Estimating Elliptic Flow Coefficient in Heavy-ion Collisions using Deep Learning

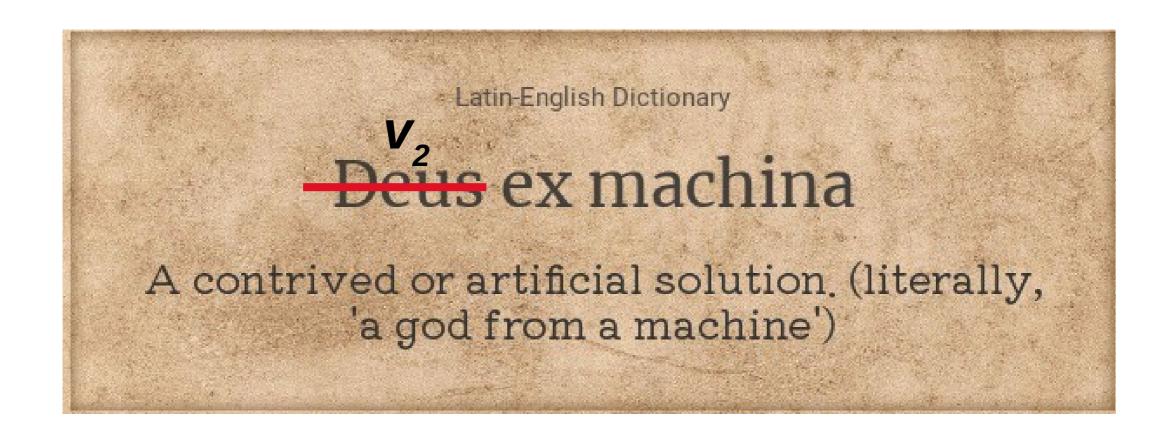
N. Mallick, A.N. Mishra, S. Pasad, R. Sahoo and G.G. Barnaföldi

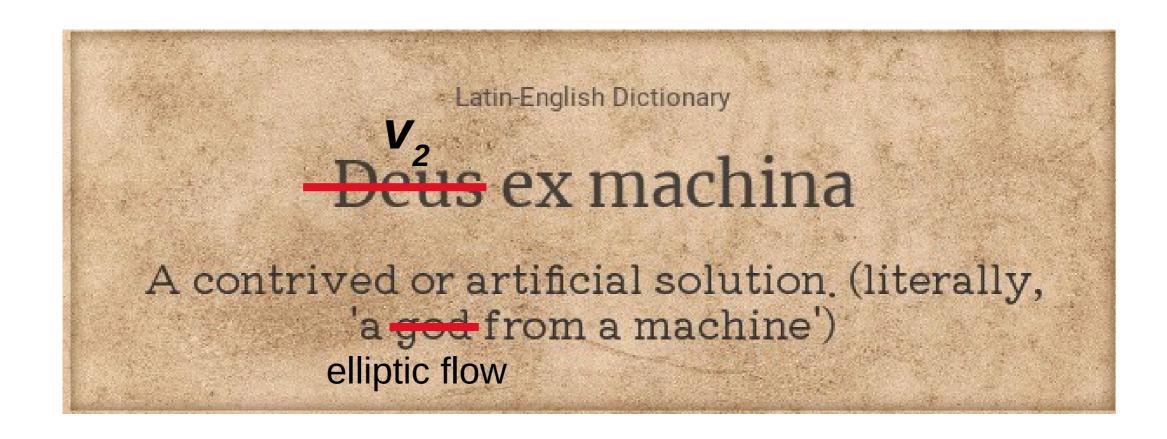
Support: Hungarian OTKA grants, NK123815, K135515 Wigner GPU Laboratory Ref: arXiv:2108.13938 (submitted to PRD)

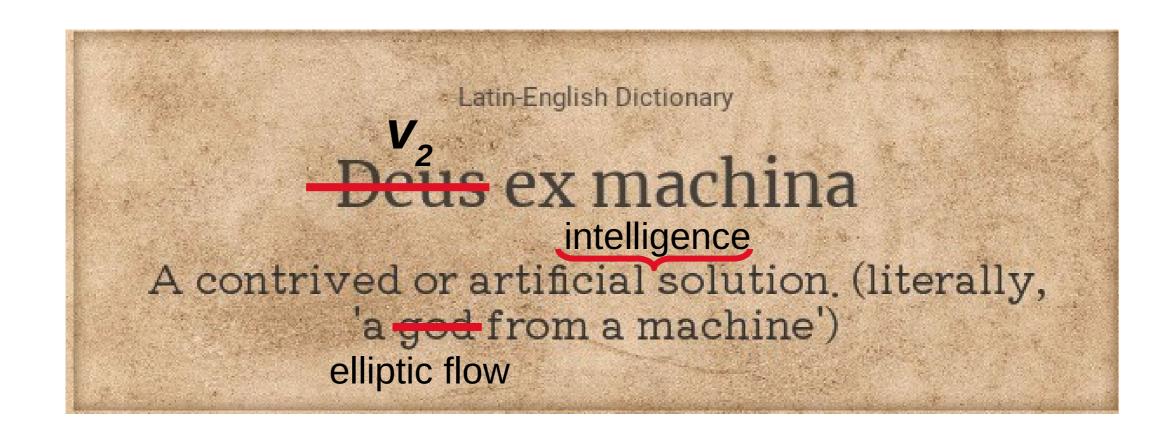
Latin-English Dictionary

Deus ex machina

A contrived or artificial solution (literally, 'a god from a machine')







Outline

1) Elliptic flow & motivation

Motivation and definition

2) Input, test & model validation

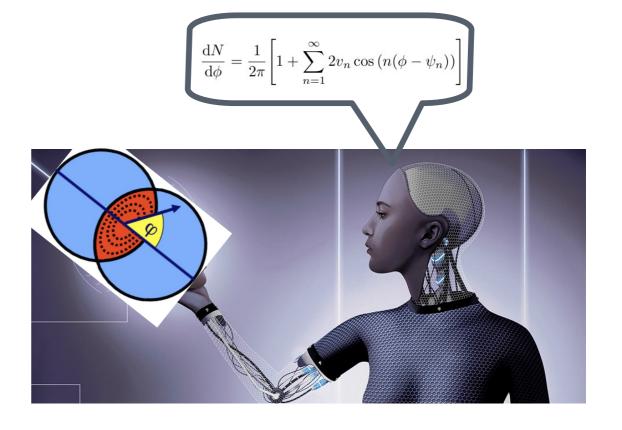
- Input data (min. bias AMPT)
- Optimalization the NN
- Test with noise, epoch

3) Results on v_2 by DNN

- Dependence on centrality, c.m. energy and p_T

Conclusions:

 \rightarrow Can we estimate v_2 ex machina?

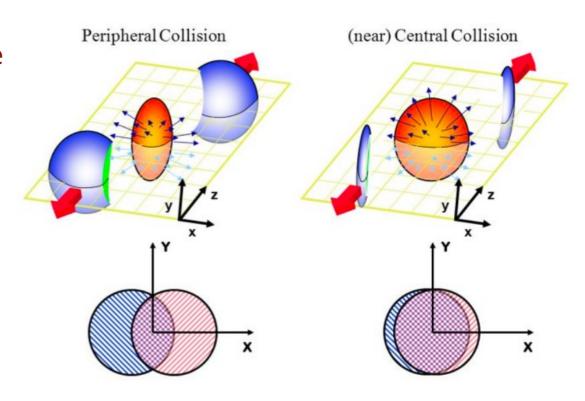


Motivation & definitions

Elliptic flow (v₂) in heavy-ion collisons

Experimental point:

 Elliptic flow describes the azimuthal momentum space anisotropy of particle emission for a non-central heavy-ion collision.

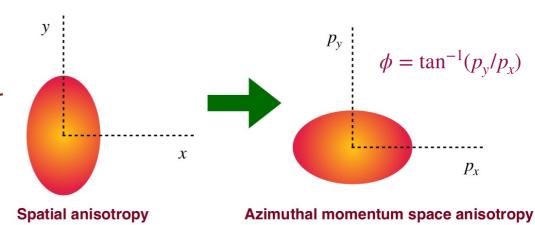


Elliptic flow (v₂) in heavy-ion collisons

Experimental point:

- Elliptic flow describes the azimuthal momentum space anisotropy of particle emission for a non-central heavy-ion collision.
- The 2nd harmonic coefficient of the Fourier expansion of azimuthal momentum distribution:

$$E\frac{d^{3}N}{dp^{3}} = \frac{d^{2}N}{p_{T}dp_{T}dy} \frac{1}{2\pi} \left(1 + 2\sum_{n=1}^{\infty} v_{n} \cos[n(\phi - \psi_{n})] \right)$$



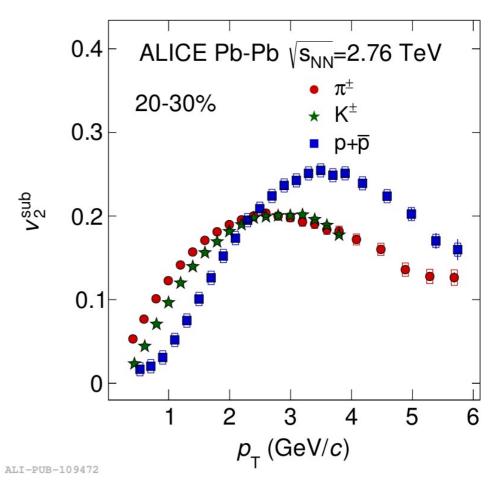
Elliptic flow (v₂) in heavy-ion collisons

Experimental point:

- Elliptic flow describes the azimuthal momentum space anisotropy of particle emission for a non-central heavy-ion collision.
- The 2nd harmonic coefficient of the Fourier expansion of azimuthal momentum distribution:

$$E\frac{d^{3}N}{dp^{3}} = \frac{d^{2}N}{p_{T}dp_{T}dy} \frac{1}{2\pi} \left(1 + 2\sum_{n=1}^{\infty} v_{n} \cos[n(\phi - \psi_{n})] \right)$$

- The $v_2(p_T,y) = \langle \cos(2(\phi-\psi_2)) \rangle$ directly reflects the initial spatial anisotropy of the nuclear overlap region in the transverse plane.



G.G. Barnafoldi: PP2022 Budapest, Hungary

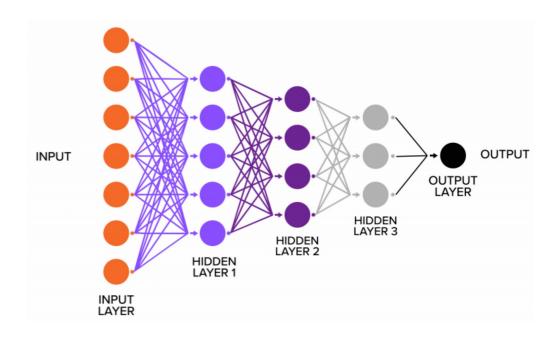
Input, test, and model validation

The AMPT model for Pb-Pb collisions

- A Multi-phase transport model (AMPT): MC event generator for simulating p-A and A-A collisions from RHIC to LHC energies.
 - Fluctuating initial conditions: Initialization of collision is done by obtaining the spatial and momentum distributions of the hard minijet partons and soft string excitations from the HIJING model. The inbuilt Glauber model is used to calculate and convert the cross-section of the produced mini-jets from pp to AA.
 - Zhang's parton cascade (ZPC) model is used to perform the partonic interactions
 and parton cascade which currently includes the two-body scatterings with cross-sections
 obtained from the pQCD with screening masses.
 - Hadronization mechanism: Lund string fragmentation model is used to recombine
 the partons with their parent strings and then the strings are converted to hadrons,
 whereas, in the string melting mode the transported partons are hadronized using a
 quark coalescence mechanism.
 - Hadron cascade: scattering among the produced hadrons are performed using a relativistic transport model (ART) by meson-meson, meson-baryon and baryon-baryon interactions.
 G.G. Barnafoldi: PP2022 Budapest, Hungary

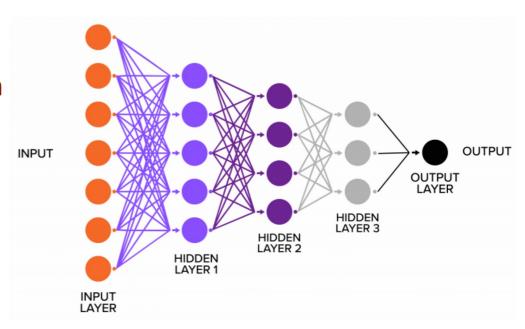
Three key layers

- Input: Takes the features as input
- Hidden layers: Connects to each neuron through different weights
- Output: Gives the result as a number or class



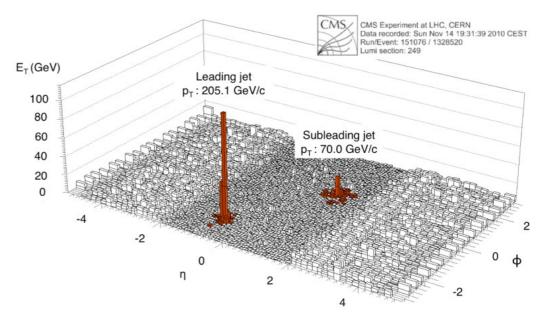
Math behind

- Weights dictate the importance of an input
 → more important features get more weights
- Activation function: mathematical function that guides the outcome at each node
 → Standardize the values
- Cost function: Evaluates the accuracy between machine prediction and true value
- Optimizer: Method (or algorithm) that minimizes the cost function by automatically updating the weights



Estimation of elliptic flow using DNN

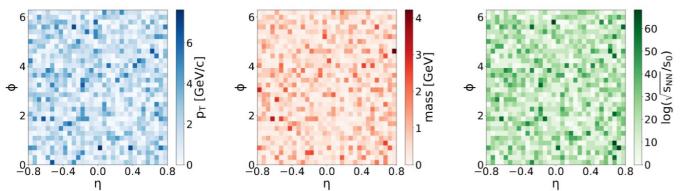
- Elliptic flow → Event property
- Inputs → Track property
- $(\eta-\phi)$ space is the primary input space



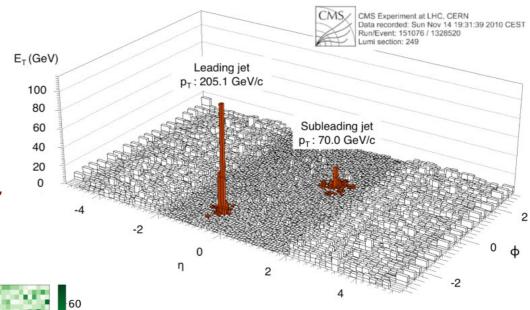
Serguei Chatrchyan et al., Phys.Rev.C 84 (2011), 024906

Estimation of elliptic flow using DNN

- Elliptic flow → Event property
- Inputs → Track property
- $(\eta-\phi)$ space is the primary input space
- Three layers having different weights: p_T , mass and $log(s_{NN}/s_0)$ weighted layers serve as the secondary input space



Pb-Pb, $\sqrt{s_{\rm NN}} = 5.02 \text{ TeV}$, AMPT Simulation



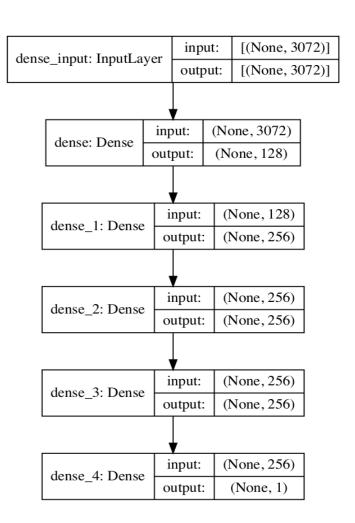
Serguei Chatrchyan et al., Phys.Rev.C 84 (2011), 024906

Input "pictures" for DNN

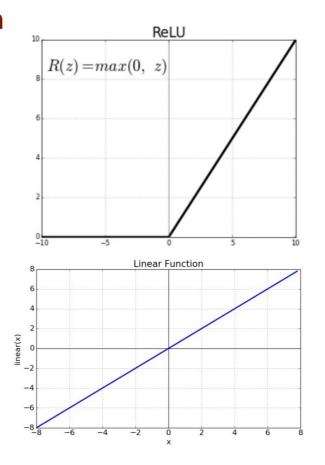
- Each space has 32×32 pixels (grids)
- Total number of pixel points = $32 \times 32 \times 3 = 3072$ for each event

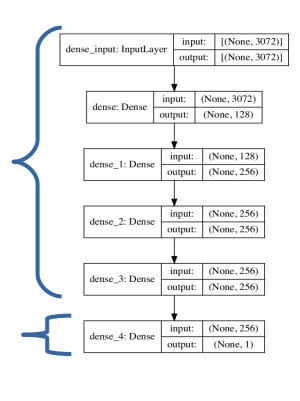
DNN with the following architecture

- Input Layer: 128 Nodes
- Three hidden layers: 256 Nodes each
- Final layer : 1 node (v_2)



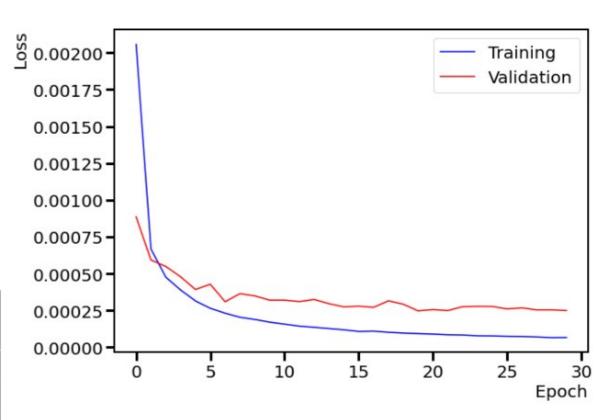
- Input and hidden layers have ReLu Activation
- Output layer has Linear activation
- Optimizer: adam , Loss function: mse





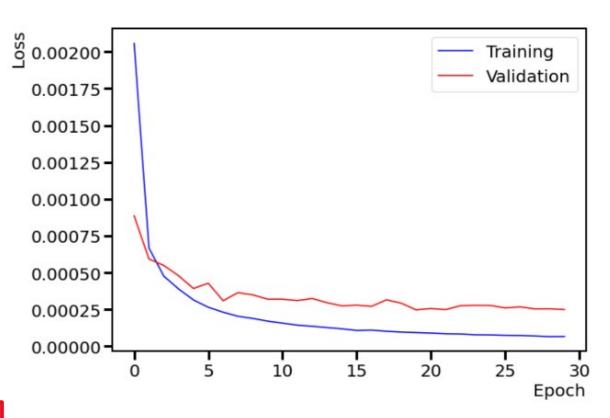
- Input and hidden layers have ReLu Activation
- Output layer has Linear activation
- Optimizer: adam , Loss function: mse
- Epoch: 30, Batch Size: 32x32
- Training: 10⁸ Events (~25 GB)

Bin	Input	MAE	Epoch	Time (sec)	Trainable
size	neurons		Бросп	Epoch	parameters
8×8	192	0.0292	18	1.679	189,569
16×16	768	0.0171	28	1.909	263,297
32×32	3072	0.0102	30	2.684	558,209
64×64	12288	0.0113	60	6.001	1,737,857



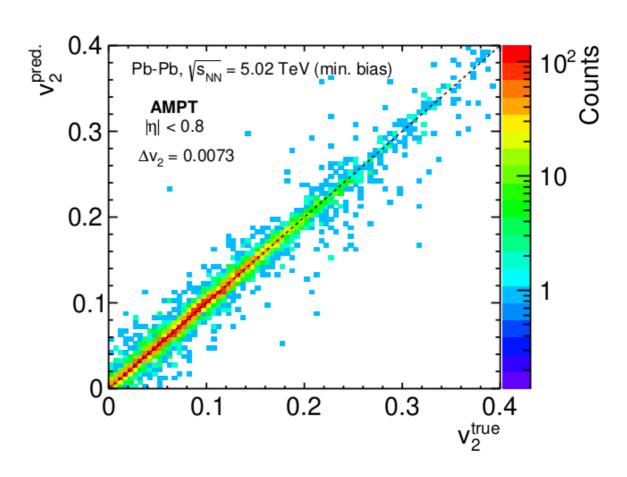
- Input and hidden layers have ReLu Activation
- Output layer has Linear activation
- Optimizer: adam , Loss function: mse
- Epoch: 30, Batch Size: 32x32
- Training: 10⁸ Events (~25 GB)

	Bin	Input	MAE	Epoch	$\frac{\mathrm{Time}\ (\mathrm{sec})}{\mathrm{Epoch}}$	Trainable
	size	neurons				parameters
	8×8	192	0.0292	18	1.679	189,569
	16×16	768	0.0171	28	1.909	263,297
	32×32	3072	0.0102	30	2.684	558,209
	64×64	12288	0.0113	60	6.001	1,737,857



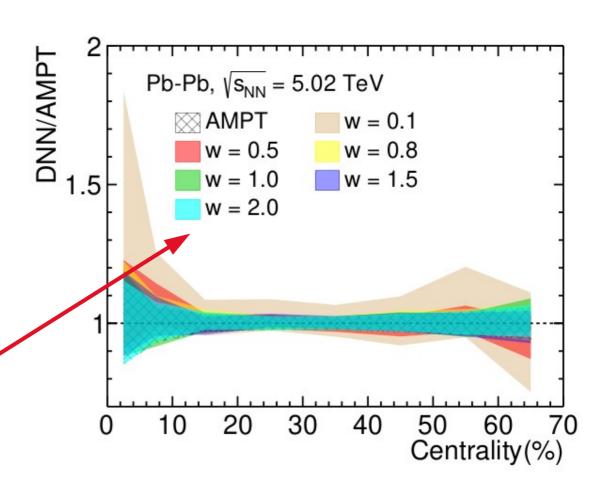
- Input and hidden layers have ReLu Activation
- Output layer has Linear activation
- Optimizer: adam , Loss function: mse
- Epoch: 30, Batch Size: 32x32
- Training: 10⁸ Events (~25 GB)
- Validation: 10⁴ Events

$$\Delta v_2 = \frac{1}{N_{\text{events}}} \sum_{n=1}^{N_{\text{events}}} |v_{2_n}^{\text{true}} - v_{2_n}^{\text{pred.}}|$$



- Input and hidden layers have ReLu Activation
- Output layer has Linear activation
- Optimizer: adam , Loss function: mse
- Epoch: 30, Batch Size: 32x32
- Training: 10⁸ Events (~25 GB)
- Validation: 10⁴ Events
- Error: effect of uncorrelated noise

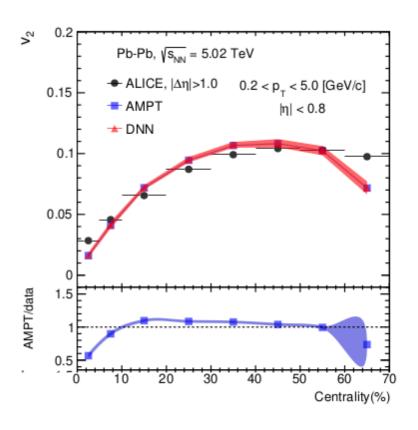
$$F_{i,j} = F_{i,j} + X_{i,j}/w$$



v₂ ex machina

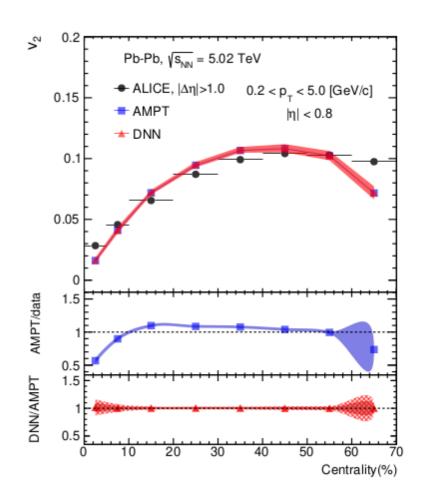
Results on v_2 vs centrality

- AMPT simulation: 5.02 TeV Pb-Pb
 - → works well [10%:60%] centrality
 - \rightarrow low statistics/ v_2 values out of this



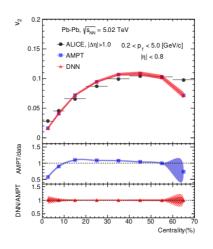
Results on v_2 vs centrality

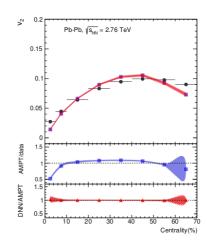
- AMPT simulation: 5.02 TeV Pb-Pb
 - → works well [10%:60%] centrality
 - \rightarrow low statistics/ v_2 values out of this
- **DNN simulation**: same parameters
 - → Follows well the AMPT
 - \rightarrow Even including noise w=0.5

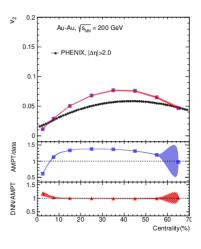


Results on v_2 vs c.m. energy

- AMPT simulation: 5.02 TeV Pb-Pb
 - → works well [10%:60%] centrality
 - \rightarrow low statistics/ v_2 values out of this
- DNN simulation: same parameters
 - → Follows well the AMPT
 - \rightarrow Even including noise w=0.5
- Predictions for other energies
 - → similar trends as on the training
 - → AMPT tune for 200 GeV is different

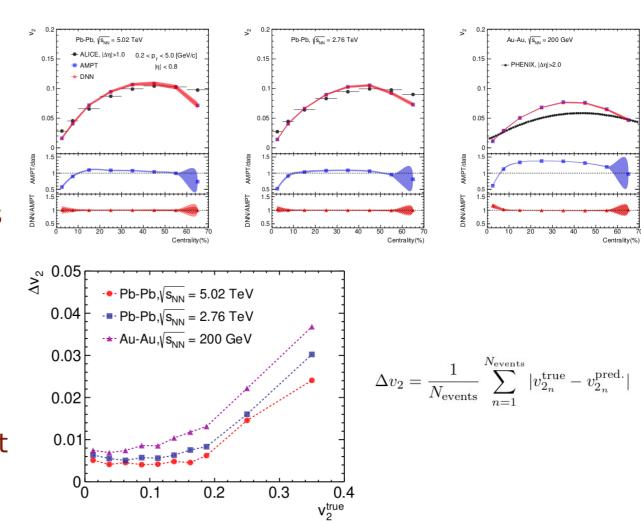






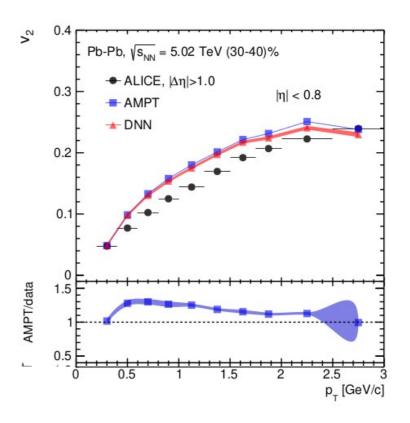
Results on v_2 vs c.m. energy

- AMPT simulation: 5.02 TeV Pb-Pb
 - → works well [10%:60%] centrality
 - \rightarrow low statistics/ v_2 values out of this
- **DNN simulation**: same parameters
 - → Follows well the AMPT
 - \rightarrow Even including noise w=0.5
- Predictions for other energies
 - → similar trends as on the training
 - → AMPT tune for 200 GeV is different



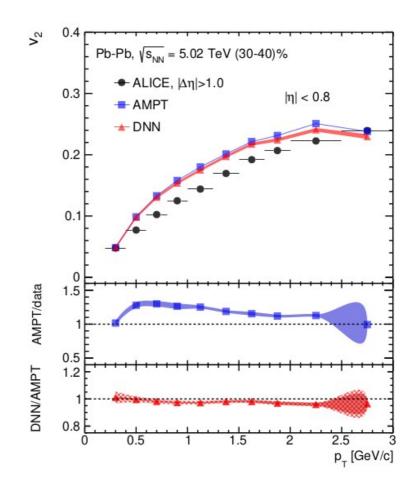
Results on v_2 vs p_T

- AMPT simulation: 5.02 TeV Pb-Pb
 - → works well at 30%-40% centrality
 - \rightarrow low statistics at high p_T



Results on v_2 vs p_T

- **AMPT simulation**: 5.02 TeV Pb-Pb
 - → works well at 30%-40% centrality
 - \rightarrow low statistics at high p_T
- DNN simulation: same parameters
 - → Follows well the AMPT
 - \rightarrow Even including noise w=0.5



Conclusions

- Is it possible to estimate the elliptic flow by ML?
 - Get best Min. Bias. Monte Carlo simulation data and train the well-designed DNN system...
 - → More sophisticated NN, the less epoch needs
 - \rightarrow Un-correlated noise can be even w=1
 - → AMPT & DNN correlates well for all centrality
 - → Best correlation is for the highest statistic
 - → Energy scaling is well preserved (non-linear)
 - \rightarrow The $v_2(p_T)$ is also preserved
- What is missing...
 - Test of correlated noise (detector setup, etc)
 - Train with real data

BACKUP