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1) Elliptic flow & motivation

– Motivation and definition

2) Input, test & model validation

– Input data (min. bias AMPT)

– Optimalization the NN

– Test with noise, epoch

3) Results on v2 by DNN

– Dependence on centrality, c.m. 
energy and pT

Conclusions: 

→ Can we estimate v2 ex machina?

Outline 
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Elliptic flow (v2) in heavy-ion collisons
● Experimental point:

– Elliptic flow describes the azimuthal 
momentum space anisotropy of particle 
emission for a non-central heavy-ion 
collision.
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Elliptic flow (v2) in heavy-ion collisons
● Experimental point:

– Elliptic flow describes the azimuthal 
momentum space anisotropy of particle 
emission for a non-central heavy-ion 
collision.

– The 2nd harmonic coefficient of the Fourier 
expansion of azimuthal momentum 
distribution:

– The                                  directly 
reflects the initial spatial anisotropy of the 
nuclear overlap region in the transverse 
plane.
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Input, test, and model validation 



G.G. Barnafoldi: PP2022 Budapest, Hungary 12

The AMPT model for Pb-Pb collisions
● A Multi-phase transport model (AMPT): MC event generator for simulating p-A 

and A-A collisions from RHIC to LHC energies.

– Fluctuating initial conditions: Initialization of collision is done by obtaining the 
spatial and momentum distributions of the hard minijet partons and soft string 
excitations from the HIJING model. The inbuilt Glauber model is used to calculate and 
convert the cross-section of the produced mini-jets from pp to AA.

– Zhang’s parton cascade (ZPC) model is used to perform the partonic interactions 
and parton cascade which currently includes the two-body scatterings with cross-sections 
obtained from the pQCD with screening masses.

– Hadronization mechanism: Lund string fragmentation model is used to recombine 
the partons with their parent strings and then the strings are converted to hadrons, 
whereas, in the string melting mode the transported partons are hadronized using a 
quark coalescence mechanism.

– Hadron cascade: scattering among the produced hadrons are performed using a 
relativistic transport model (ART) by meson-meson, meson-baryon and baryon-baryon 
interactions.
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Building up the ML structure
Three key layers

– Input: Takes the features as input

– Hidden layers: Connects to each neuron 
through different weights

– Output: Gives the result as a number or 
class
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Building up the ML structure
Math behind

– Weights dictate the importance of an input 
→ more important features get more weights

– Activation function: mathematical function 
that guides the outcome at each node         
→ Standardize the values

– Cost function: Evaluates the accuracy 
between machine prediction and true value

– Optimizer: Method (or algorithm) that 
minimizes the cost function by automatically 
updating the weights
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Building up the ML structure
Estimation of elliptic flow using DNN

– Elliptic flow → Event property

– Inputs → Track property

– (η-ϕ) space is the primary input space
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Building up the ML structure
Estimation of elliptic flow using DNN

– Elliptic flow → Event property

– Inputs → Track property

– (η-ϕ) space is the primary input space

– Three layers having different weights: pT, 
mass and log(sNN/s0) weighted layers 
serve as the secondary input space
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Building up the ML structure
Input “pictures” for DNN

– Each space has 32 × 32 pixels (grids)

– Total number of pixel points =  
32 × 32 × 3 = 3072 for each event

DNN with the following architecture

– Input Layer: 128 Nodes

– Three hidden layers: 256 Nodes each

– Final layer : 1 node (v2)
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Building up the ML structure
Activation, optimalization, validation

– Input and hidden layers have ReLu 
Activation

– Output layer has Linear activation

– Optimizer: adam , Loss function: mse
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Testing the ML structure
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Testing the ML structure
Activation, optimalization, validation

– Input and hidden layers have ReLu 
Activation

– Output layer has Linear activation

– Optimizer: adam , Loss function: mse

– Epoch: 30, Batch Size: 32x32

– Training: 108 Events (~25 GB)

– Validation: 104 Events

– Error: effect of uncorrelated noise
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v2 ex machina
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Results on v2 vs centrality
Results on the training data & sets 

– AMPT simulation: 5.02 TeV Pb-Pb

→ works well [10%:60%] centrality

→ low statistics/v2 values out of this
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Results on v2 vs pT

Results on the training data & sets 

– AMPT simulation: 5.02 TeV Pb-Pb

→ works well at 30%-40% centrality

→ low statistics at high pT
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Results on v2 vs pT

Results on the training data & sets 

– AMPT simulation: 5.02 TeV Pb-Pb

→ works well at 30%-40% centrality

→ low statistics at high pT

– DNN simulation: same parameters

→ Follows well the AMPT

→ Even including noise w=0.5 



G.G. Barnafoldi: PP2022 Budapest, Hungary 31

● Is it possible to estimate the elliptic flow by ML?

– Get best Min. Bias. Monte Carlo simulation data and train 
the well-designed DNN system...  

→ More sophisticated NN, the less epoch needs

→ Un-correlated noise can be even w=1 

→ AMPT & DNN correlates well for all centrality

→ Best correlation is for the highest statistic

→ Energy scaling is well preserved (non-linear) 

→ The v2(pT) is also preserved

● What is missing...

– Test of correlated noise (detector setup, etc)

– Train with real data

Conclusions 
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BACKUP 
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