approximation which can be controlled as long as µ{T†„1: (i) Reweighting [79], (ii) Taylor
expansion in µ{T [80] and (iii) analytic continuation from imaginary chemical potential [63,64].
When the QCD pressure is expressed as a series in baryon chemical potential,

ppT, µBq
T4 “ ppT, 0q

T4 `
8ÿ

n“1

1
2n!

cB
2npTq

´ µB
T

¯2n
, cB

2npTq “
B2np p

T4 q
Bp µB

T q2n

ˇ̌
ˇ
µB“0

, (21)

the Taylor coefficients are the baryon number fluctuations evaluated at zero density, which
can also be computed by fitting to untruncated results at imaginary µB. This permits full
control of the systematics between (ii) and (iii). These coefficients are presently known up to
2n “ 8 on Nt “ 16 lattices, Figure 13 (left), and in principle also observable experimentally.
For a review of the equation of state relating to heavy ion phenomenology, see [81,82]. Note
also, that this low density regime appears to be accessible by complex Langevin simulations
without recourse to series expansions, albeit not yet for physical quark masses [83]. This
offers an additional cross check between different methods.

[Bellwied et al, PLB 15]
[Bonati et al, NPA 19]
[Bonati et al, PRD 18]
[HotQC]D, PLB 19

consistent with 0
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Fig. 2. Temperature dependence of the net baryon susceptibilities (a) �B
2 , (b) �B

4 /�
B
2 , (c) �B

6 /�
B
2 , and (d) �B

8 , calculated within CEM-
LQCD (red stars). Lattice QCD data of Wuppertal-Budapest [20] and HotQCD [18, 19] collaborations are shown by the blue and green
bands/symbols, respectively.

3. Results

3.1. Baryon number susceptibilities
The baryon number susceptibilities �B

k = �
k�1(�B/T 3)/�(µB/T )k�1 in the CEM read

�B
k (T, µB) = � 2

27�2

b̂2
1

b̂2

�
4�2
�
Li2�k (x+) + (�1)k Li2�k (x�)

�
+ 3
�
Li4�k (x+) + (�1)k Li4�k (x�)

��
. (6)

Leading order baryon number susceptibilities at µB = 0 have recently been computed in lattice QCD [16,
17, 18, 19, 20]. A comparison with these lattice data can test the predictive power of the CEM.

Figure 2 depicts the temperature dependence of �B
2 , �B

4 /�
B
2 , �B

6 /�
B
2 , and �B

8 , calculated in CEM and
compared to the lattice data of Wuppertal-Budapest [20] and HotQCD collaborations [18, 19]. The CEM
calculations use the Wuppertal-Budapest data [11] for b1(T ) and b2(T ) as an input and are therefore labeled
CEM-LQCD in Fig. 2. CEM results are in quantitative agreement with the lattice data for �B

2 and �B
4 /�

B
2 .

The CEM is also consistent with the lattice data for �B
6 /�

B
2 and �B

8 , although these data are still preliminary
and have large error bars. One interesting qualitative feature is the dip in the temperature dependence of
�B

6 /�
B
2 , where this quantity is negative. It was interpreted as a possible signature of chiral criticality [21].

Given that this behavior is also present in CEM (see red stars in Fig. 2c), i.e. in a model which has no critical
point, we conclude that the negative dip in �B

6 /�
B
2 cannot be considered as an unambiguous signal of chiral

criticality.

3.2. Reconstructing the Fourier coe�cients b1 and b2 from susceptibilities
All baryon number susceptibilities at a given temperature are determined in the CEM by two parameters

– the leading two Fourier coe�cients b1 and b2. One can now consider a reverse prescription – assuming
the validity of the CEM ansatz one can extract the values of b1 and b2 at a given temperature from two
independent combinations of baryon number susceptibilities by reversing Eq. (6). We demonstrate this
by considering the lattice QCD data of the HotQCD collaboration for �B

2 and �B
4 /�

B
2 . The temperature

dependence of the b1 and b2 coe�cients, reconstructed from the HotQCD collaboration’s lattice data on
the basis of CEM [Eq. (6)], is shown in Fig. 3 by the green symbols. The extracted values agree rather
well with the imaginary µB data of the Wuppertal-Budapest collaboration, shown in Fig. 3 by the blue

Figure 13. (Left): Baryon number fluctuations cB
2 , cB

4 , cB
8 from the lattice in comparison with the

CEM model. (Right): b1 computed directly from Equation (26) by the WB collaboration, and reverse
engineered using CEM from HotQCD baryon number fluctuations. From [88].

An important quantity is the pseudo-critical temperature marking the “phase bound-
ary” between the chirally broken and restored regimes. Since the chiral transition at the
physical point corresponds to an analytic crossover with a non-zero order parameter every-
where, there are no truly distinct “phases” and no unambiguous definition of a transition
temperature exists. In general, definitions based on different observables will give different
pseudo-critical temperatures, even in the thermodynamic limit, contrary to the unique
locations of singularities for true phase transitions. While this is an issue when comparing
with an experimental situation, for theoretical investigations it is convenient to stick to
the observables representing the true order parameter in the appropriate limit, i.e., the
susceptibility of an appropriately normalised chiral condensate in this case. Following as
an implicitly defined function from the partition function, the pseudo-critical temperature
can be similarly expressed as a power series in chemical potential,

TpcpµBq
Tpcp0q “ 1 ´ k2

ˆ
µB

Tpcp0q

˙2
` . . . , (22)

with Tpcp0q “ 156.5p1.5q MeV [87]. Continuum extrapolated results for the leading coeffi-
cient are collected in Table 2, the sub-leading coefficient k4 is compatible with zero at the
current accuracy. This is a remarkable result telling us that up to µB†„3T the dependence
of thermodynamic quantities on chemical potential is rather weak and can be accurately
described by a truncated leading-order Taylor series in chemical potential.

Table 2. Summary of continuum-extrapolated values for k2 in Equation (22) .

k2 Action Ref.

0.0158(13) imag. µ, stout-smeared staggered [84]
0.0135(20) imag. µ, stout-smeared staggered [85]
0.0145(25) Taylor, stout-smeared staggered [85,86]
0.016(5) Taylor, HISQ [87]

0.0153(18) imag. µ, stout-smeared staggered []

We now have the necessary information to obtain a conservative bound on the location
of a possible critical point, which according to Figure 12 sits on the pseudo-critical line of a
strengthening crossover. Using the central value from Equation (10) for the chiral critical
temperature and imposing the model-independent ordering Tcep † Tc “ 132 MeV, the
chemical potential of a critical point must satisfy

µ
cep
B ° 3.1 Tpcp0q « 485 MeV. (23)

[Borsanyi et al, PRL 20]
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5.2. The Search for a Critical Point
For any power series of a function with a given domain of analyticity in its complex

argument, the radius of convergence gives the distance between the expansion point
and the nearest singularity. This implies that the location pTc, µc

Bq of a non-analytic QCD
phase transition constitutes an upper bound on the radius of convergence of the series
Equation (21), or that of any other thermodynamic function. Turning this around one
may search for a critical point: If a finite radius of convergence can be extracted from the
pressure series for real parameter values, it should signal a phase transition. The simplest
estimator is the ratio test of consecutive coefficients, whose extrapolation yields the radius
of convergence,

r “ lim
nÑ8 r2n , r2n “

ˇ̌
ˇ̌
ˇ
2np2n ´ 1qcB

2n
cB

2n`2

ˇ̌
ˇ̌
ˇ . (24)

In practice, however, only the first few coefficients are available and an extrapolation is
not feasible. For a compilation of available results, see [89]. Moreover, the ratio estimator
is inappropriate for series with irregular signs and complex singularities, where it fails
to converge.

This can be illustrated by modelling the lattice data in a spirit similar to the hadron
resonance gas descriptions, such that higher coefficients become available and different
scenarios can be tested for compatibility with the data. As an example, consider the fugacity
expansion of baryon number density. At imaginary chemical potential, this is a Fourier
series whose coefficients can be computed on the lattice without sign problem,

nB
T3 |µB“iqBT “ i

ÿ

k
bkpTq sinpkµB{Tq , (25)

bkpTq “ 2
p

ª p

0
dqB Im

´ nBpT, iqBTq
T3

¯
sinpkqBq . (26)

In [90] a cluster expansion model (CEM) was proposed, which takes the first two coefficients
as input from a lattice calculation [91], and expresses all higher coefficients in terms of
these,

bkpTq “ aSB
k

rb2pTqsk´2

rb1pTqsk´1 , k “ 3, 4, . . . (27)

The aSB
k are T-independent and fixed to reproduce the Stefan-Boltzmann limit. This

recursion implies that only two-body interactions are included, and corresponds to a
truncated virial expansion which is valid for sufficiently dilute systems. The model now
predicts all coefficients bk•3 and allows for an all-order closed expression,

nBpT, µBq
T3 “ ´ 2

27p2
b̂2

1
b̂2

!
4p2 rLi1px`q ´ Li1px´qs ` 3 rLi3px`q ´ Li3px´qs

)
, (28)

with b̂1,2 “ b1,2pTq
bSB

1,2
, x˘ “ ´ b̂2

b̂1
e˘µB{T , Lispzq “

8ÿ

k“1

zk

ks .

All existing lattice data in the crossover regime are reproduced with excellent accuracy, as
the examples in Figure 13 (left) show. Moreover, Figure 13 (right) compares the coefficient
b1 computed directly from its defining equation, Equation (26), with a calculation from a
combination of cB

i , by inverting the CEM. Note that all orders of the fugacity expansion
enter this calculation. The remarkable quantitative agreement is only possible, if both
lattice calculations (using different actions) give equivalent results and all coefficients of
the CEM are sufficiently close to the true QCD values.

Radius of convergence
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these,
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All existing lattice data in the crossover regime are reproduced with excellent accuracy, as
the examples in Figure 13 (left) show. Moreover, Figure 13 (right) compares the coefficient
b1 computed directly from its defining equation, Equation (26), with a calculation from a
combination of cB

i , by inverting the CEM. Note that all orders of the fugacity expansion
enter this calculation. The remarkable quantitative agreement is only possible, if both
lattice calculations (using different actions) give equivalent results and all coefficients of
the CEM are sufficiently close to the true QCD values.

[Vovchenko et al., PRD, NPA 2018]Cluster Expansion Model
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b1 computed directly from its defining equation, Equation (26), with a calculation from a
combination of cB

i , by inverting the CEM. Note that all orders of the fugacity expansion
enter this calculation. The remarkable quantitative agreement is only possible, if both
lattice calculations (using different actions) give equivalent results and all coefficients of
the CEM are sufficiently close to the true QCD values.

Recursive relation between
fugacity coeffs, matched to LQCDSymmetry 2021, 1, 0 18 of 25
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Fig. 2. Temperature dependence of the net baryon susceptibilities (a) �B
2 , (b) �B

4 /�
B
2 , (c) �B

6 /�
B
2 , and (d) �B

8 , calculated within CEM-
LQCD (red stars). Lattice QCD data of Wuppertal-Budapest [20] and HotQCD [18, 19] collaborations are shown by the blue and green
bands/symbols, respectively.

3. Results

3.1. Baryon number susceptibilities
The baryon number susceptibilities �B

k = �
k�1(�B/T 3)/�(µB/T )k�1 in the CEM read

�B
k (T, µB) = � 2

27�2

b̂2
1

b̂2

�
4�2
�
Li2�k (x+) + (�1)k Li2�k (x�)

�
+ 3
�
Li4�k (x+) + (�1)k Li4�k (x�)

��
. (6)

Leading order baryon number susceptibilities at µB = 0 have recently been computed in lattice QCD [16,
17, 18, 19, 20]. A comparison with these lattice data can test the predictive power of the CEM.

Figure 2 depicts the temperature dependence of �B
2 , �B

4 /�
B
2 , �B

6 /�
B
2 , and �B

8 , calculated in CEM and
compared to the lattice data of Wuppertal-Budapest [20] and HotQCD collaborations [18, 19]. The CEM
calculations use the Wuppertal-Budapest data [11] for b1(T ) and b2(T ) as an input and are therefore labeled
CEM-LQCD in Fig. 2. CEM results are in quantitative agreement with the lattice data for �B

2 and �B
4 /�

B
2 .

The CEM is also consistent with the lattice data for �B
6 /�

B
2 and �B

8 , although these data are still preliminary
and have large error bars. One interesting qualitative feature is the dip in the temperature dependence of
�B

6 /�
B
2 , where this quantity is negative. It was interpreted as a possible signature of chiral criticality [21].

Given that this behavior is also present in CEM (see red stars in Fig. 2c), i.e. in a model which has no critical
point, we conclude that the negative dip in �B

6 /�
B
2 cannot be considered as an unambiguous signal of chiral

criticality.

3.2. Reconstructing the Fourier coe�cients b1 and b2 from susceptibilities
All baryon number susceptibilities at a given temperature are determined in the CEM by two parameters

– the leading two Fourier coe�cients b1 and b2. One can now consider a reverse prescription – assuming
the validity of the CEM ansatz one can extract the values of b1 and b2 at a given temperature from two
independent combinations of baryon number susceptibilities by reversing Eq. (6). We demonstrate this
by considering the lattice QCD data of the HotQCD collaboration for �B

2 and �B
4 /�

B
2 . The temperature

dependence of the b1 and b2 coe�cients, reconstructed from the HotQCD collaboration’s lattice data on
the basis of CEM [Eq. (6)], is shown in Fig. 3 by the green symbols. The extracted values agree rather
well with the imaginary µB data of the Wuppertal-Budapest collaboration, shown in Fig. 3 by the blue

Wuppertal-Budapest

HotQCD (from χ2B & χ4B/χ2B using CEM)

140 160 180 200 220 240 260 2800.0

0.1

0.2

0.3

0.4

0.5

0.6

T [MeV]

b
1

Figure 13. (Left): Baryon number fluctuations cB
2 , cB

4 , cB
8 from the lattice in comparison with the

CEM model. (Right): b1 computed directly from Equation (26) by the WB collaboration, and reverse
engineered using CEM from HotQCD baryon number fluctuations. From [88].

An important quantity is the pseudo-critical temperature marking the “phase bound-
ary” between the chirally broken and restored regimes. Since the chiral transition at the
physical point corresponds to an analytic crossover with a non-zero order parameter every-
where, there are no truly distinct “phases” and no unambiguous definition of a transition
temperature exists. In general, definitions based on different observables will give different
pseudo-critical temperatures, even in the thermodynamic limit, contrary to the unique
locations of singularities for true phase transitions. While this is an issue when comparing
with an experimental situation, for theoretical investigations it is convenient to stick to
the observables representing the true order parameter in the appropriate limit, i.e., the
susceptibility of an appropriately normalised chiral condensate in this case. Following as
an implicitly defined function from the partition function, the pseudo-critical temperature
can be similarly expressed as a power series in chemical potential,

TpcpµBq
Tpcp0q “ 1 ´ k2

ˆ
µB

Tpcp0q

˙2
` . . . , (22)

with Tpcp0q “ 156.5p1.5q MeV [87]. Continuum extrapolated results for the leading coeffi-
cient are collected in Table 2, the sub-leading coefficient k4 is compatible with zero at the
current accuracy. This is a remarkable result telling us that up to µB†„3T the dependence
of thermodynamic quantities on chemical potential is rather weak and can be accurately
described by a truncated leading-order Taylor series in chemical potential.

Table 2. Summary of continuum-extrapolated values for k2 in Equation (22) .

k2 Action Ref.

0.0158(13) imag. µ, stout-smeared staggered [84]
0.0135(20) imag. µ, stout-smeared staggered [85]
0.0145(25) Taylor, stout-smeared staggered [85,86]
0.016(5) Taylor, HISQ [87]

We now have the necessary information to obtain a conservative bound on the location
of a possible critical point, which according to Figure 12 sits on the pseudo-critical line of a
strengthening crossover. Using the central value from Equation (10) for the chiral critical
temperature and imposing the model-independent ordering Tcep † Tc “ 132 MeV, the
chemical potential of a critical point must satisfy

µ
cep
B ° 3.1 Tpcp0q « 485 MeV. (23)
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Figure 14. (Left): Comparison of estimators for the radius of convergence in CEM. (Right): The
resulting radius of convergence as a function of T predicts the RW-transition at imaginary µB.
From [90].

With all coefficients of the fugacity expansion available, one can study the radius
of convergence of CEM, Figure 14. The ratio estimator fails to converge, because of the
irregular signs of higher order coefficients (it works for equal or alternating signs). On the
other hand, the Mercer-Roberts estimator,

rn “
ˇ̌
ˇ̌
ˇ
cn`1cn´1 ´ c2

n
cn`2cn ´ c2

n`1

ˇ̌
ˇ̌
ˇ

1{4

, (29)

converges and extrapolates to a unique radius of convergence, even for coefficients cn
pertaining to different observables, as must be the case for a true singularity. A number of
improved estimators with faster convergence properties has been proposed in [92].

The red points in Figure 14 (right) show the resulting radius of convergence of the
CEM for different temperatures. At high temperatures a singularity is predicted at a
distance |µB{T| « p and T ° Tpc, which is quantitatively compatible with the first-order
Roberge-Weiss transition in the imaginary µB direction. At lower temperatures there is no
Roberge-Weiss transition and the radius of convergence quickly grows. This is an intriguing
result, given that no information from imaginary chemical potential has been used as input.
It shows that the general approach to detect a non-analytic phase transition is viable,
provided that a good estimator for the radius of convergence is used and that sufficiently
many coefficients are available (more than 100 in this case!). The correct identification of
the Roberge-Weiss transition by the radius of convergence conversely implies that the CEM
of lattice QCD does not have another phase transition closer to the origin, i.e., a possible
critical endpoint in the real direction must satisfy

µ
cep
B ° pT . (30)

This is fully consistent with Equation (23) but derived by completely different methods.
Of course, modelling higher coefficients in terms of lower ones is not unique. The

simplest alternative is a description of the baryon number fluctuations up to cB
8 by a

polynomial model, equally without singularity [93]. Another one is provided by a rational
function model, which can account for singularities and can be applied both to QCD or to
a chiral model with a phase transition [94]. Equations of state compatible with lattice data
and including an Ising critical point in predefined locations have also been constructed [95].
While the properties of models are not those of QCD, these analyses altogether do show that
there is no sign of criticality in the real µB direction from the presently available, continuum
extrapolated lattice data at zero or imaginary chemical potential, but at best in their higher
order completions. It will thus be interesting to test higher order coefficients without
modelling by Padé approximants or conformal maps as demonstrated in a Gross-Neveu
model [96], or by resummation schemes in pµB{Tq [97].

Ratio test fails! M-R works

4

Figure 3. The Domb-Sykes 1/r2n�1 vs 1/n plots, calculated
within the CEM-LQCD model at T = 160 MeV using (a)
ratio (open symbols) and (b) Mercer-Roberts (full sym-
bols) estimators for radius of convergence of the Taylor
expansion of p/T 4 (circles), �B

2 (squares), and �B
4 (dia-

monds). The linear extrapolations of the Mercer-Roberts
estimators to 1/n = 0 are depicted by the dashed lines
ending at a circle.

in some cases, hundreds of bk(T ) coe�cients. All of
them, except the first two, are predicted by CEM.
The CEM-LQCD predictions for �B

8 , �
B
10, and �B

12 are
shown in Fig. 2(d)-(f). The comparison with future
lattice data will be able to confirm (or refute) the va-
lidity of the CEM approach presented here.

The CEM-HRG model results, as shown by the
dashed lines in Fig. 2, agree very well with CEM-
LQCD calculations, up to T ' 180 MeV, for all con-
sidered observables. Hence, the drastic temperature
dependence of the baryon number fluctuations in this
temperature range, as well as the particularly strong
deviations from the ideal HRG baseline – the Skellam
distribution – are convincingly interpreted in terms of
repulsive baryonic interactions (see also [18, 19, 21]).

The ability of the CEM-formalism to calculate
baryon number susceptibilities to very high order pro-
vides a unique opportunity to analyze the radius of
convergence of the Taylor expansion of the QCD pres-
sure,

p(T, µB)� p(T, 0)

T 4
=

1X

n=1

�2n(T )

(2n)!

⇣µB

T

⌘2n
. (9)

The radius of convergence, rµ/T , of this series at a
given temperature corresponds to the distance to the
nearest singularity in the complex µB/T plane and
this has been used in various attempts to constrain
the location of the critical point of QCD by numer-
ical evaluation of a few leading coe�cients in lattice
QCD [26–28] or in e↵ective models [29–31]. Deriva-

tives of the pressure series expansion may be used
equally well. In the present work, estimates based on
the Taylor series of p/T 4, �B

2 , and �B
4 are analyzed.

First the ratio estimator, rn = |cn/cn+1|1/2, is used.
The square root in this estimator [as well as the ex-
tra square root in Eq. (10)] appears due to the fact
that the Taylor expansion (9) is actually in (µB/T )2

rather than just in µB/T . Here cn = �2n/(2n)! for
the p/T 4 expansion, cn = �2n/(2n � 2)! for the �B

2

expansion, and cn = �2n/(2n� 4)! for the �B
4 expan-

sion. The n ! 1 limit of rn, if it exists, is the same
for all three expansions and corresponds to the true
radius of convergence. This limit can be determined
with the Domb-Sykes presentation [32], by plotting
1/r2n�1 versus 1/n for a finite number of terms, and
then extrapolating the result linearly to 1/n = 0. To
illustrate the behavior of the rµ/T estimators we show
T = 160 MeV as an example, the behavior at all other
temperatures investigated is similar. The Domb-Sykes
plot for the Taylor series of p/T 4, as obtained within
the CEM-LQCD model at T = 160 MeV by using the
first 200 terms of the Taylor expansion, is depicted in
Fig. 3a by the open symbols. (The plots for �B

2 and
�B
4 are similar and not shown). Note how the di↵er-

ent orders jump between several branches of 1/r2n�1 as
1/n approaches zero, with no unique limiting value in
sight. This behavior is caused by the irregular asymp-
totic structure of the Taylor coe�cients. Convergence
of a Domb-Sykes plot for the ratio test requires the
coe�cients to asymptotically be of the same sign or
to alternate in sign. Neither of the two scenarios is
realized in the CEM-LQCD: even at very high order,
at least two positive- and at least two negative coef-
ficients appear regularly in a row. Therefore, the ra-
tio estimator does not give a correct estimate of rµ/T
since the limit lim

n!1
rn simply does not exist. (Note

that the ratio estimator is commonly used in the lat-
tice QCD studies of the Taylor expansion [24, 33, 34]).

More elaborate estimators do exist which deal with
the irregular asymptotic structure of the Taylor coef-
ficients. Consider the Mercer-Roberts estimator [35],

rn =

����
cn+1 cn�1 � c2n
cn+2 cn � c2n+1

����
1/4

. (10)

The corresponding 1/r2n�1 vs 1/n plot is shown by the
full symbols in Fig. 3b. For all three Taylor expan-
sions, the Mercer-Roberts estimators appear to con-
verge to the same point as 1/n ! 0. Linear extrapola-
tions to 1/n ! 0 give a value for the radius of conver-
gence rµ/T . The behavior of both estimators shown
in Fig. 3 is similar at all considered temperatures.

ratio estimator Mercer-Roberts estimator
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CEM prediction:  closest singularity in complex plane is Roberge-Weiss transition at imag.  

                                                            No critical point for real
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least as large as that of current lattice methods.
To summarize, a novel Cluster Expansion Model for

the QCD equation of state has been developed and
applied to calculate the baryon number susceptibili-
ties at µ = 0, to very high order. The only model
inputs are the partial pressures in the |B| = 1 and
|B| = 2 sectors, taken from the lattice simulations at
imaginary µB . The model yields excellent agreement
with the available lattice data for �B

2 , �B
4 /�

B
2 , and

�B
6 /�

B
2 . The extended model predictions for �B

8 , �
B
10,

and �B
12 shall be verified by future lattice data. The

commonly used ratio estimator is unable to determine
the radius of convergence of the Taylor series of the
pressure in µB/T , due to a non-trivial asymptotic be-
havior of the Taylor coe�cients. The radius of conver-
gence is instead determined with the more elaborate
Mercer-Roberts estimator, which provides finite val-
ues of the convergence radii at all temperature values
considered, 135 < T < 230 MeV, in full agreement
with the singularities of Padé approximants. These
singularities lie in the complex plane and appear to
be smoothly connected to the R-W transition at high
temperatures and imaginary (baryo)chemical poten-
tial. The analysis within CEM shows no evidence
for the existence of a phase transition or a critical
point at real values of the baryochemical potential at
µB/T . ⇡ for temperatures above 135 MeV.
The CEM model can be straightforwardly extended

to calculate the equation of state of QCD at finite
µB/T , by supplying the B = 0 partial pressure p0(T )
as additional model input. Furthermore, the CEM for-
malism is rather flexible, and the model assumptions
and input can be modified if new and contradicting
lattice data becomes available. 2
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where Lik(z) is the polylogarithm, b̂k ⌘ bk(T )/bSB
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x± = � b̂2
b̂1

e±µB/T . This analytic form validates the
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ics and Statistical Mechanics, 1995 Springer-Verlag
New York, Inc.

[2] A. Hasenfratz and D. Toussaint, Nucl. Phys. B 371,
539 (1992).

[3] A. Alexandru, M. Faber, I. Horvath and K. F. Liu,
Phys. Rev. D 72, 114513 (2005) [hep-lat/0507020].

[4] P. de Forcrand and S. Kratochvila, Nucl. Phys. Proc.
Suppl. 153, 62 (2006) [hep-lat/0602024].

[5] K. Nagata and A. Nakamura, Phys. Rev. D 82,
094027 (2010) [arXiv:1009.2149 [hep-lat]].

[6] A. Nakamura, S. Oka and Y. Taniguchi, JHEP 1602,
054 (2016) [arXiv:1504.04471 [hep-lat]].

[7] V. G. Bornyakov, D. L. Boyda, V. A. Goy,
A. V. Molochkov, A. Nakamura, A. A. Nikolaev and
V. I. Zakharov, Phys. Rev. D 95, 094506 (2017)
[arXiv:1611.04229 [hep-lat]].

[8] P. de Forcrand and O. Philipsen, Nucl. Phys. B 642,
290 (2002) [hep-lat/0205016].

[9] M. D’Elia and M. P. Lombardo, Phys. Rev. D 67,
014505 (2003) [hep-lat/0209146].

[10] P. de Forcrand and O. Philipsen, Nucl. Phys. B 673,
170 (2003) [hep-lat/0307020].

[11] M. D’Elia and M. P. Lombardo, Phys. Rev. D 70,
074509 (2004) [hep-lat/0406012].

[12] P. de Forcrand, PoS LAT 2009, 010 (2009)
[arXiv:1005.0539 [hep-lat]].

[13] C. Bonati, P. de Forcrand, M. D’Elia, O. Philipsen
and F. Sanfilippo, Phys. Rev. D 90, 074030 (2014)
[arXiv:1408.5086 [hep-lat]].

[14] P. Cea, L. Cosmai and A. Papa, Phys. Rev. D 93,
014507 (2016) [arXiv:1508.07599 [hep-lat]].

[15] M. Bluhm and B. Kampfer, Phys. Rev. D 77, 034004
(2008) [arXiv:0711.0590 [hep-ph]].

[16] K. Morita, V. Skokov, B. Friman and K. Redlich,
Phys. Rev. D 84, 074020 (2011) [arXiv:1108.0735
[hep-ph]].
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Tracking the Lee-Yang edge (LYE) singularities in the complex     -plane μB
— a new method to detect the QCD critical point ?
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Magnetic EoS

The universal scaling 
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brunch cut, starting 
at              (LYE)z ≡ zLY

Three distinct 
scaling-regions:


• Roberge-Weiss 
(Z(2))


• Chiral (O(4)/O(2))


• Critical endpoint 
(Z(2))

0.1 0.2

0.5

1.0

1.5

2.0

2.5
scaling-fit
LYE: N⌧ = 4

201 MeV < T < 145 MeV

• Robust identification of LYE from analytic continuation via 
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• Find Z(2) scaling close to the RW-transition and a candidate 
chiral LYE, preliminary results: 2101.02254


• Radius of convergence is limited by LYE

• Advantage: no regular part involved in the analysis, the 

determination of non-universal parameter thus more precise
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FIG. 6. Location of poles nearest to the origin obtained from the [4,4] Padé approximants in the complex µ̂B-plane. Only poles
with Re(µB) > 0 are shown. Shown are results the case µQ = µS = 0 (left) and the strangeness neutral, isospin symmetric
case (right).

FIG. 7. Magnitude of poles nearest to the origin obtained
from the [2,2] (squares and circles) and [4,4] (bands) Padé
approximants for Taylor expansions at µQ = µS = 0 and for
strangeness neutral, isospin symmetric media, respectively.

⇥c,4 = arccos

0

@ c6,2 � c8,2

2
q
(1 � c6,2)(c26,2 � c8,2)

1

A

= arccos

 
(c6,2 � c8,2)�̄

B,4
0

24(1 � c6,2)�̄
B,2
0

r2c,4

!
. (29)

Expressing the relation given in Eq. 28 in terms of the
cumulants �̄B,n

0 entering the Taylor series for the pres-
sure, Eq. 7, we have in the region of complex poles,

rc,4 =

✓
8!

4!

◆1/4
�����
30(�̄B,4

0 )2 � 12�̄B,6
0 �̄B,2

0

56(�̄B,6
0 )2 � 30�̄B,8

0 �̄B,4
0

�����

1/4

. (30)

The positions of the poles in the complex µ̂B-plane
are shown in Fig. 6. Only the two poles in the region
Re(µ̂B) � 0 are shown. With decreasing temperature the

poles move closer to the real axis as c8,2 approaches c+8,2,

i.e. ⇥c,4 = 0 for c8,2 = c+8,2. Furthermore, it is clear from
Eq. 29 that ⇥c,4 and rc,4 are correlated, which leads to
the orientation of the 1-� error ellipse in the complex µB,c

plane arising from the errors on c6,2 and c8,2, which are
assumed to given by independent Gaussian distributions
of the variables c6,2 and c8,2.

In Fig. 7 we show as symbols and bands, respectively,
the distance of poles of the [2,2] and [4,4] Padé approx-
imants from the origin as function of temperature. The
bands shown in Fig. 7 have been obtained by using the
spline interpolations of �̄B,6

0 and �̄B,8
0 on N⌧ = 8 lat-

tices and the continuum extrapolated results for �̄B,2
0 and

�̄B,4
0 , shown in Fig. 1, respectively. As can be seen the

two estimators yield a similar magnitude for rc,2 and rc,4.
Their location in the complex µB-plane, however, is quite
di↵erent. While the poles of the [2,2] Padé are always on
the real axis, the poles of the [4,4] Padé are in the complex
plane in the entire interval 135 MeV  T  165 MeV.

For 135 MeV  T  165 MeV we find that the poles
of the [4,4] Padé appear at a distance from the origin
corresponding to |µ̂B |>⇠2.5 at T ' 135 MeV and rises
to values larger than |µ̂B |>⇠3 for T>⇠Tpc. This also are
the best estimates for a temperature dependent bound
on the radius of convergence of the Taylor series for the
pressure, based on the Mercer-Roberts estimator. The
information extracted from the [4,4] Padé approximants
on the location of poles in the analytic function represent-
ing the pressure as function of a complex valued chemical
potential µ̂B thus seems to be consistent with the good
convergence properties of the Taylor series itself.

Poles of the [4,4] Pade of the pressure ( ) 
from Taylor expansion at 

Δp /T4

μB = 0
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FIG. 6. Location of poles nearest to the origin obtained from the [4,4] Padé approximants in the complex µ̂B-plane. Only poles
with Re(µB) > 0 are shown. Shown are results the case µQ = µS = 0 (left) and the strangeness neutral, isospin symmetric
case (right).

FIG. 7. Magnitude of poles nearest to the origin obtained
from the [2,2] (squares and circles) and [4,4] (bands) Padé
approximants for Taylor expansions at µQ = µS = 0 and for
strangeness neutral, isospin symmetric media, respectively.

⇥c,4 = arccos

0

@ c6,2 � c8,2

2
q
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= arccos

 
(c6,2 � c8,2)�̄

B,4
0

24(1 � c6,2)�̄
B,2
0

r2c,4

!
. (29)

Expressing the relation given in Eq. 28 in terms of the
cumulants �̄B,n

0 entering the Taylor series for the pres-
sure, Eq. 7, we have in the region of complex poles,

rc,4 =

✓
8!

4!

◆1/4
�����
30(�̄B,4

0 )2 � 12�̄B,6
0 �̄B,2

0

56(�̄B,6
0 )2 � 30�̄B,8

0 �̄B,4
0

�����

1/4

. (30)

The positions of the poles in the complex µ̂B-plane
are shown in Fig. 6. Only the two poles in the region
Re(µ̂B) � 0 are shown. With decreasing temperature the

poles move closer to the real axis as c8,2 approaches c+8,2,

i.e. ⇥c,4 = 0 for c8,2 = c+8,2. Furthermore, it is clear from
Eq. 29 that ⇥c,4 and rc,4 are correlated, which leads to
the orientation of the 1-� error ellipse in the complex µB,c

plane arising from the errors on c6,2 and c8,2, which are
assumed to given by independent Gaussian distributions
of the variables c6,2 and c8,2.

In Fig. 7 we show as symbols and bands, respectively,
the distance of poles of the [2,2] and [4,4] Padé approx-
imants from the origin as function of temperature. The
bands shown in Fig. 7 have been obtained by using the
spline interpolations of �̄B,6

0 and �̄B,8
0 on N⌧ = 8 lat-

tices and the continuum extrapolated results for �̄B,2
0 and

�̄B,4
0 , shown in Fig. 1, respectively. As can be seen the

two estimators yield a similar magnitude for rc,2 and rc,4.
Their location in the complex µB-plane, however, is quite
di↵erent. While the poles of the [2,2] Padé are always on
the real axis, the poles of the [4,4] Padé are in the complex
plane in the entire interval 135 MeV  T  165 MeV.

For 135 MeV  T  165 MeV we find that the poles
of the [4,4] Padé appear at a distance from the origin
corresponding to |µ̂B |>⇠2.5 at T ' 135 MeV and rises
to values larger than |µ̂B |>⇠3 for T>⇠Tpc. This also are
the best estimates for a temperature dependent bound
on the radius of convergence of the Taylor series for the
pressure, based on the Mercer-Roberts estimator. The
information extracted from the [4,4] Padé approximants
on the location of poles in the analytic function represent-
ing the pressure as function of a complex valued chemical
potential µ̂B thus seems to be consistent with the good
convergence properties of the Taylor series itself.

• Resummation of Taylor series using (standard) Padé-
approximants

• Poles of the [n,4]-Pade are identical to the  
corresponding Mercer-Roberts approximation of the 
radius of convergence (if poles are complex)


• Find upper bound for QCD critical point: 

                  

• Currently observed temperature scaling of the 

position of poles does not resemble universal scaling 

- Order of approximation not sufficient?

- Far away from scaling region?


Also in that paper: 

• Update on the EoS at non-zero , well controlled 

series for pressure and number density for 
 and , respectively — consistent with 

Padé result.

Tc < 125 MeV, μB /T > 2.5

μB

μB /T ≤ 2.5 2

Bollweg et al. [Hot-QCD], arXiv:2202.09184 [hep-lat]
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No sign of strengthening transition with imag.

Described by simple polynomial model in
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High order resummation in          
by (multi-point) Pade approximants 
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FIG. 1. Renormalized chiral condensate h ̄ i (left) and chiral susceptibility � (middle) as functions of the temperature for the
intermediate lattice spacing in this study. The black curves correspond to vanishing baryon density, while results for various
imaginary values of the chemical potential are shown in other colors. Finally, in the right panel we show the susceptibility as
a function of the condensate. In this representation the chemical potential dependence is very weak.

higher µB derivatives is suppressed with powers of the
lattice volume, therefore the calculation of higher order
derivatives requires very high statistics. Determinations
of 2 using the imaginary µB method with continuum
extrapolation include Refs. [24, 25]. Finally, in Ref. [30]
the two methods were compared with a careful check of
the systematics, and a very good agreement was found
for the coe�cient 2.

We also study the strength of the crossover by extrapo-
lating the width of the transition and the value of the chi-
ral susceptibility at the transition to real µB in the con-
tinuum limit. While one always has to be careful not to
over-interpret results from extrapolations, we currently
do not see any sign of criticality up to µB ⇡ 300 MeV, as
the crossover transition does not get narrower or stronger
in this region.

On chiral observables in the transition region.— For
the lattice simulations we use 4-stout improved staggered
fermions with an aspect ratio of LT = 4 and temporal
lattice sizes of Nt = 10, 12, 16. The details of the simula-
tion setup can be found in the supplemental material.

The main observables in this study are the renormal-
ized dimensionless chiral condensate and susceptibility,
respectively defined as:

h ̄ i = �
⇥
h ̄ iT � h ̄ i0

⇤ mud

f4
⇡

,

� = [�T � �0]
m

2
ud

f4
⇡

, with

h ̄ iT,0 =
T

V

@ logZ

@mud
�T,0 =

T

V

@
2 logZ

@m
2
ud

,

(2)

where we assumed isospin symmetry, i.e. mu = md =
mud. In the above equations, the subscripts T, 0 indicate
values at finite- and zero-temperature, respectively. In
the following, h ̄ i and � are always shown after apply-
ing the correction to satisfy ns = 0 with zero statistical
error (see the supplemental material for details). The
peak height of the susceptibility is an indicator for the

strength of the transition, while the peak position in tem-
perature serves as a definition for the chiral cross-over
temperature. It was pointed out in Refs. [3, 4] that dif-
ferent normalizations of the susceptibility, such as using
1/f4

⇡ or 1/T 4 to define � in Eq. (2) can shift the peak
position by 11 MeV. This di↵erence could be considered
as a measure for the broadness of the chiral transition.

Our normalization choice in Eq. (2) was motivated by
two observations, shown in Fig. 1 and explained below.
These observations (together with the improved statistics
and the more accurate tuning of µS(µB) to nS = 0) allow
a very precise determination of Tc as a function of imag-
inary chemical potential, which in turn allows a precise
determination of the parameters 2 and 4. We explored
the chiral condensate and susceptibility in a broad range
of imaginary baryo-chemical potential. In all panels of
Fig. 1, the black curves correspond to µB = 0. In the left
and middle panel we show the chiral condensate and sus-
ceptibility as functions of the temperature. By construc-
tion, our renormalized condensate is zero at T = 0 and
positive at high temperature, because of the explicit vac-
uum subtraction and the overall negative sign in Eq. (2).
In both panels, one can observe the shifting of the tran-
sition towards higher temperatures when an imaginary
chemical potential is introduced. In the right panel we
show the susceptibility as a function of the condensate.
Here we converted the statistical error on the condensate
into an additional error on the susceptibility, by solving
for h ̄ i (T ) = const. and substituting the resulting T

into �(T ) (also taking the correlation of the statistical
errors into account). Our first observation on the right
panel of Fig. 1 is that the form of the �(h ̄ i) curve is
simpler than that of �(T ): a low (e.g. third or fourth)
order polynomial can fit the entire transition range with
an excellent fit quality. The second observation is that
there is virtually no chemical potential dependence in
the �(h ̄ i) function. This way the susceptibility can
be modeled as a low order polynomial of two variables,
h ̄ i and µ̂ = µB/T . Had we used a di↵erent normaliza-
tion for the susceptibility, e.g. �(T )f4

⇡/T
4 as we did in
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Radius of convergence by Mercer-Roberts

The ultimate goal:

       Collect all evidence and constraints, obtained in parameter regions of QCD where “something” works; 

Non-perturbative determination from first principles!

Prohibited by the sign problem   

Growing demand from phenomenology:  
 
heay ions, nuclear astrophysics, gravitational waves…

     Vary                                                                  a coherent possible picture emergesT, µ,mq, Nf ,�, Nc
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Critical endpoint: reweighting LQCD revisited

Fodor, Katz 2001 signal: coarse lattices, entanglement with rooted staggered artefacts 
[Giordano et al., PRD 20]    

New treatment: determinant of averaged taste quartets + reweighting in sign only 
[Giordano et al. JHEP 20]

Simulation with stout-sm. staggered action,              : no sign of criticality for  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Having to go term by term in an expansion can be avoided, if the radius of con-
vergence is instead determined by the Lee-Yang zero [10,11] closest to the origin. Using
reweighting to real chemical potential, this was the strategy employed in the first lattice
prediction of a critical point on Nt “ 4 lattices using unimproved rooted staggered fermi-
ons [98]. However, it is now understood that the closest Lee-Yang zero was caused by a
spectral gap between the unrooted taste quartets of the zeros, after Taylor expanding the
reweighting factor, rather than by a phase transition [99]. This is related to the general
problem of staggered taste quartets splitting up when they cross a branch cut of a rooted
determinant [100]. It has then been proposed to redefine the rooted staggered determinant
by a geometric matching procedure averaging over the quartets, after which it can be
represented as an ordinary polynomial [99]. A further development [101] concerns the
reweighting procedure, which usually is based on sampling with the phase quenched
determinant and reweighting in the phase factor. This has a well-known overlap problem
between the sampled and reweighted ensembles. To get rid of this, one may neglect the
imaginary part of the determinant in the partition function altogether, which is allowed
since it will average to zero. One can then sample with the real part of the fermion deter-
minant and reweight in the sign only, which has no overlap problem. Of course, the sign
problem remains and one is still faced with a challenging signal to noise ratio.

Application of these new methods using the stout-smeared action on coarse Nt “ 4
lattices appears to signal a Lee-Yang zero at µB „ 2.4T [101], which however is is still far
from the continuum. Simulation results on Nt “ 6 for the renormalised chiral condensate,

xȳyyRpT, µq “ ´ mud
f 4
p

“
xȳyyT,µ ´ xȳyy0,0

‰
, (31)

are shown in Figure 15, both for real and imaginary chemical potential [102]. In the left
plot, there is no steepening or narrowing of the chiral crossover yet as the real chemical
potential is increased. In the right plot the chemical potential is varied for fixed temperature
T “ 140 MeV. One observes full compatibility of the reweighted real µB simulations with
the analytic continuation from imaginary µB simulations, but with smaller errors. In this
case, also, there is no sign of a non-analyticity, which is again consistent with the results
from other methods.
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Figure 15. Renormalised chiral condensate from simulations with stout-smeared staggered fermions
at imaginary (blue) and real (black) chemical potential. (Left): Temperature scan at various chemical
potentials. (Right): µB scan at at T “ 140 MeV. Coloured bands result from analytic continuation of
imaginary chemical potential data. From [102].

6. Conclusions

Even though the sign problem of lattice QCD remains unsolved, there has been consid-
erable progress over the last few years towards phenomenologically relevant constraints on
the QCD phase diagram. This is due to a number of complementary paths of investigation,
each of them refining their methods and having finer lattices as well as different lattice
actions at their disposal.

In the Columbia plot at µB “ 0, the region of first-order deconfinement transitions in
the heavy mass corner can be directly simulated, and its Zp2q-critical boundary for Nf “ 2,
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weakens to disappear in a Zp2q-critical line, which emanates from the tricritical point by
tricritical scaling [76],

µc
Bpmu,dq “ µtric

B ` A m2{5
u,d ` Opm4{5

u,d q,

Tcpmu,dq “ Ttric ` B m2{5
u,d ` Opm4{5

u,d q . (19)

This implies an ordering of the critical temperatures to be exploited below,

Tcpmu,d “ 0, µB “ 0q ° Ttricpmu,d “ 0, µB “ 0q ° Tceppmphys
u,d , µ

cep
B q . (20)

For completeness, we need to also discuss an alternative scenario, where the chiral
phase transition in the massless limit is second order all the way to T “ 0. At least from a
lattice perspective, this is not excluded so far, but crucially depends on whether there is any
non-trivial mc

u,dpµq-dependence in the continuum limit. Moreover, a recent investigation
of the chiral nucleon-meson and chiral quark-meson models finds the phase transition
for m “ 0 at T “ 0 to turn second order, once fluctuations are included [78]. In such
a scenario there is no tricritical point and no first-order transition anywhere. Instead,
non-vanishing quark masses remove the entire second-order line and the chiral transition
would be analytic crossover exclusively for physical quark masses.

Figure 12. (Left): Relation of the tentative QCD phase diagram with physical light quark masses (back
plane) to the chiral limit (front plane) according to [75,76]. (Right): If the entire chiral transition line
in the massless limit is of second order, the transition at the physical point is crossover everywhere.

5.1. The Crossover at Small Baryon Densities
There are several methods that have been used so far to extract information about the

phase structure at the physical point for small baryon density. All of them introduce some
approximation which can be controlled as long as µ{T†„1: (i) Reweighting [79], (ii) Taylor
expansion in µ{T [80] and (iii) analytic continuation from imaginary chemical potential [63,64].
When the QCD pressure is expressed as a series in baryon chemical potential,

ppT, µBq
T4 “ ppT, 0q

T4 `
8ÿ

n“1

1
2n!

cB
2npTq

´ µB
T

¯2n
, cB

2npTq “
B2np p

T4 q
Bp µB

T q2n

ˇ̌
ˇ
µB“0

, (21)

the Taylor coefficients are the baryon number fluctuations evaluated at zero density, which
can also be computed by fitting to untruncated results at imaginary µB. This permits full
control of the systematics between (ii) and (iii). These coefficients are presently known up to
2n “ 8 on Nt “ 16 lattices, Figure 13 (left), and in principle also observable experimentally.
For a review of the equation of state relating to heavy ion phenomenology, see [81,82]. Note
also, that this low density regime appears to be accessible by complex Langevin simulations
without recourse to series expansions, albeit not yet for physical quark masses [83]. This
offers an additional cross check between different methods.
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Fig. 2. Temperature dependence of the net baryon susceptibilities (a) �B
2 , (b) �B

4 /�
B
2 , (c) �B

6 /�
B
2 , and (d) �B

8 , calculated within CEM-
LQCD (red stars). Lattice QCD data of Wuppertal-Budapest [20] and HotQCD [18, 19] collaborations are shown by the blue and green
bands/symbols, respectively.

3. Results

3.1. Baryon number susceptibilities
The baryon number susceptibilities �B

k = �
k�1(�B/T 3)/�(µB/T )k�1 in the CEM read

�B
k (T, µB) = � 2

27�2

b̂2
1

b̂2

�
4�2
�
Li2�k (x+) + (�1)k Li2�k (x�)

�
+ 3
�
Li4�k (x+) + (�1)k Li4�k (x�)

��
. (6)

Leading order baryon number susceptibilities at µB = 0 have recently been computed in lattice QCD [16,
17, 18, 19, 20]. A comparison with these lattice data can test the predictive power of the CEM.

Figure 2 depicts the temperature dependence of �B
2 , �B

4 /�
B
2 , �B

6 /�
B
2 , and �B

8 , calculated in CEM and
compared to the lattice data of Wuppertal-Budapest [20] and HotQCD collaborations [18, 19]. The CEM
calculations use the Wuppertal-Budapest data [11] for b1(T ) and b2(T ) as an input and are therefore labeled
CEM-LQCD in Fig. 2. CEM results are in quantitative agreement with the lattice data for �B

2 and �B
4 /�

B
2 .

The CEM is also consistent with the lattice data for �B
6 /�

B
2 and �B

8 , although these data are still preliminary
and have large error bars. One interesting qualitative feature is the dip in the temperature dependence of
�B

6 /�
B
2 , where this quantity is negative. It was interpreted as a possible signature of chiral criticality [21].

Given that this behavior is also present in CEM (see red stars in Fig. 2c), i.e. in a model which has no critical
point, we conclude that the negative dip in �B

6 /�
B
2 cannot be considered as an unambiguous signal of chiral

criticality.

3.2. Reconstructing the Fourier coe�cients b1 and b2 from susceptibilities
All baryon number susceptibilities at a given temperature are determined in the CEM by two parameters

– the leading two Fourier coe�cients b1 and b2. One can now consider a reverse prescription – assuming
the validity of the CEM ansatz one can extract the values of b1 and b2 at a given temperature from two
independent combinations of baryon number susceptibilities by reversing Eq. (6). We demonstrate this
by considering the lattice QCD data of the HotQCD collaboration for �B

2 and �B
4 /�

B
2 . The temperature

dependence of the b1 and b2 coe�cients, reconstructed from the HotQCD collaboration’s lattice data on
the basis of CEM [Eq. (6)], is shown in Fig. 3 by the green symbols. The extracted values agree rather
well with the imaginary µB data of the Wuppertal-Budapest collaboration, shown in Fig. 3 by the blue

Figure 13. (Left): Baryon number fluctuations cB
2 , cB

4 , cB
8 from the lattice in comparison with the

CEM model. (Right): b1 computed directly from Equation (26) by the WB collaboration, and reverse
engineered using CEM from HotQCD baryon number fluctuations. From [88].

An important quantity is the pseudo-critical temperature marking the “phase bound-
ary” between the chirally broken and restored regimes. Since the chiral transition at the
physical point corresponds to an analytic crossover with a non-zero order parameter every-
where, there are no truly distinct “phases” and no unambiguous definition of a transition
temperature exists. In general, definitions based on different observables will give different
pseudo-critical temperatures, even in the thermodynamic limit, contrary to the unique
locations of singularities for true phase transitions. While this is an issue when comparing
with an experimental situation, for theoretical investigations it is convenient to stick to
the observables representing the true order parameter in the appropriate limit, i.e., the
susceptibility of an appropriately normalised chiral condensate in this case. Following as
an implicitly defined function from the partition function, the pseudo-critical temperature
can be similarly expressed as a power series in chemical potential,

TpcpµBq
Tpcp0q “ 1 ´ k2

ˆ
µB

Tpcp0q

˙2
` . . . , (22)

with Tpcp0q “ 156.5p1.5q MeV [87]. Continuum extrapolated results for the leading coeffi-
cient are collected in Table 2, the sub-leading coefficient k4 is compatible with zero at the
current accuracy. This is a remarkable result telling us that up to µB†„3T the dependence
of thermodynamic quantities on chemical potential is rather weak and can be accurately
described by a truncated leading-order Taylor series in chemical potential.

Table 2. Summary of continuum-extrapolated values for k2 in Equation (22) .

k2 Action Ref.

0.0158(13) imag. µ, stout-smeared staggered [84]
0.0135(20) imag. µ, stout-smeared staggered [85]
0.0145(25) Taylor, stout-smeared staggered [85,86]
0.016(5) Taylor, HISQ [87]

We now have the necessary information to obtain a conservative bound on the location
of a possible critical point, which according to Figure 12 sits on the pseudo-critical line of a
strengthening crossover. Using the central value from Equation (10) for the chiral critical
temperature and imposing the model-independent ordering Tcep † Tc “ 132 MeV, the
chemical potential of a critical point must satisfy

µ
cep
B ° 3.1 Tpcp0q « 485 MeV. (23)‣ Ordering of critical temperatures  

‣ Cluster expansion model of lattice fluctuations 

‣ Singularities, Pade-approx. fluctuations 

‣ Direct simulations with refined reweighting

‣ Consistent with DSE, fRG         

 [O.P.  Symmetry 21] 
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µcep
B > 2.5T, T < 125 MeV  [HotQCD 21] 
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µcep
B > 2.5T  [Wuppertal-Budpest collaboration, 21] 

 [Vovchenko et al. PRD 18] 
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µcep
B > ⇡T

[Halasz et al., PRD 98; Hatta, Ikeda, PRD 03…]

[Fischer PPNP 19; Fu, Pawlowski, Rennecke PRD 20; Gao, Pawlowski 21] 

Not (yet?) ruled out by lattice data:

Connecting chiral limit and the physical point



General idea: two-step treatment

1.  Analytic derivation of effective theory from LQCD by expansion in

Part of d.o.f ’s integrated out, sign problem becomes milder, eff. spin model     

II. Simulate effective theory (flux rep. or reweighting) or solve analytically 

Z =

Z
DU0DUi (detQ)Nf eSg [U ] =

Z
DU0 eSeff [U0] =

Z
DL eSeff [L]

<latexit sha1_base64="42aCJ4dIKUPG0DaAwC5FjTmdbE0="></latexit>

Cold and dense regime: effective lattice theory 

The Effective Lattice Theory
Pure gluon contributions

t

y

x

Integrate over all spatial gauge links

L

L ⇤

1/4
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1

g2
,
1

mqThe Effective Lattice Theory
Pure gluon contributions

t

y

x

What remains is an interaction between Polyakov Loops

L

L ⇤

1/4Pure gauge leading order:                      [Polonyi, Szachlanyi, 82; Svetitsky, Yaffe, 82]

[Langelage, Lottini, O.P., JHEP 11; Fromm et al., JHEP 12 ]

Corrections + heavy Wilson fermions     [Langelage, Lottini, O.P., JHEP 11; Fromm et al., JHEP 12 ]



1st

1st

Mtric

T
≈ 6.3

1st

-1

-0.5

 0

 0.5

 1

 1.5

 2

 2.5

 3

M
u,d

/T

Ms/T

-1

-0.5

 0

 0.5

 1

 1.5

 2

 2.5

 3

MtMM ric

T
≈ 6.3

1st

μ

T(   )
2

Mtric

T
≈ 5.6

Mtric

T
≈ 6.7

tricrit. Roberge-Weiss

2nd, Z2

Mtric

T
+ K

π

3

2

+
µ

T

2 2 5

[Fromm et al., JHEP 12 ]

µB�mB

T
[Me

V
]

1

200

< 10

Schematic phase diagram for heavy quarks

Onset transition to baryon matter (nucl. liquid gas):

Upper right corner in Columbia plot

accuracy ~15%

The phase diagram for heavy quarks, coarse lattices

a3n

Nτ = 1000

a3n

Nτ = 500

a3n

Nτ = 250

Figure 11. Distributions of the quark density in the transition region with temperature

increasing from left to right, κ = 0.12 and β = 5.7

χ
a
3
n

µB/mB

V = 33

V = 43

V = 53

χ
a
3
n

µB/mB

V = 33

V = 43

V = 53

Figure 12. Quark number susceptibility for κ = 0.12 and β = 5.7 and Nτ = 500 (left) and

Nτ = 250. The divergence with volume signals a true phase transition, whereas saturation

at a finite value implies a smooth crossover.

5.4 Nuclear liquid gas transition for light quarks

As in our previous work [10], the accessible quark masses in the convergence region
of the effective theory are too high to realise the expected first order transition for
the onset of nuclear matter. Finite size scaling analyses reveal the transition to be a

smooth crossover, in accord with the interplay between accessible temperatures and
the values of the binding energies. Of course it is highly interesting to see whether

the effective theory includes the expected physics features when the quark mass is
lowered. We now consider κ = 0.12, corresponding to a small quark mass, and

very low temperatures parametrised by Nτ ∼ O(103). We stress that this choice of
parameters is far outside the convergence region of our κ4-action, cf. figure 7. In
other words, there is no reason to expect the results to accurately represent QCD

and an attempt at a continuum extrapolation makes no sense. Nevertheless, this is
an interesting check of the qualitative features of the effective theory.

Figure 11 shows distributions of the Polyakov loop in the onset transition region
for three choices of Nτ , corresponding to increasing temperatures from left to right.

We clearly observe the coexistence of two phases at the lowest temperatures, which

– 26 –

[Langelage, Neuman, O.P. , JHEP 14]

Nuclear physics

~100 years old, still no fundamental description, Bethe-Weizsäcker droplet model: 

Z

N

Binding energy per nucleon

QFT descriptions: Fetter-Walecka model, Skyrme model, ...

Ab initio Hamiltonian descriptions

New computational avenues in LQCD:

CPU GPU

Here, very old-fashioned approach: BPU!

Biological Processing Unit!

Large densities?     Effective theories!

The effective lattice theory approach I

Two-step treatment: 

1. Calculate effective theory analytically 
II. Simulate effective theory  

Step I.:  split temporal and spatial link integrations:     

Spatial integration after analytic strong coupling and hopping expansion
                                                                           

Result: 3d spin model of QCD, infinitely many couplings, ordered parametrically

Truncation: valid for heavy quarks, sufficiently close to the continuum

Step II:  sign problem milder: Monte Carlo, complex Langevin

Numerical simulations in 3d without fermion matrix inversion,  very cheap! 

Z =
�

DU0DUi det Q eSg[U ] �
�

DU0e
�Seff [U0] =

�
DL e�Seff [L]

The equation of state for nuclear matter

m� = 20 GeV, T = 10 MeV, a = 0.17 fm

Effect of binding between baryons: 

n
B
/m

3 B

µB/mB

Nf = 1
Nf = 2

µc < mB

Transition is smooth crossover: 

Binding energy per nucleon: � =
µc �mB

mB
⇥ 10�3

T > Tc � � mB

Seff � �num, n + m = 4

Lighter quarks:  first order + endpoint!
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N⌧ = 4, 6

baryon



Investigate eff. th. for different      

Large       phase diagram emerges continuously

After baryon onset:   
through three orders in hopping expansion 

Consistent with quarkyonic matter!
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Nc

To illustrate how quarks enter at large Nc, consider the gluon self energy
at nonzero T and µ. To lowest order in g2, at zero momentum this is gauge
independent, equal to the square of the Debye mass. For Nf massless flavors,
its trace equals

Πµµ(0) = g2

((
Nc +

Nf

2

)
T 2

3
+

Nfµ2

2π2

)
, (1)

Taking Nc → ∞, holding g2Nc fixed, we see that the gluon contribution,
∼ g2NcT 2 ∼ T 2, survives. This is the first in an infinite series of planar, gluon
diagrams at infinite Nc. In contrast, whether for T ≠ 0 and µ ≠ 0, the quark
contribution is only ∼ g2, and so suppressed by ∼ 1/Nc.

This is true order by order in perturbation theory, both in vacuum and
for all T and µ ∼ 1: holding Nf fixed as Nc → ∞, the effects of quarks
loops are suppressed by ∼ 1/Nc [1,2]. This is simply because there are ∼ N2

c

gluons in the adjoint representation, but only ∼ Nc quarks in the fundamental
representation. Since the quark contribution, relative to that of gluons, is
∼ Nf/Nc, it is essential to hold Nf fixed as Nc → ∞; i.e., to take of limit of
large Nc, but small Nf .

In this limit, we can immediately make some broad conclusions about the
phase diagram in the T −µ plane. At µ = 0, one expects that the deconfining
transition temperature Td ∼ ΛQCD [4], which appears to be confirmed by
numerical simulations on the lattice [5]. Since quarks don’t affect the gluons,
the deconfining transition temperature is then independent of µ, Td(µ) = Td(0)
for values of µ ∼ 1. This is illustrated in fig. (1): in the plane of T and µ,
the phase boundary for deconfinement is a straight line. The theory is in a
deconfined phase when T > Td, and in a confined phase for T < Td.

Fig. 1. Phase diagram at infinite Nc in the plane of temperature and quark chemical
potential. The blue line in the quarkyonic phase indicates a guess for the position
of the chiral phase transition.

In fact, consider the “box” in the lower, left hand corner of the T − µ

4

p ⇠ N0
c

p ⇠ N2
c

p ⇠ Nc

<latexit sha1_base64="3ph17ci3aXexQ2vCSIfF4Kf/5K0=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE1GPRiyepaD+gDWWznbRLN5uwuxFK6E/w4kERr/4ib/4bt20O2vpg4PHeDDPzgkRwbVz32ymsrK6tbxQ3S1vbO7t75f2Dpo5TxbDBYhGrdkA1Ci6xYbgR2E4U0igQ2ApGN1O/9YRK81g+mnGCfkQHkoecUWOlh7se65UrbtWdgSwTLycVyFHvlb+6/ZilEUrDBNW647mJ8TOqDGcCJ6VuqjGhbEQH2LFU0gi1n81OnZATq/RJGCtb0pCZ+nsio5HW4yiwnRE1Q73oTcX/vE5qwis/4zJJDUo2XxSmgpiYTP8mfa6QGTG2hDLF7a2EDamizNh0SjYEb/HlZdI8q3oX1fP780rtOo+jCEdwDKfgwSXU4Bbq0AAGA3iGV3hzhPPivDsf89aCk88cwh84nz8aao2x</latexit>
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The heavy dense regime and large heavy quarks
<latexit sha1_base64="Afb0RhqIrA33hcP97YHirdmiZd8=">AAAB6nicdVDLSgNBEOyNrxhfUY9eBoPgKeyEkMctIIIniWgekCxhdjKbDJmdXWZmhRDyCV48KOLVL/Lm3zibRFDRgoaiqpvuLj8WXBvX/XAya+sbm1vZ7dzO7t7+Qf7wqK2jRFHWopGIVNcnmgkuWctwI1g3VoyEvmAdf3KR+p17pjSP5J2ZxswLyUjygFNirHR7PaCDfMEtuq6LMUYpwdWKa0m9XivhGsKpZVGAFZqD/Ht/GNEkZNJQQbTuYTc23owow6lg81w/0SwmdEJGrGepJCHT3mxx6hydWWWIgkjZkgYt1O8TMxJqPQ192xkSM9a/vVT8y+slJqh5My7jxDBJl4uCRCATofRvNOSKUSOmlhCquL0V0TFRhBqbTs6G8PUp+p+0S0VcKZZvyoXG5SqOLJzAKZwDhio04Aqa0AIKI3iAJ3h2hPPovDivy9aMs5o5hh9w3j4BaEeN6g==</latexit>

Nc

<latexit sha1_base64="t2mjgohpd9Tw/LLTqCTqC8oIMHs=">AAAB8HicbVBNSwMxEJ2tX7V+VT16CRbBU9kV0R4LXjxJBfsh7VKyabYNTbIhyQpl6a/w4kERr/4cb/4b03YP2vpg4PHeDDPzIsWZsb7/7RXW1jc2t4rbpZ3dvf2D8uFRyySpJrRJEp7oToQN5UzSpmWW047SFIuI03Y0vpn57SeqDUvkg50oGgo8lCxmBFsnPaqeYQLd9Um/XPGr/hxolQQ5qUCORr/81RskJBVUWsKxMd3AVzbMsLaMcDot9VJDFSZjPKRdRyUW1ITZ/OApOnPKAMWJdiUtmqu/JzIsjJmIyHUKbEdm2ZuJ/3nd1Ma1MGNSpZZKslgUpxzZBM2+RwOmKbF84ggmmrlbERlhjYl1GZVcCMHyy6ukdVENrqqX95eVei2PowgncArnEMA11OEWGtAEAgKe4RXePO29eO/ex6K14OUzx/AH3ucPWl2QGA==</latexit>

p ⇠ Nc

[O.P. , Scheunert, JHEP 19]

[McLerran, Pisarski, NPA 07]

<latexit sha1_base64="vyygZzUDxhRk9pVspRkSQVNPaWw=">AAACGnicbVDLSgNBEJyNrxhfqx69DAbBU9iVoDkGvHiSCOYB2RBmJ7PJkNmZZaZXCUu+w4u/4sWDIt7Ei3/j5AFqYkFDUdVNd1eYCG7A876c3Mrq2vpGfrOwtb2zu+fuHzSMSjVldaqE0q2QGCa4ZHXgIFgr0YzEoWDNcHg58Zt3TBuu5C2MEtaJSV/yiFMCVuq6fmCA0KFmIrvu0kDz/gCI1uoeB1xGMBpngVCy/6OPu27RK3lT4GXiz0kRzVHruh9BT9E0ZhKoIMa0fS+BTkY0cCrYuBCkhiX2BtJnbUsliZnpZNPXxvjEKj0cKW1LAp6qvycyEhszikPbGRMYmEVvIv7ntVOIKp2MyyQFJulsUZQKDApPcsI9rhkFMbKEUM3trZgOiCYUbJoFG4K/+PIyaZyV/PNS+aZcrFbmceTRETpGp8hHF6iKrlAN1RFFD+gJvaBX59F5dt6c91lrzpnPHKI/cD6/AVKpouk=</latexit>

Nc!1�!

<latexit sha1_base64="I7z+C74Kt41dXLzD2YYW1t8MlsY=">AAAB9HicbVBNSwMxEJ2tX7V+VT16CRbBU9mVoh6LXjxWsB/QLiWbZtvQJLtNsoWy7O/w4kERr/4Yb/4b03YP2vpg4PHeDDPzgpgzbVz32ylsbG5t7xR3S3v7B4dH5eOTlo4SRWiTRDxSnQBrypmkTcMMp51YUSwCTtvB+H7ut6dUaRbJJzOLqS/wULKQEWys5PdChUnqZanoT7J+ueJW3QXQOvFyUoEcjX75qzeISCKoNIRjrbueGxs/xcowwmlW6iWaxpiM8ZB2LZVYUO2ni6MzdGGVAQojZUsatFB/T6RYaD0Tge0U2Iz0qjcX//O6iQlv/ZTJODFUkuWiMOHIRGieABowRYnhM0swUczeisgI2xyMzalkQ/BWX14nrauqd12tPdYq9bs8jiKcwTlcggc3UIcHaEATCEzgGV7hzZk6L86787FsLTj5zCn8gfP5AyRmkls=</latexit>
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<latexit sha1_base64="7kI7CY/VO4ds7qQI/5JMWNRiBIw=">AAAB7HicbVBNS8NAEJ3Ur1q/qh69LBbBU0mqoMdSLx4rmLbQhrLZbtqlu5uwuxFC6G/w4kERr/4gb/4bt20O2vpg4PHeDDPzwoQzbVz32yltbG5t75R3K3v7B4dH1eOTjo5TRahPYh6rXog15UxS3zDDaS9RFIuQ0244vZv73SeqNIvlo8kSGgg8lixiBBsr+QORDlvDas2tuwugdeIVpAYF2sPq12AUk1RQaQjHWvc9NzFBjpVhhNNZZZBqmmAyxWPat1RiQXWQL46doQurjFAUK1vSoIX6eyLHQutMhLZTYDPRq95c/M/rpya6DXImk9RQSZaLopQjE6P552jEFCWGZ5Zgopi9FZEJVpgYm0/FhuCtvrxOOo26d1VvPFzXmq0ijjKcwTlcggc30IR7aIMPBBg8wyu8OdJ5cd6dj2VrySlmTuEPnM8fn2yOjw==</latexit>

T
<latexit sha1_base64="wuUeoCr40AnIpr753sXMM0828Vs=">AAAB6HicbVDLSgNBEOyNrxhfUY9eBoPgKexGQY9BLx4TyAuSJcxOepMxs7PLzKwQQr7AiwdFvPpJ3vwbJ8keNLGgoajqprsrSATXxnW/ndzG5tb2Tn63sLd/cHhUPD5p6ThVDJssFrHqBFSj4BKbhhuBnUQhjQKB7WB8P/fbT6g0j2XDTBL0IzqUPOSMGivVG/1iyS27C5B14mWkBBlq/eJXbxCzNEJpmKBadz03Mf6UKsOZwFmhl2pMKBvTIXYtlTRC7U8Xh87IhVUGJIyVLWnIQv09MaWR1pMosJ0RNSO96s3F/7xuasJbf8plkhqUbLkoTAUxMZl/TQZcITNiYgllittbCRtRRZmx2RRsCN7qy+ukVSl7V+VK/bpUvcviyMMZnMMleHADVXiAGjSBAcIzvMKb8+i8OO/Ox7I152Qzp/AHzucPsPeM3A==</latexit>

mB
<latexit sha1_base64="oQIahf4GGJ0k6sJL55aNSutYM9w=">AAAB6nicbVDLSgNBEOz1GeMr6tHLYBA8hd0o6DHEi8eI5gHJEmYns8mQeSwzs0JY8glePCji1S/y5t84SfagiQUNRVU33V1Rwpmxvv/tra1vbG5tF3aKu3v7B4elo+OWUakmtEkUV7oTYUM5k7RpmeW0k2iKRcRpOxrfzvz2E9WGKfloJwkNBR5KFjOCrZMeRL/eL5X9ij8HWiVBTsqQo9EvffUGiqSCSks4NqYb+IkNM6wtI5xOi73U0ASTMR7SrqMSC2rCbH7qFJ07ZYBipV1Ji+bq74kMC2MmInKdAtuRWfZm4n9eN7XxTZgxmaSWSrJYFKccWYVmf6MB05RYPnEEE83crYiMsMbEunSKLoRg+eVV0qpWgstK9f6qXKvncRTgFM7gAgK4hhrcQQOaQGAIz/AKbx73Xrx372PRuublMyfwB97nDxYAjao=</latexit>


