

NAPLIFE Collaboration

Nanoparticle doping of fusion targets

Dr. Attila Bonyár bonyar@ett.bme.hu

Budapest, 2022.05.18.

BUDAPEST UNIVERSITY OF TECHNOLOGY AND ECONOMICS DEPARTMENT OF ELECTRONICS TECHNOLOGY

GNC

2/25

SYSTEMS

AND

Speaker Introduction

- Attila Bonyár is an associate professor at the Department of Electronics Technology at Budapest University of Technology and Economics.
- He has two M.Sc. degrees in electrical engineering and biomedical engineering and Ph.D + habilitation in electrical engineering.
- His research activities are focused on the development of optical, affinity type biosensors, utilizing low-dimensional nanomaterials, plasmonics and nanometrology (AFM).
- Chair of the IEEE Hungary&Romania EPS&NTC (Electronics Packaging Society and Nanotechnology Council) joint chapter since 2019.
- IEEE EPS/NTC Nanotechnology/Nanopackaging Technical Committee chair since 2022, co-chair since 2019.
- ➢ IEEE NTC Region 8 Chapters Coordinator.

1. Introduction of the NAPLIFE Collaboration and our work group

2. Considerations for target fabrication

3. Nanocomposite target preparation – results

- Tuning of plasmonic properties
- Controlling the layer thickness
- 4. Conclusions

1. Introduction of the NAPLIFE project

Nano-Plasmonic Laser Inertial Fusion Experiment Collaboration

1. Introduction of the Target Fabrication Group

Dr. Szalóki Melinda Assistant Professor

Debreceni Egyetem Fogorvostudományi Kar

Polymer chemistry, doping of nanomaterials, nanocomposite preparation

Dr. Bonyár Attila Associate Professor Alexandra Borók, Shereen Zangana, Rebeka Kovács PhD Students

Coordination, target fabrication from nanocomposite, optical measurements, etc.

Dr. Petrik Péter Senior Research Fellow, Head of Laboratory

Energiatudományi **Kutatóközpont**

Optical measurements (ellipsometry), transmission electron microscopy (Dr. Zsolt **Fogarassy**)

5/25

6/25

2. Considerations for the target

Boundary conditions (requirements):

- The continuous nanoparticle distribution will be approximated with layers of constant nanoparticle densities.
- > The layer thickness needs to be controlled (approx. 2 μ m).
- The absorption peak should be at 795 nm.
- > The nanoparticle density should be controlled, aggregation should be avoided.
- > Multiple particle types should be tested (e.g. nanorods, nanoprisms, core-shells...)

Questions to be answered:

- > What matrix material should we use?
- > How to control the layer thickness and build layers on top of each other?
- How to synthetize nanoparticles with various shape and size?
- > How can we control the plasmon absorption peak of the final target material?

🗞 BME**ett**

2. Considerations for the target

The selected polymerization method is **photopolymerization**:

- ➤ Works with thin layers (see microtechnology resists e.g. SU-8).
- Fast polymerization (a couple of minutes).
- Polymerized layers are stable in organic solvents.
- Layers can be built on each other.

The selected polymer is **UDMA** (urethane dimethacrylate) with **TEGDMA** (Triethylene Glycol Dimethacrylate) dilution monomer, **CQ** (Camphorquinone) photoinitiator and **EDAB** (ethyl 4-dimethylaminobenzoate) co-initiator, which is a well-known mixture in dentistry.

Wavelength [nm]

Emission spectrum of a standard blue-light lamp

Acrylate resin in cavity

8/25

3. Target preparation – layering technologies

Advantages / Disadvantages:

- + Precise control over layer thickness.
- Viscosity has to be controlled.

BMEETT

- The polymerisation is sensitive to oxygen.

3. Target preparation – layering technologies

3. Target preparation – controlling the layer thickness

Plasma etching of the UDMA-TEGDMA material

High-power plasma reactor using focused H plasma (left) and defocused Ar plasma (right).

A reproducible etching rate of **80 nm/min** was found in O_2 plasma at 300 W power, 0.3 mbar pressure.

Low-pressure plasma chamber using O_2 (left) and Ar+Hr (right) as process gases for plasma generation.

3. Target preparation – layering technologies

12/25

3. Target preparation – nanoparticle synthesis

Gold nanoparticles from HAuCl₄ solutions

WE CONNECT CHIPS AND SYSTEMS

3. Target preparation

Absorbance measurements with optical spectroscopy

Illustration of the optical (dip) probe measurement setup (right)

Absorption spectra of 25 × 75 nm gold nanorods. Left: manufacturer. Right: own measurement

C. a.

3. Target preparation – nanoparticle size control

Transmission electron microscopy (TEM)

Nanopartz[™] datasheet

Own measurements (Fogarassy Zsolt, ELKH-EK-MFA)

Nominal values from the manufacturer: 25 × 75 nm (±10 %)

Own measurements:

Average (deviation) for 28 nanoparticles: 26 (1.65) × 76 (7.97) nm

3. Target preparation – nanoparticle size control

Transmission electron microscopy (TEM)

A new direction: gold and silver nanoprisms, synthetized in Jena (Germany).

3. Target preparation – nanoparticle phase transfer

Importance of the molecular layer covering the nanoparticles (capping)

It is important to make the nanoparticles soluble in the polymer matrix, to avoid aggregation and to ensure uniform distribution.

Solubility is defined by the molecular capping.

3. Target preparation – particle distribution control

Investigation of the embedded particles with TEM

Density of nanorods: 9-20 db $\mu m^{\text{-3}}$

Calculated from stock solution: 2 db $\mu m^{\text{-}3}$

3. Target preparation – particle distribution control

Investigation of the absorbance with optical spectroscopy

Full spectrum of the nanocomposite (25x85 nm rods)

Nanoparticle aggregation starts at 3.8x10¹² mL⁻¹

3. Target preparation – fine tuning the absorption band

Refractive index sensing with nanoparticles

Illustration: gold nanodiscs on glass in water and in air

Source: Springer, Nanoplasmonic Sensors (2012)

3. Target preparation – fine tuning the absorption band

Heat treatment was used to shift the absorption band – control with time and temperature

3. Target preparation – fine tuning the absorption band

The charts can be used to control the absorption in a wide range

 $\tilde{\mathbf{x}}$

CHIPS AND SYSTEMS

CONNECT

Conclusions

"Take-home messages"

- > Our current target is a model material made of a nanocomposite (doped polymer).
- Layering technologies are used to realize pre-defined nanoparticle distributions along the target's thickness.
- Nanoparticle synthesis and doping are controlled with optical spectroscopy and TEM.
- A method based on thermal treatment was developed to fine tune the plasmon absorption band of the nanocomposite.

24/25

CONNE

Acknowledgements

- \succ For the colleagues in the sample preparation group (Dr. Szalóki Melinda, Dr. Petrik Péter, Borók Alexandra, Kovács Rebeka, Shereen Zangana).
- Whole NAPLIFE collaboration.
- \succ NKFIH, ELKH for financial support.

Acknowledgements

This work was partially supported by Nanoplasmonic Laser Fusion Research Laboratory project financed by the National Research and Innovation Office (NKFIH-468-3/2021) and by the Eötvös Lóránd Research Network (ELKH), Hungary. The research reported in this paper and carried out at the Budapest University of Technology and Economics has been supported by the NRDI Fund (TKP2020 IES, Grant No. BME-IE-BIO) based on the charter of bolster issued by the NRDI Office under the auspices of the Ministry for Innovation and Technology.

