The QCD phase diagram from the lattice

Owe Philipsen

Considerable progress over last few years

- Results begin to be phenomenologically relevant

The QCD phase diagram

Fundamental for particle-, nuclear-, astro- physics
Future textbook knowledge
Non-perturbative problem

- "Sign problem" prevents Monte Carlo simulation (NP-hard problem?)
Collect evidence of QCD parameter regions away from physical point

The nature of the QCD thermal transition at zero density

chiral p.t.
restoration of global symmetry in flavour space
$S U(2)_{L} \times S U(2)_{R} \times U(1)_{A}$
 anomalous

Can a trace of the chiral transition (scaling) be detected experimentally?

The nature of the QCD chiral transition

... is elusive, massless limit not simulable!

- Coarse lattices or unimproved actions: Ist order for $N_{f}=2,3$
- Ist order region shrinks rapidly as $a \rightarrow 0$

Improved staggered actions: no Ist order region so far, even for $N_{f}=3 m_{P S}>45 \mathrm{MeV}$

Details and reference list: [O.P., Symmetry I3, 202I]

From the physical point to the chiral limit

[HotQCD, PRL I9] HISQ (staggered)

[Kotov, Lombardo, Trunin, PLB 2I] Wilson twisted mass

$$
T_{p c}\left(m_{l}\right)=T_{c}^{0}+K m_{l}^{1 / \beta \delta}
$$

$$
T_{c}^{0}=134_{-4}^{+6} \mathrm{MeV}
$$

- Keep strange quark mass fixed, crossover gets stronger as chiral limit approached
- Cannot distinguish between $Z(2)$ vs. $O(4)$ exponents, need exponential accuracy!
- Determination of chiral critical temperature possible, but not the order of the transition

Comparison with fRG: $\quad T_{c}^{0} \approx 142 \mathrm{MeV}$, 'most likely $\mathrm{O}(4)$ " [Braun et al., PRD 20,2 I]

Bare parameter space of unimproved staggered LQCD

[Cuteri, O.P., Sciarra, JHEP 2I]

Employ non-integer N_{f} to resolve tricritical point, ($\left(\operatorname{det}(D(m))^{N_{f}}\right.$ in partition fcn.)
Observe tric. scaling in N_{f} (also in imaginary $\mu \quad$ [Bonati et al. PRD 14])
Old question: $m_{c} / T=0$ or $\neq 0 \quad$? Answered for $N_{f}=2$

- New question: will $N_{f}^{\text {tric }}\left(N_{\tau}\right)$ slide beyond $N_{f}=3$?

Bare parameter space of unimproved staggered LQCD

Ist order scenario does not fit!

Tricritical scaling, $N_{f}^{\text {tric }}\left(N_{\tau}\right)$ implies: Ist order region does not extend to continuumFirst-order scenario Incompatible with data! $\chi_{\text {dof }}^{2}>10$

- $N_{f}=2-7$ all have 2 nd order chiral phase transitions in the continuum!

$\mathrm{Nf}=3 \mathrm{O}(\mathrm{a})$-improved Wilson fermions

[Kuramashi et al. PRD 20]

$$
m_{\pi}^{c} \leq 110 \mathrm{MeV} \quad N_{\tau}=4,6,8,10,12
$$

Re-analysis using: $a m_{P S}^{2} \propto a m_{q}$

cont. limit
$\vdash \quad N_{\mathrm{f}}=3 \quad-\quad$ LO $N_{\tau} \in[8,12]$

Tricritical scaling! [Cuteri, O.P., Sciarra, JHEP 2I]
$\mathrm{Nf}=3$ consistent with staggered, 2 nd order in chiral continuum limit!

What about Pisarski, Wilczek?

- Investigated 3d ϕ^{4} sigma model,
i.e. Ginzburg-Landau-Wilson theory for chiral condensate

Results based on epsilon expansion about $\epsilon=1$

- Conclusions confirmed by [Butti, Pelisetto,Vicari, JHEP 03] (High order perturbative expansion in fixed $\mathrm{d}=3$)
- Support also from simulation of 3d sigma model [Gausterer, Sanielovici, PLB 88]
fRG: 3d ϕ^{6} has infrared fixed points and 2nd order transitions [Litim, Tetradis, NPB 96]
Conformal bootstrap methods: fixed point also with $\mathrm{O}(4) \mathrm{xO}(2)$ [Nakayama, Ohtsuki PRD I4]
- 3d ϕ^{6} with t'Hooft term: 2nd order transition for restored anomaly! [Fejos, PRD

The emerging Columbia plot in the continuum

[HotQCD, PRD 22]

The Columbia plot with real and imaginary μ

Exact symmetries:
[Roberge,Weiss NPB 86]
$Z(\mu)=Z(-\mu)$
$Z\left(T, i \frac{\mu_{i}}{T}\right)=Z\left(T, i \frac{\mu_{i}}{T}+i \frac{2 n \pi}{N_{c}}\right)$

Required for phase diagram with critical endpoint:

unimproved staggered unimproved Wilson
[de Forcrand, O.P., PRL IO, Bonati et al., PRD II]
[O.P., Pinke, PRD I4]

The Columbia plot with imaginary μ

Unimproved actions: first-order region shrinks on finer lattices [Pinke, O.P. PRD I4, O.P. Sciarra PRD 20]

- Improved staggered actions: no first-order region seen, upper bounds:
[Bonati et al., PRD 19]: stout smearing, light quark mass down to $m_{\pi} \approx 50 \mathrm{MeV}$ [HotQCD, PoS LAT 19]: HISQ, light quark mass down to $m_{\pi} \approx 55 \mathrm{MeV}$

Entire chiral critical surface shifts towards chiral limit! Any continuum dependence on μ_{B} ?

The physical point at small baryon density

Taylor expansion of the pressure:

$$
\frac{p\left(T, \mu_{B}\right)}{T^{4}}=\frac{p(T, 0)}{T^{4}}+\sum_{n=1}^{\infty} \frac{1}{2 n!} \chi_{2 n}^{B}(T)\left(\frac{\mu_{B}}{T}\right)^{2 n}, \quad \chi_{2 n}^{B}(T)=\left.\frac{\partial^{2 n}\left(\frac{p}{T^{4}}\right)}{\partial\left(\frac{\mu_{B}}{T}\right)^{2 n}}\right|_{\mu_{B}=0}
$$

Calculate derivatives [Allton et al., PRD 2002;...]

Calculate full function at imaginary μ_{B}, fit Taylor coefficients [de Forcrand, O.P., NPB 2002, D’Elia, Lombardo, PRD 2003;...]

Baryon number fluctuations, known up to $2 \mathbf{n}=8$ on $N_{\tau}=16$

Pseudo-critical temperature:

$$
\frac{T_{p c}\left(\mu_{B}\right)}{T_{p c}(0)}=1+\kappa_{2}\left(\frac{\mu_{B}}{T}\right)^{2}+\kappa_{4}\left(\frac{\mu_{B}}{T}\right)^{4}+\ldots
$$

κ_{2}	Action
$0.0158(13)$	imag. μ, stout-smeared staggered
$0.0135(20)$	imag. μ, stout-smeared staggered
$0.0145(25)$	Taylor, stout-smeared staggered
$0.016(5)$	Taylor, HISQ
$0.0153(18)$	imag. μ, stout-smeared staggered

$$
\begin{aligned}
& \text { [Bellwied et al, PLB I5] } \\
& \text { [Bonati et al, NPA I9] } \\
& \text { [Bonati et al, PRD I8] } \\
& \text { [HotQC]D, PLB I9 } \\
& \text { [Borsanyi et al, PRL 20] }
\end{aligned}
$$

Strong check of systematics, fully consistent!
[Bonati et al., PRD I8, NPA I9]

The search for a critical endpoint

$\left(T_{\mathcal{C}}, \mu_{B}^{\mathcal{c}}\right)$: upper bound on radius of convergence of Taylor expansion in chem.pot. or fugacity
Radius of convergence $\quad r=\lim _{n \rightarrow \infty} r_{2 n}, \quad r_{2 n}=\left|\frac{2 n(2 n-1) \chi_{2 n}^{B}}{\chi_{2 n+2}^{B}}\right| \quad r_{n}=\left|\frac{c_{n+1} c_{n-1}-c_{n}^{2}}{c_{n+2} c_{n}-c_{n+1}^{2}}\right|^{1 / 4}$
ratio estimator
Mercer-Roberts estimator
Cluster Expansion Model [Vovchenko et al., PRD, NPA 20I8]
$\begin{aligned} & \text { Recursive relation between } \\ & \text { fugacity coeffs, matched to LQCD }\end{aligned} \frac{n_{B}\left(T, \mu_{B}\right)}{T^{3}}=-\frac{2}{27 \pi^{2}} \frac{\hat{b}_{1}^{2}}{\hat{b}_{2}}\left\{4 \pi^{2}\left[\mathrm{Li}_{1}\left(x_{+}\right)-\operatorname{Li}_{1}\left(x_{-}\right)\right]+3\left[\mathrm{Li}_{3}\left(x_{+}\right)-\operatorname{Li}_{3}\left(x_{-}\right)\right]\right\}$

[Giordano, Pasztor, PRD 20I9]: ratio fails, improved estimators based on M-R, Cauchy-Hadamard

CEM prediction: closest singularity in complex plane is Roberge-Weiss transition at imag. μ_{B}
No critical point for real $\mu_{B} / T \lesssim \pi$

[Borsanyi et al., PRL 2020]
No sign of strengthening transition with imag. μ_{B}
Described by simple polynomial model in μ_{B} / T

[HotQCD, PRD 2022]

Radius of convergence by Mercer-Roberts
High order resummation in μ_{B} / T
by (multi-point) Pade approximants

$$
T_{c}<125 \mathrm{MeV}, \mu_{B}^{c} / T>2.5 T
$$

Critical endpoint: reweighting LQCD revisited

[Borsanyi et al., PRD 22]

$$
\langle\bar{\psi} \psi\rangle_{R}(T, \mu)=-\frac{m_{u d}}{f_{\pi}^{4}}\left[\langle\bar{\psi} \psi\rangle_{T, \mu}-\langle\bar{\psi} \psi\rangle_{0,0}\right]
$$

Fodor, Katz 2001 signal: coarse lattices, entanglement with rooted staggered artefacts [Giordano et al., PRD 20]

New treatment: determinant of averaged taste quartets + reweighting in sign only [Giordano et al. JHEP 20]

Simulation with stout-sm. staggered action, $N_{\tau}=6$: no sign of criticality for $\mu_{B}<2.5 T$

Connecting chiral limit and the physical point

The "standard scenario":
[Halasz et al., PRD 98; Hatta, Ikeda, PRD 03...]

- Ordering of critical temperatures
- Cluster expansion model of lattice fluctuations $\mu_{B}^{\mathrm{cep}}>\pi T$

$$
\mu_{B}^{\text {cep }}>3.1 T_{p c}(0) \approx 485 \mathrm{MeV} \quad[\text { O.P. Symmetry 21] }
$$

$$
\mu_{B}^{\text {cep }}>\pi T \quad[\text { Vovchenko et al. PRD 18] }
$$

- Singularities, Pade-approx. fluctuations

$$
\mu_{B}^{\mathrm{cep}}>2.5 T, T<125 \mathrm{MeV}
$$

- Direct simulations with refined reweighting
- Consistent with DSE, fRG

Cold and dense regime: effective lattice theory

General idea: two-step treatment
I. Analytic derivation of effective theory from LQCD by expansion in $\frac{1}{g^{2}}, \frac{1}{m_{q}}$

Part of d.o.f's integrated out, sign problem becomes milder, eff. spin model

- II. Simulate effective theory (flux rep. or reweighting) or solve analytically

Integrate over all spatial gauge links

Pure gauge leading order:
Corrections + heavy Wilson fermions

What remains is an interaction between Polyakov Loops

$$
Z=\int D U_{0} D U_{i}(\operatorname{det} Q)^{N_{f}} e^{S_{g}[U]}=\int D U_{0} e^{S_{e f f}\left[U_{0}\right]}=\int D L e^{S_{e f f}[L]}
$$

The phase diagram for heavy quarks, coarse lattices

Schematic phase diagram for heavy quarks

Upper right corner in Columbia plot $N_{\tau}=4,6$

[Fromm et al., JHEP I2]

Onset transition to baryon matter (nucl. liquid gas):

[Langelage, Neuman, O.P., JHEP 14]

The heavy dense regime and large N_{c}

[O.P., Scheunert, JHEP 19]

- Investigate eff. th. for different N_{c}
- Large N_{c} phase diagram emerges continuously
- After baryon onset: $p \sim N_{c}$ through three orders in hopping expansion $\frac{1}{m_{q}}$
Consistent with quarkyonic matter!
[McLerran, Pisarski, NPA 07]

$$
\begin{gathered}
p \sim N_{c}^{2} \\
\text { Deconfined }
\end{gathered}
$$

Conclusions

T $\left\{\begin{array}{l}\text { QGP } \\ \text { stringy fluid }\end{array}\right.$

