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This is mainly because entropy is an additive quantity as the
other ones. In other words, the entropy of a system composed
of several independent parts is equal to the sum of entropy of
each single part. [...]
Therefore one considers ALL possible internal determinations
as equally probable. This is indeed a new hypothesis because
the universe, which is far from being in the same state
indefinitively, is subjected to continuous transformations. We will
therefore admit as an extremely plausible working hypothesis,
whose far consequences could sometime not be verified, that
ALL the internal states of a system are a priori equally probable
in specific physical conditions. Under this hypothesis, the
statistical ensemble associated to each macroscopic state A
turns out to be completely defined.



ENTROPIC FORMS

Concave  

Extensive 

Lesche-stable

Finite entropy production     
per unit time

Pesin-like identity (with  
largest entropy production)

Composable (unique trace 
form; Enciso-Tempesta)

Topsoe-factorizable (unique)

Amari-Ohara-Matsuzoe
conformally invariant  
geometry (unique)

Biro-Barnafoldi-Van 
thermostat universal 
independence (unique)

ENTROPIC FUNCTIONALS

nonadditive (if 1)q ¹

additive

Entropy Sq

(q real)

BG entropy

(q =1)

Possible generalization of                
Boltzmann-Gibbs statistical mechanics

C.T., J. Stat. Phys. 52, 479 (1988)
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ARE	THERE	SENSES	IN	WHICH		Sq 	IS	UNIQUE?

		Various!

											Santos	1997	theorem

											Abe	2000	theorem

											Topsoe	2005

																					(factorizability	in	Game	Theory)

											Amari-Ohara-Matsuzoe	2012

																					(conformally	invariant	geometry)

											Biro-Barnafoldi-Van	2015

																						(thermostat	universal	independence)

											Enciso-Tempesta	2017	theorem



Enciso-Tempesta	2017	theorem:

−	An	entropic	functional	is	trace-form	if	it	can	be	written	as

				S({pi})=k f (pi )
i
∑ = k pi

i
∑ 	

f (pi )
pi

≡ k pi
i
∑ lnG

1

pi
= σ (pi )

					where	σ (pi )≡ lnG
1

pi
≡ generalized	surprise	(or	generalized	unexpectedness)

					[σ (p)	increases	monotonically	from	σ (1)=0	to	its	maximal	value	σ (0)]

−	An	entropic	functional	is	composable	if,	for	independent	A	and	B ,

				
S(A+B)

k
=Φ S(A)

k
,
S(B)
k

;{η}
⎛
⎝⎜

⎞
⎠⎟
	

					where	Φ x , y;{η}( )is	a	smooth	enough	function	satisfying
								Φ(x , y;{0})= x + y 																																																						(additivity)
								Φ(x ,0;{η})= x 																																																															(null-composability)
								Φ x , y;{η}( )=Φ y ,x;{η}( )																																									(symmetry)
								Φ x ,Φ( y ,z;{η});{η}( )=Φ(Φ(x , y;{η}),z;{η})		(associativity)

										Sq 	is	the	unique	entropic	functional	which	simultaneously	is	

										trace-form,	composable	and	includes	SBG 	as	particular	case.



ENTROPIC	FUNCTIONALS

ENTROPIC	FUNCTIONALS

TRACE-FORM COMPOSABLE

INCLUDES	SBG

Sq,q'BR

SqAb

SκK

Sκ ,rKLS

SηAP

Sc,dHT

Sq,δ
Sq,q'ST

Sα ,β ,qT

Sq,rSM

SqLVRA

SqTMP

SqAr

Sa,b,rCTT

SbC

ScE

SλC

SBGSq
SqR

Sγ ,αJPPT

Group	
entropies

Sa,b,αT

S(A+B)
k

=Φ S(A)
k

, S(B)
k

; η{ }⎛
⎝⎜

⎞
⎠⎟

e.g.,		Sq→ 		Φ(x , y;q)= x + y +(1−q)xy

S = f (pi )
i
∑

e.g., 	Sq→ f (x)= k 	x lnq
1
x

Uniqueness theorem: 
A Enciso and P Tempesta
JSTAT (2017) 123101
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Foundations of Statistical Mechanics: A Deductive Treatment 
(Pergamon, Oxford, 1970), page 167

O. Penrose,

		
Sq(A+B)

k
=
Sq(A)
k

+
Sq(B)
k

+(1−q)	
Sq(A)
k

	
Sq(B)
k

Equivalently,				Sq(A+B)= Sq(A)+ Sq(B)+
1−q
k

	Sq(A)	Sq(B)



All happy families are alike; each unhappy family is unhappy in its own way.
Leo Tolstoy (Anna Karenina, 1875-1877) 

EXTENSIVITY	OF	THE	ENTROPY			(N→∞)
W ≡ total	number	of	possibilities	with	nonzero	probability,	
assumed	to	be	equally	probable
If	W(N)∼ µN 			(µ >1)				⇒ SBG(N)= k lnW(N)∝N 												OK !

If	W(N)∼N ρ 			(ρ >0)
															⇒ Sq(N)= k lnqW(N)∝[W(N)]

1−q ∝N ρ(1−q)

															⇒ Sq=1−1 ρ(N)∝N 																																																											OK !

If	W(N)∼ν Nγ

			(ν >1;	0<γ <1)
															⇒ Sδ (N)= k 	[lnW(N)]

δ ∝Nγ 	δ ⇒ Sδ=1 γ (N)∝N 		OK !

If	W(N)∼D	 lnN 			(D>0)
															⇒ Sλ

C(N)= k 	[eλW (N ) −eλ ]		⇒ Sλ
C(N)∼ kN λD

															⇒ Sλ=1 D
C (N)∝N 																																																														OK !

IMPORTANT: 	 µN >>ν Nγ

>>N ρ >> lnN 				if			N >>1





A theory is the more impressive the greater the
simplicity of its premises is, the more different
kinds of things it relates, and the more extended
is its area of applicability. Therefore the deep
impression that classical thermodynamics made
upon me. It is the only physical theory of
universal content concerning which I am
convinced that, within the framework of
applicability of its basic concepts, it will never be
overthrown.

Albert Einstein (1949)



		v13 = v12 + v23 								(Galileo)

		

v13 =
v12 + v23

1+ v12
c
v13
c

			(Einstein)

COMPOSITION OF VELOCITIES OF INERTIAL SYSTEMS (d=1)

Newton mechanics: 
It satisfies Galilean additivity but violates Lorentz invariance (hence 
mechanics can not be unified with Maxwell electromagnetism)

Einstein mechanics (Special relativity): 
It satisfies Lorentz invariance (hence mechanics is unified with Maxwell 
electromagnetism) but violates Galilean additivity

Question: which is physically more fundamental, the additive composition 
of velocities or the unification of mechanics and electromagnetism?



Planck 1900:

1/c ≠0		⇒ 		Newtonian	mechanics→Special	relativity
																									[Galileo	transformation	→ 	Lorentz	transformation]
G ≠0							⇒ 		Special	relativity→General	relativity
																									[emergence	of	curvature	of	space-time]
h≠0								⇒ 		Newtonian	mechanics→Quantum	mechanics
																									[not	all	physical	observables	can	be	simultaneously	known]
1/kB ≠0	⇒ 	Boltzmann-Gibbs	statistical	mechanics→Nonextensive	statistical	mechanics
																									[emergence	of	entropic	nonadditivity]
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M. Gell-Mann



1     [ ]q independent= 1 ( . .,  2 1 1)   [  ]q i e Q q globally correlated¹ º - ¹

1

 
 

( )
   ( )             

 (

 Classic CL 

)
 

  

,

T

with same of
x Gaussian G x

f xs
=F

<      

( 2)
Qs

a

¥

=

(0 2)

     Qs

a< <

®¥

1/[ (2- )]

CENTRAL LIMIT THEOREM 

-   
                                           

       -    
       

( )

   ( ) 

q scaled attractor when summing N independent identical random variables

with symmetric distribut

x

ion w

N q

f x

a ®¥F

2
1

1   [ ( )] /  [ ( )]   2 1, 
3

Q Q
Q

q
ith dx x f x dx f x Q q q

q
s

æ ö+
º º - =ç ÷-è ø
ò ò

 2

1

 
  | |   

 

( )         

L

 

     

     

evy

     
      | | (1, )

L ( )
( ) / | |

      | |

(

(

-Gned

1, )

 lim (
enk

)   ( )

o CLT 
1 )

,

,

c

c

c

with same x behavior

G x
if x x

x
f x C x
if x x

with x

x Levy distribution L x

a

a
a

a

a
a

a
a®

+

®¥

ì
ï <<ï~ í

~ï
ï >>î

= ¥

=F

( ) ( )1 11

 1

3 / 1

2/( 1)

     ( )

( )                                  | | ( , 2)
          

( ) / | |        | | ( , 2)

                

( ) ,

     lim

( )

( ) ( )

 
c

c

q

q q

c

q

Q

q

q

q

with same of f x

G x if x x q

f x C x if x x q

with

x

x

G x

G x G x s- +

®

-

<<ì üï ï~ í ý
~ >>ï

=

ïî þ

ºF

S. Umarov, C. T. and S. Steinberg, Milan J Math 76, 307 (2008)
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J.W. GIBBS
Elementary Principles in Statistical Mechanics - Developed with Especial 
Reference to the Rational Foundation of Thermodynamics
C. Scribner�s Sons, New York, 1902; Yale University Press, New Haven, (1981), 
page 35

In treating of the canonical distribution, we shall always suppose the
multiple integral in equation (92) [the partition function, as we call it
nowadays] to have a finite valued, as otherwise the coefficient of
probability vanishes, and the law of distribution becomes illusory. This
will exclude certain cases, but not such apparently, as will affect the
value of our results with respect to their bearing on thermodynamics.
It will exclude, for instance, cases in which the system or parts of it
can be distributed in unlimited space […]. It also excludes many
cases in which the energy can decrease without limit, as when the
system contains material points which attract one another inversely as
the squares of their distances. […]. For the purposes of a general
discussion, it is sufficient to call attention to the assumption implicitly
involved in the formula (92).
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EXTENSIVE
SYSTEMS

NONEXTENSIVE
SYSTEMS

dipole-dipole

Newtonian gravitation

  

V (r) ∼ − A
rα      (r →∞)        ( A > 0,   α ≥ 0)

                        integrable if       α / d >1       (short-ranged)
                non-integrable if  0 ≤α / d ≤1        (long-ranged)

HMF                
(inertial XY model)

CLASSICAL LONG-RANGE-INTERACTING MANY-BODY HAMILTONIAN SYSTEMS

 

α -XY
α -Heisenberg 
α -FPU 





d-DIMENSIONAL XY MODEL

L.J.L Cirto, A. Rodriguez, F.D. Nobre and C.T., EPL 123, 30003 (2018)



d-DIMENSIONAL XY MODEL

L.J.L Cirto, A. Rodriguez, F.D. Nobre and C.T., EPL 123, 30003 (2018)





		(q≠1)
		(BG)



Phase-space full occupancy 
Positive Lebesgue measure 

(q = 1) Phase-space hierarchical occupancy
Zero Lebesgue measure
		(q≠1)



Newton’s law of viscosity (1686)

Fourier’s law for heat conduction (1822)

Ohm’s law for charge conduction (1827)

Fick’s law for diffusion (1855)

LINEAR TRANSPORT PHENOMENA



d=1

d=2

(L sites)

(L2 sites)



d=1

d=2

d=3

(L2 sites)

(L sites)

(L3 sites)

XY MODEL
(1st neighbors)
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thermal conductivity

[see also Y Li, N Li, U Tirnakli, Li and C T, EPL 117, 60004 (2017)]

L→∞	⇒ 	σ (T ,L)∝ 1
Lρσ (d )

		with			ρσ (d)≡
γ (d)	η(d)
q(d)−1 +δ(d)



Fourier’s law
(1822)

Yo soy yo y mi circunstancia
José Ortega y Gasset (1883-1955)



INDICES q: 
FIRST-PRINCIPLE CHARACTERIZATION OF UNIVERSALITY 
CLASSES, OR JUST EFFICIENT FITTING PARAMETERS ? 

Newton theory for the motion of the planetary system 
has no fitting parameter other than G
But requires the knowledge of all masses and initial conditions 

+ unthinkable computational facilities!
On the other hand, it easily predicts 

the elliptic form of the planetary orbits and Kepler’s laws!

Nonextensive statistical mechanics 
has no fitting parameter other than kB
But requires the knowledge of the first-principle 

probabilities/dynamics of the system 
+ overcoming their usual mathematical intractability!

On the other hand, it easily predicts 
the ubiquitous q-exponential functional form!
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q

1/c

BG

XY
Ising

Z(∞)

m→∞
SU(4)

29 3cq
c

+ -
=

Block entropy for the d=1+1 model, with central charge c, at its quantum 
phase transition at T=0 and critical transverse “magnetic” field

analytically obtained 
from first principles

Self-dual Z(n) magnet (n =1, 2,...)           [FC Alcaraz, JPA 20 (1987) 2511]

                        → c = 2(n −1)
n + 2

∈[0, 2]    

SU(n) magnets (n =1, 2,...;  m = 2,3,...)   [FC Alcaraz and MJ Martins, JPA 23 (1990) L1079]

                        → c = (n −1) 1− n(n +1)
(m + n − 2)(m + n −1)

⎡
⎣⎢

⎤
⎦⎥
∈[0,n −1] 





G.A. Casas, F.D. Nobre and E.M.F. Curado (2019)
[see also P. Quarati and A. Scarfone, Astrophys. J. 666, 1303 (2007)]

Spherical capacitor (overdamped colloid)

		 (β !1/r1)

Debye-Hückel (Yukawa) (q=1)

		
∝1
r
eq
−β(r−r1 )



C.Y. Wong, G. Wilk, L.J.L. Cirto and C. T., 
EPJ Web of Conferences 90, 04002 (2015), and PRD 91, 114027 (2015) 

SIMPLE APPROACH: TWO-DIMENSIONAL SINGLE RELATIVISTIC FREE PARTICLE

dN
dydpT

  = A eq
− ET / T

[A] = GeV−2c3

(A, q, T) = (38, 1, 0.13)
     Boltzmann−Gibbs

2π pT

A / 100

A / 101

A / 102

A / 104

A / 106

[T] = GeV

1
η∼0

(A, q, T) = (38, 1.150, 0.13)
(A, q, T) = (43, 1.151, 0.13)
(A, q, T) = (30, 1.127, 0.13)
(A, q, T) = (32, 1.125, 0.13)
(A, q, T) = (27, 1.124, 0.13)

CMS  √s = 7  TeV
ATLAS  √s = 7  TeV

CMS √s = 0.9 TeV
ATLAS √s = 0.9 TeV
ALICE √s = 0.9 TeV10−14

10−13
10−12
10−11
10−10
10−9
10−8
10−7
10−6
10−5
10−4
10−3
10−2
10−1
100
101

data/fit

pT [GeV/c]
0.5

1.0

1.5

10−1 100 101 102

LHC/CERN
proton-proton
collisions

q=1.14±0.015
T =0.13	GeV
		pion	π +mass =0.1396	GeV
		pion	π 0mass =0.1350	GeV



q=1.11

q=1





First-principle	Yang-Mills/QCD	grounds	yields

																			
1
q−1

= 11
3
Nc −

2
3
Nf 				(Deppman,	Megias	and	Menezes	PRD	2020)

								where				Nc ≡ number	of	colors

																								Nf ≡ number	of	flavors

								hence		

																					(Nc ,Nf )= (3,6)	⇒ 	q= 8
7
!1.14		

																																																													(Deppman,	Megias	and	Menezes	PRD	2020)

																					(Nc ,Nf )= (3,3)	⇒ 	q= 10
9
!1.11	

																																																													(Walton	and	Rafelski	PRL	2000;	C.T.	2022)





		

with		q1 =13/11=1.1818...

and				q2 =
1
2−q =11/9=1.2222...

electrons

positrons
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The book is  devoted to  the 
mathematical foundations of 
nonextensive statistical mechanics. 
This is the first book containing 
the systematic presentation of the 
mathematical theory and concepts 
related to nonextensive statistical 
mechanics, a current generalization 
of Boltzmann-Gibbs statistical 
mechanics introduced in 1988 by one of the authors and based on a 
nonadditive entropic functional extending the usual Boltzmann-Gibbs-
von Neumann-Shannon entropy. Main mathematical tools like the 
q-exponential function, q-Gaussian distribution, q-Fourier transform, 
q-central limit theorems, and other related objects are discussed rigorously 
with detailed mathematical rational. The book also contains recent results 
obtained in this direction and challenging open problems. Each chapter 
is accompanied with additional useful notes including the history of 
development and related bibliographies for further reading.
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