Using Quantum Computer to Simulate Systems in Plasma

Xiaojun Yao MIT

W.A.de Jong, K.Lee, J.Mulligan, M.Ploskon F.Ringer and XY, 2106.08394 XY, 2205.xxxxx (appear tonight)

Margaret Island Symposium 2022 on Vacuum Structure, Particles and Plasmas

May 17, 2022

Why Quantum Computing

- Usefulness of Euclidean lattice QCD at finite temperature: QCD matter crossover at zero chemical potential, transport coefficients (e.g. heavy quark diffusion)
- Challenges of Euclidean lattice QCD, sign problem (signal-to-noise ratio): fermion at finite chemical potential, real-time observables

• Use quantum computers to simulate quantum systems

"Simulating physics with computers" R. P. Feynman, 1982

 Quantum computing devices are developing quickly: superconducting circuits (IBM Q, Google, rigetti), trapped ion (Ion Q)

"Quantum supremacy using a programmable superconducting processor" Google AI Quantum, 2019

Example 1: Schwinger Model in Thermal Bath

- U(1) gauge theory in 1+1D $\mathcal{L} = \overline{\psi} (iD^{\mu}\gamma_{\mu} m)\psi \frac{1}{4}F^{\mu\nu}F_{\mu\nu}$ $\gamma^{0} = \sigma_{z}$ $\gamma^{1} = -i\sigma_{y}$
- Hamiltonian formulation in axial gauge $A_0 = 0$

Periodic b.c. 0 1 2 3

Even sites: fermion, odd sites: anti-fermion

Schwinger Model Coupled w/ Thermal Scalars

• Hamiltonians $H = H_S + H_E + H_I$

$$H_E = \int dx \left[\frac{1}{2} \Pi^2 + \frac{1}{2} (\nabla \phi)^2 + \frac{1}{2} m_{\phi}^2 \phi^2 + \frac{1}{4!} \lambda \phi^4 \right]$$
$$H_I = \lambda \int dx \, \phi(x) \overline{\psi}(x) \psi(x) = \int dx \, O_E(x) O_S(x)$$

Trace out environment —> time evolution of reduced density matrix

$$\rho_S(t) = \operatorname{Tr}_E \left[U(t,0)(\rho_S(t=0) \otimes \rho_E) U^{\dagger}(t,0) \right]$$

• Lindblad equation in quantum Brownian motion limit XY, 2102.01736

$$\frac{d\rho_S(t)}{dt} = -i[H_S, \rho_S(t)] + L\rho_S(t)L^{\dagger} - \frac{1}{2}\left\{L^{\dagger}L, \rho_S(t)\right\}$$

Only one Lindblad operator: $L = \sqrt{2aND(k_0 = 0, k = 0)} \left(O_S - \frac{1}{4T} [H_S, O_S] \right)$

Quantum Circuit for Non-unitary Evolution

 Lindblad evolution = unitary evolution of subsystem coupled with ancilla with ancilla traced out

Reproduce Lindblad equation if expanded to linear order in Δt

$$J = \begin{pmatrix} 0 & L_1^{\dagger} & \dots & L_m^{\dagger} \\ L_1 & 0 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ L_m & 0 & \dots & 0 \end{pmatrix} \qquad \rho(0) = |0\rangle_a \langle 0|_a \otimes \rho_S(0) = \begin{pmatrix} \rho_S(0) & 0 & \dots & 0 \\ 0 & 0 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & 0 \end{pmatrix}$$

Results from Real Quantum Devices

$$e = \frac{1}{a}, m = \frac{0.1}{a}, \beta = 0.1a, a = 1$$

Possible to run more cycles to reach closer to equilibrium

Provide a way to compute observables close to thermal equilibrium

W.A.de Jong, K.Lee, J.Mulligan, M.Ploskon F.Ringer and XY, 2106.08394

String Breaking in Vacuum

Closed Schwinger model with open boundary condition

Initialize a pair of electron and positron, time evolve

Calculate electric flux at each site (with vacuum contribution subtracted)

String Breaking/Reconnection in Medium

8

Example 2: Quantum Simulation of Jet Quenching

• In-medium radiation: Landau-Pomeranchuk-Migdal (LPM) effect

In-medium time evolution of high energy partons: kinetic evolution transverse momentum exchange parton splitting/recombination

Transverse momentum exchange changes kinetic energy randomly —> random phase in time evolution —> destructive interference suppresses radiation

Toy Model for LPM Effect

- Scalar particles in 2+1D
 - $k^+ \in K^+_{\max}\{0.5,1\}$ $k_{\perp} \in K_{\max}^{\perp}\{0,1\}$

 $|00\rangle: k^+ = 0.5, k_\perp = 0$ $|01\rangle: k^+ = 0.5, k_\perp = 1$ $|10\rangle: k^+ = 1, k_\perp = 0$ $|11\rangle: k^+ = 1, k_\perp = 1$

LPM effect in cases with one initial particle, one splitting

1-particle state

 $|000q_{4}q_{5}\rangle$

2-particle state

 $|1q_2q_3q_4q_5\rangle$

Kinetic Energy Hamiltonian

$$\begin{split} H_{\rm kin} &= \frac{(K_{\rm max}^{\perp})^2}{32K_{\rm max}^+} \Big(-\sigma_1^z \otimes \sigma_2^z \otimes \sigma_3^z \otimes \sigma_4^z \otimes \sigma_5^z + \sigma_1^z \otimes \sigma_2^z \otimes \sigma_3^z \otimes \sigma_4^z - 3\sigma_1^z \otimes \sigma_2^z \otimes \sigma_3^z \otimes \sigma_5^z \\ &+ 3\sigma_1^z \otimes \sigma_2^z \otimes \sigma_3^z + \sigma_1^z \otimes \sigma_2^z \otimes \sigma_4^z \otimes \sigma_5^z - \sigma_1^z \otimes \sigma_2^z \otimes \sigma_4^z + 3\sigma_1^z \otimes \sigma_2^z \otimes \sigma_5^z - 3\sigma_1^z \otimes \sigma_2^z \\ &- 3\sigma_1^z \otimes \sigma_3^z \otimes \sigma_4^z \otimes \sigma_5^z + 3\sigma_1^z \otimes \sigma_3^z \otimes \sigma_4^z - 9\sigma_1^z \otimes \sigma_3^z \otimes \sigma_5^z + 9\sigma_1^z \otimes \sigma_3^z - \sigma_1^z \otimes \sigma_4^z \otimes \sigma_5^z \\ &+ \sigma_1^z \otimes \sigma_4^z - 3\sigma_1^z \otimes \sigma_5^z + 3\sigma_1^z + \sigma_2^z \otimes \sigma_3^z \otimes \sigma_4^z \otimes \sigma_5^z - \sigma_2^z \otimes \sigma_3^z \otimes \sigma_4^z + 3\sigma_2^z \otimes \sigma_3^z \otimes \sigma_5^z \\ &- 3\sigma_2^z \otimes \sigma_3^z - \sigma_2^z \otimes \sigma_4^z \otimes \sigma_5^z + \sigma_2^z \otimes \sigma_4^z - 3\sigma_2^z \otimes \sigma_5^z + 3\sigma_2^z + 3\sigma_3^z \otimes \sigma_4^z \otimes \sigma_5^z - 3\sigma_3^z \otimes \sigma_4^z \\ &+ 9\sigma_3^z \otimes \sigma_5^z - 9\sigma_3^z - 7\sigma_4^z \otimes \sigma_5^z + 7\sigma_4^z - 21\sigma_5^z \Big) \end{split}$$

Diffusion and Splitting Parts of Hamiltonian

$$H_{\text{diff}} = \frac{g_d}{2} \bar{A}^- (K_{\text{max}}^\perp) \left(-\sigma_1^z \otimes \sigma_3^x \otimes \sigma_5^x + \sigma_1^z \otimes \sigma_5^x + \sigma_3^x \otimes \sigma_5^x + \sigma_5^x \right)$$

12

LPM Effect in Toy Model

Radiation probability in vacuum

Radiation probability in the medium

500 quantum trajectories are averaged, each trajectory has a different set of classical background fields sampled

- Quantum simulation for systems in thermal plasma
 - Schwinger model in thermal scalar bath, similar to quarkonium in quarkgluon plasma
 - Jet quenching in quark-gluon plasma, LPM effect seen in toy model with a few hundred fault-tolerant qubits, we can simulate LPM effect for more than two splittings and go beyond scope of state-of-the-art analyses