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Speaker Introduction

> Attila Bonyar is an associate professor at the Department of Electronics
Technology at Budapest University of Technology and Economics.

» He has two M.Sc. degrees in electrical engineering and biomedical
engineering and Ph.D + habilitation in electrical engineering.

» His research activities are focused on the development of optical, affinity
type biosensors, utilizing low-dimensional nanomaterials, plasmonics and
nanometrology (AFM).

» Chair of the IEEE Hungary&Romania EPS&NTC (Electronics Packaging
Society and Nanotechnology Council) joint chapter since 2019.

» |IEEE EPS/NTC Nanotechnology/Nanopackaging Technical Committee chair
since 2022, co-chair since 2019.

» |IEEE NTC Region 8 Chapters Coordinator.
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Agenda

1. Introduction of the NAPLIFE Collaboration and our work group

2. Considerations for target fabrication

3. Nanocomposite target preparation — results
» Tuning of plasmonic properties
» Controlling the layer thickness

4.Conclusions
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1. Introduction of the NAPLIFE project

Nano-Plasmonic Laser Inertial Fusion Experiment Collaboration

Theoretical group
(modelling, simulations)

Material
T : properties L
arget properties Target fabrication group -
(nanocomposite preparation, %
measurements) T
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Target %
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(Target irradiation) Target ©
performance =
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(Effect detection) -
=
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1. Introduction of the Target Fabrication Group

m ELEKTROMNIKAI TECHMOLOGIA TANSZEK

Dr. Szal6ki Melinda
Assistant Professor

Polymer chemistry, doping of
nanomaterials, nanocomposite
preparation

Dr. Petrik Péter
Senior Research Fellow,
Head of Laboratory

Optical measurements
(ellipsometry), transmission
slectron microscopy (Dr. Zsolt
Fogarassy)

Dr. Bonyar Attila Alexandra Borok, Shereen
Associate Professor Zangana, Rebeka Kovacs
PhD Students

Energiatudomanyi
Kutatokodzpont

Coordination, target fabrication from
nanocomposite, optical measurements,
etc.
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2. Considerations for the target

The planned target is a model material, where
the density of the nanoparticles (and thus the
absorption) in controlled in layers.
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2. Considerations for the target

Boundary conditions (requirements):

» The continuous nanoparticle distribution will be approximated with layers of
constant nanoparticle densities.

» The layer thickness needs to be controlled (approx. 2 pm).

» The absorption peak should be at 795 nm.

» The nanoparticle density should be controlled, aggregation should be avoided.

» Multiple particle types should be tested (e.g. nanorods, nanoprisms, core-shells...)

Questions to be answered:

» What matrix material should we use?

» How to control the layer thickness and build layers on top of each other?

» How to synthetize nanoparticles with various shape and size?

» How can we control the plasmon absorption peak of the final target material?
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2. Considerations for the target

The selected polymerization method is photopolymerization:

» Works with thin layers (see microtechnology resists e.g. SU-8).
» Fast polymerization (a couple of minutes).

» Polymerized layers are stable in organic solvents.

» Layers can be built on each other.

The selected polymer is UDMA (urethane dimethacrylate) with TEGDMA (Triethylene Glycol
Dimethacrylate) dilution monomer, CQ (Camphorquinone) photoinitiator and EDAB (ethyl 4-
dimethylaminobenzoate) co-initiator, which is a well-known mixture in dentistry.
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3. Target preparation — layering technologies

Nitrogen flow

Blue light lamp

-
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3. Target preparation — layering technologies

Polymerization during mechanical shaping between glass slides - Light source

1 2 3

UDMA nanocomposite

Glass slide

Spacer
!

Polymer

3D printed

Glass slide frame Pressing with a top glass slide Polymerization with blue light
Glass slide

Advantages / Disadvantages:

+ Oxygen is not an issue.

+ Optically perfect, smooth layer. ‘
- Viscosity has to be controlled. ‘ ’ ,f(
- The thickness is hard to be controlled in the um range. %

Future improvement: \

Multi-levelled frame created with thin film technology. e .
Bare UDMA-TEGDI\/‘[A/ : Nanocompojs,’!'tg;: ‘
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3. Target preparation — controlling the layer thickness
Plasma etching of the UDMA-TEGDMA material

High-power plasma reactor using focused H plasma

(left) and defocused Ar plasma (right). A reproducible etching rate of 80 nm/min was found
— _ in O, plasma at 300 W power, 0.3 mbar pressure.
SN ye Low-pressure plasma chamber using O, (left) and Ar+Hr

n e (right) as process gases for plasma generation.
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3. Target preparation — layering technologies

Film / Substrate
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3. Target preparation — nanoparticle synthesis

Gold nanoparticles from HAuCI, solutions

I between ions, atoms
L. and clusters

Q."\-:o BMEETT (Source: Nguen et al, 2011) 13/25
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3. Target preparation

Absorbance measurements with optical spectroscopy

Nanopartz™ Gold Nanorodz Products
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3. Target preparation — nanoparticle size control

Transmission electron microscopy (TEM)

Nanopartz™ datasheet Own measurements (Fogarassy Zsolt, ELKH-EK-MFA)

50 nm . | 50 nm

Nominal values from the manufacturer: 25 x 75 nm (10 %)
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3. Target preparation — nanoparticle size control

Transmission electron microscopy (TEM) |_e|bn|z‘ |ph|: C

LEIBNIZ-INSTITUT fir

A new direction: gold and silver nanoprisms, synthetized in Jena (Germany). PHOTONISCHE TECHNOLOGIEN
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BMEETT




3. Target preparation — nanoparticle phase transfer

Importance of the molecular layer covering the nanoparticles (capping)

It is important to make the nanoparticles soluble in the
polymer matrix, to avoid aggregation and to ensure
uniform distribution.

Water +
nanoparticles
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Solubility is defined by the molecular capping. %,
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3. Target preparation — particle distribution control

Investigation of the embedded particles with TEM
Density of nanorods: 9-20 db pm-3

Calculated from stock solution: 2 db um-3
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3. Target preparation — particle distribution control

Investigation of the absorbance with optical spectroscopy

Full spectrum of the nanocomposite (25x85 nm rods) Nanoparticle aggregation starts at 3.8x101> mL?
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3. Target preparation — fine tuning the absorption band

Refractive index sensing with nanoparticles
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lllustration: gold nanodiscs on glass in water
and in air

Source: Springer, Nanoplasmonic Sensors (2012)
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3. Target preparation — fine tuning the absorption band

Heat treatment was used to shift the absorption band — control with time and temperature
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3. Target preparation — fine tuning the absorption band

The charts can be used to control the absorption in a wide range
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Conclusions

“Take-home messages”

» Our current target is a model material made of a nanocomposite (doped polymer).

» Layering technologies are used to realize pre-defined nanoparticle distributions
along the target’s thickness.

» Nanoparticle synthesis and doping are controlled with optical spectroscopy and
TEM.

» A method based on thermal treatment was developed to fine tune the plasmon
absorption band of the nanocomposite.
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