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The value of statistical laws in physics and social sciences.
Original manuscript in Italian published by G. Gentile Jr. in Scientia 36, 58 (1942);
translated into English by R. Mantegna (2005).

This is mainly because entropy is an additive quantity as the
other ones. In other words, the entropy of a system composed
of several independent parts is equal to the sum of entropy of
each single part. [...]

Therefore one considers ALL possible internal determinations
as equally probable. This is indeed a new hypothesis because
the universe, which is far from being in the same state
indefinitively, is subjected to continuous transformations. We will
therefore admit as an extremely plausible working hypothesis,
whose far consequences could sometime not be verified, that
ALL the internal states of a system are a priori equally probable
in specific physical conditions. Under this hypothesis, the
statistical ensemble associated to each macroscopic state A
turns out to be completely defined.



ENTROPIC FUNCTIONALS
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ARE THERE SENSES IN WHICH Sq IS UNIQUE?

Various!
Santos 1997 theorem
Abe 2000 theorem
Topsoe 2005
(factorizability in Game Theory)
Amari-Ohara-Matsuzoe 2012
(conformally invariant geometry)
Biro-Barnafoldi-Van 2015
(thermostat universal independence)

Enciso-Tempesta 2017 theorem



Enciso-Tempesta 2017 theorem:
— An entropic functional is trace-form if it can be written as

S(p =k /()=KTp uta (” ) =K p 0, <o-(p,.)>

where o(p )=In, 1 = generalized surprise (or generalized unexpectedness)

b;
[o(p) increases monotonically from ¢(1)=0 to its maximal value c(0)]

— An entropic functional is composable if, for independent A and B,

S(A+B) _ [ S(4) S(B) -
k k

where (I)(x, y ;{n})is a smooth enough function satisfying

d(x,y;{0})=x+y (additivity)
d(x,0;{n})=x (null-composability)
®(x, y;{n})=@(y,x:{n}) (symmetry)

®(x,D(y,z:{n}:{n}) = P(P(x,y:{n}).z:{n}) (associativity)

Sq is the unique entropic functional which simultaneously is

trace-form, composable and includes S . as particular case.



§=2.f(p)

e.g,S — f(x)=kxln 1
q qX

ENTROPIC FUNCTIONALS

S(A+B) _ (D[S(A) S(B). {n}]

k k' k'’

eg, S, = @x,y;q)=x+y+(1-q)xy
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Unigueness theorem:
A Enciso and P Tempesta
JSTAT (2017) 123101



ADDITIVITY: O. Penrose, Foundations of Statistical Mechanics: A Deductive Treatment
(Pergamon, Oxford, 1970), page 167

An entropy 1s additive if, for any two probabilistically independent
systems 4 and B,
S(A+B)=8(4)+S5(B)
Therefore, since S(A+B) S (4) S (B) S (4) S (B)
q __4 44 +(1-q) -~ q
k k k k k

S,; and § f “(Vq) are additive, and S , (Vg #1) 1s nonadditive .

Equivalently, S (A+B)=S5 (A)+ Sq(B)+1_Tq S (4)S,(B)

EXTENSIVITY:

Consider a system 2 = 4, + A, +...+ 4,, made of N (not necessarily independent)

identical elements or subsystems 4, and 4,, ..., 4 .
An entropy is extensive if

0< lim S(N)
N—>w N

<o, ie, S(Ny)x N (N —> )



EXTENSIVITY OF THE ENTROPY (N — <o)
W = total number of possibilities with nonzero probability,
assumed to be equally probable
IfW(N)~u" (u>1) =S5, (N)=kInW(N)e<N OK!
IfW(N)~N" (p>0)

=S, (N)= klnq W(N)oc[W(N)]"? oc NP4

=S5 _ ,(N)e<N OK!

q=1-1/p
IfW(N)~-v" (v>1;0<y<1)

=S (N)=k [InW(N)]"<N"° =S5
IfW(N)~D InN (D>0)

=S (N)=k [e"™M-e"] =S (N)~kN™

=S, ,(N)e<N OK!

(N)<N OK!

5=1/y

IMPORTANT: 1" >>v" >>N?>>InN if N>>1

All happy families are alike; each unhappy family is unhappy in its own way.
Leo Tolstoy (Anna Karenina, 1875-1877)



SYSTEMS ENTROPYS,. | ENTROPYS | ENTROPYS;| ENTROPY S¢
W(N) (q#1) (6#1) (1>0)

(equiprobable) (ADDITIVE) | (NONADDITIVE) | (NONADDITIVE) | (NONADDITIVE)

~Au" (A>0,u>1) EXTENSIVE | NONEXTENSIVE | NONEXTENSIVE | NONEXTENSIVE

~BN” (B>0,p>0)

NONEXTENSIVE

EXTENSIVE
(q=1-1/p)

NONEXTENSIVE

NONEXTENSIVE

~cvV (€>0,v>1,0<y<1)

NONEXTENSIVE

NONEXTENSIVE

EXTENSIVE
(6=1/y)

NONEXTENSIVE

~D InN (D>0)

NONEXTENSIVE

NONEXTENSIVE

NONEXTENSIVE

EXTENSIVE
(A=1/D)




A theory is the more impressive the greater the
simplicity of its premises is, the more different
kinds of things it relates, and the more extended
IS its area of applicability. Therefore the deep
Impression that classical thermodynamics made
upon me. It is the only physical theory of
universal content concerning which | am
convinced that, within the framework of
applicability of its basic concepts, it will never be
overthrown.

Albert Einstein (1949)



COMPOSITION OF VELOCITIES OF INERTIAL SYSTEMS (d=1)

V., =V +V,. (Galileo)

13
V. +V
v,,=—=2—% (Einstein)
13 vV Vv
| 12 13
c C

Newton mechanics:
It satisfies Galilean additivity but violates Lorentz invariance (hence
mechanics can not be unified with Maxwell electromagnetism)

Einstein mechanics (Special relativity):
It satisfies Lorentz invariance (hence mechanics is unified with Maxwell
electromagnetism) but violates Galilean additivity

Question: which is physically more fundamental, the additive composition
of velocities or the unification of mechanics and electromagnetism?



Planck 1900:

lp = Planck length = = 4.13 x 10™*3em

BEEDE

mp = Planck mass = =5.56 x 107° ¢
tp = Planck time = o — 1.38 x 107435
1 [hed 32 o
Tp = Planck temperature = = 3.50 x 10°° °K
kg V G

1/c#0 = Newtonian mechanics — Special relativity
[Galileo transformation — Lorentz transformation]
G#0 = Special relativity — General relativity
[emergence of curvature of space-time]
h#0 — Newtonian mechanics — Quantum mechanics
[not all physical observables can be simultaneously known]

1/k,#0 = Boltzmann-Gibbs statistical mechanics — Nonextensive statistical mechanics

[emergence of entropic nonadditivity]
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Nl/[a(Z-q)]

with symmetric distribution f (x) with Op = jdxx [F(x)]¢/ j dx [ f(x)]° (Q 2q-1,¢q,= 1+q]

CENTRAL LIMIT THEOREM

-scaled attractor F(x) when summing N — o0 ¢ -independent identical random variables

3—¢q

qg =1 [independent]

g#1(ie, Q=2g—-1 #1) |[globally correlated ]

F(x) = Gaussian G(x),

F(x)=G,(x) =G, (x) with same o, of f(x)

1+q

G, < o0 G(x) if | x << x.(q,2)
Q with same o, of f(x) G,(x) ~ f)~C, /|x|2/(q_l) x> x (0.2)
(a=2) .
Classic CLT with Tim, _,, %.(¢,2) =
S. Umarov, C. T. and S. Steinberg, Milan J Math 76, 307 (2008)
F(x) = Levy distribution L ,(x) F(x) =Ly o » with same | x| oo asymptotic behavior
with same | x| — oo behavior . 2(1_;1()1__0;()3 )
Gz(l—q)—a(lw) (x) ~ Cq,a/ [ x]
) 2(1-q)~a(3-q)
Op =7 ® G(x) (intermediate regime)
if lxk<x.(l,a -
(O<a<2) L, (x)~- f ] x] (La) Lq,a )

f(x)~C, /| x [+
if |xpP>x.(l,a)

a— 2 c(l a) 0
Levy-Gnedenko CLT

with lim

2aq—a+3 2 q,x
a+l

(distant regime)

~

S. Umarov, C. T., M. Gell-Mann and S. Steinberg
J Math Phys 51. 033502 (2010)




J.W. GIBBS

Elementary Principles in Statistical Mechanics - Developed with Especial
Reference to the Rational Foundation of Thermodynamics

C. Scribner’ s Sons, New York, 1902; Yale University Press, New Haven, (1981),
page 35

In treating of the canonical distribution, we shall always suppose the
multiple integral in equation (92) [the partition function, as we call it
nowadays] fo have a finite valued, as otherwise the coefficient of
probability vanishes, and the law of distribution becomes illusory. This
will exclude certain cases, but not such apparently, as will affect the
value of our results with respect to their bearing on thermodynamics.
It will exclude, for instance, cases in which the system or parts of it
can be distributed in unlimited space [...]. It also excludes many
cases in which the energy can decrease without limit, as when the
system contains material points which attract one another inversely as
the squares of their distances. [...]. For the purposes of a general
discussion, it is sufficient to call attention to the assumption implicitly
involved in the formula (92).



CLASSICAL LONG-RANGE-INTERACTING MANY-BODY HAMILTONIAN SYSTEMS

A

V(r)~—r—a (r — o0) (A>0, o =0)

integrable if o/d>1 (short-ranged)
non-integrable if 0<o/d <1 (long-ranged)

EXTENSIVE
SYSTEMS

'6Q &‘° NONEXTENSIVE
& SYSTEMS

Newtonian gravitation

«— HMF
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1

1

1

1

1
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*

be

i
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s d 5 (nertial XY model)
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d-DIMENSIONAL XY MODEL
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d-DIMENSIONAL XY MODEL
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Fermi-Pasta-Ulam model with long-range interactions: Dynamics
and thermostatistics
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Fig. 8 (Colour on-line) A unified overview of the crossover ‘
frontier of fig. 7(b), combining the b values. The fitting straight
line is 1/N = Db’ /t), with D = 2.3818 x 10*, § = 0.27048, and

v = 1.365.
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Dynamical correlations as origin of nonextensive entropy
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LINEAR TRANSPORT PHENOMENA

Newton’s law of viscosity (1686)
Fourier’s law for heat conduction (1822)

Ohm’s law for charge conduction (1827)

Fick’s law for diffusion (1855)



First-principle validation of Fourier’s law in d =1, 2, 3

Constantino Tsallis'*?3, Henrique Santos Lima!, Ugur Tirnakli* and Deniz Eroglu®
1 Centro Brasileiro de Pesquisas Fisicas and National Institute of Science and Technology of Complex Systems,
Rua Xavier Sigaud 150, Rio de Janeiro-RJ 22290-180, Brazil
2 Santa Fe Institute, 1399 Hyde Park Road,

Santa Fe, New Mezico 87501, USA
3 Complezity Science Hub Vienna,

Josefstadter Strasse 39, 1080 Vienna, Austria
4 Department of Physics, Faculty of Science,

Ege Unwversity, 35100 Izmar, Turkey
> Faculty of Engineering and Natural Sciences,

Kadir Has Unwversity, 34083, Istanbul, Turkey

(Dated: May 2, 2022)

Flux Direction i

1 High ®_®_® """ Bu"( """ Low (L SiteS)

temperature temperature
Flux Direction i

High temperature m————————)> Low temperature

d




XY MODEL
1st neighbors)

ivity

thermal conduct

o(T, L)

o(T,L)

o(T, L)

T T T
EEREESOy
. 3y
10°'E oV
dt = 0.01 [
AT/T =0.25 oV
oy
.I
107 v
]
oy
]
oy
[ ]
103k oy
]
oy
]
B L=35 ;trans =26 x 10" ;time =4 x 10° ;expr =75 oy
104k ¥ L=3 ;trans =28 x 10" ;time =4 x 10° ;expr =75
0 . . o
® L=100 ;trans =28 x 10" ;time = 4 x 10* ;expr =75
" " 1
1072 107! 100
SEEEEEEEEENEg,
aLnaIiIiIIy
> LA N N N
107k Cogvm
°
"m
°
dt = 0.01 ML
..
. =025
w3k AT/T =025 oy
ov -
ov"®
ovy"®
107 P
oynm
oynm
B LxL=10x10 :trans =61 x 10° :time =4 x 10° ;expr =40
| Y LxL=1x14 :trans=61x10° ;time=4x 10° ;expr =40 v
107°F @ LxL=18x18 ;trans =56 x 10° :time =4 x 10° expr = 40 °
L L '
1072 107! 10" 10!
SENEEEEEEEEEmy
YYVYVYVVVVVVVYVYy Ny
ooooooooooco..;v.
ov-
107 [}
v
ot
e
dt =0.0
1 ®vym
- ovym
4L AT/T=025
10 / ovm
Svym
®vym
®vm
0°F ®vm
®ym
oy
B LxLxL=6x6x6 :trans=48x 107 :time =4 x 10° :expr =40 L J
0k trans = 40 x 10° :time =4 x 10° :expr =40
trans = 32 x 10° :time =4 x 10° :expr =40
' 1
10° 10!

s T
107! "y 4
dt =0.01 LY
AT/T =025 L8
o(T,L) = A1 — (1 — q)B(TL)")"/"*
g ' . ) ‘! :
»qﬁ q¢=17 B=06 n=236 A=0191 .\‘
&‘L v=03 §=0 4
L
fg 10°% ‘\\ T (’-.1
‘k -
(L sites)
B L=35 ;trans =26 x 10 ;ti 1x10° ;expr=T75
V¥V L=30 ;trans =28 x 10" ;tin I x 10° expr=T75 \
® L=100 ;trans = 28 x 10 time =4 x 10° ;expr =75 by
10 10" 10!
107! J
dt = 0.01 ‘:
AT/T =0.25 \
»
<) o(T,L)= A[1 = (1 - q)B(TL)")"/"~* %
N o2 7B =4 ' % ]
% =349 B=001 7=59 A=023 \.
< v =04 §=1 Y d=2
R )
10 ‘k 4
% [(L2? sites)
B LxL=10x10 ;trans =61 x 10° ;time =4 x 10° ;expr =40
10 F ¥ LxL=1x14 itrans=61x10° ;time=4x10° expr =40 v
® LxL=18x18 ;trans =356 x 10° ;time =4 x 10° :expr =40
10°! 10° 10
107! !‘ J
dt =0.01
AT/T =025 X
\
30 o(T,L)= A1 — (1 —¢q)B(TL)""/!"*
b ¢=378 B=00013 n=602 A=0.16
[ v =045 =2 d_3
) —_—
_ 10 -
(L3 sites)
107°F B LxLxL=6x6x6 :trans=48x 10° :time =4 x 10° :expr =40 T
¥V LxLxL=TxTxT7 ;trans=40x 10° :time =4 x 10° :expr =40 \
@ LxLxL=SxSx$ :trams=32x10° :time=4x10° :expr = 40 N\
102 107! 10° 10! 10°

TL



thermal conductivity

o(T,L) L°YD = A(d)

L—o = o(T,L)e<

1

with p (d)=

—B(d)[T Lv(d)]n(d)
€q(d)

@) nd) s

Lp(, (d) Q( d) —1
d| A q B g Y n po =5+ pr=po—d
1| 0191 £0.005] 1.70 £ 0.05] 0.60 & 0.05 0.30 £ 0.03| 0 2.36 £ 0.06] 1.01 £ 0.06 0.01 & 0.06
2| 0.23+0.05 3.49 £+ 0.15| 0.010 + 0.002 0.40 + 0.09| 1 5.90 + 0.31| 1.96 + 0.31 -0.05 + 0.31
3| 0.16 + 0.05 3.78 + 0.13|  0.0013 + 0.002| 0.45 &+ 0.09| 2 6.02 + 0.43| 2.98 + 0.43 -0.02 + 0.43

[see also Y Li, N Li, U Tirnakli, Liand C T, EPL 117, 60004 (2017)]




Fourier’s law
(1822)

Yo soy yo y mi circunstancia
José Ortega y Gasset (1883-1955)



INDICES g:
FIRST-PRINCIPLE CHARACTERIZATION OF UNIVERSALITY
CLASSES, OR JUST EFFICIENT FITTING PARAMETERS ?

Newton theory for the motion of the planetary system

has no fitting parameter other than G

But requires the knowledge of all masses and initial conditions
+ unthinkable computational facilities!

On the other hand, it easily predicts
the elliptic form of the planetary orbits and Kepler’s laws!

Nonextensive statistical mechanics
has no fitting parameter other than kg
But requires the knowledge of the first-principle
probabilities/dynamics of the system
+ overcoming their usual mathematical intractabillity!
On the other hand, it easily predicts
the ubiquitous g-exponential functional form!
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Nonadditive entropy reconciles the area law in quantum systems with classical thermodynamics

Filippo Caruso' and Constantino Tsallis>>
'NEST CNR-INFM and Scuola Normale Superiore, Piazza dei Cavalieri 7, I-56126 Pisa, Italy

2Centro Brasileiro de Pesquisas Fisicas, Rua Xavier Sigaud 150, 22290-180 Rio de Janeiro, Brazil
3Santa Fe Institute, 1399 Hyde Park Road, Santa Fe, New Mexico 87501, USA
(Received 16 March 2008; revised manuscript received 16 May 2008:; published 5 August 2008)

The Boltzmann—Gibbs—von Neumann entropy of a large part (of linear size L) of some (much larger)
d-dimensional quantum systems follows the so-called area law (as for black holes), i.e., it is proportional to
L*"'. Here we show, for d=1,2, that the (nonadditive) entropy S, satisfies, for a special value of ¢ # 1, the
classical thermodynamical prescription for the entropy to be extensive, i.e., SqOCLd. Therefore, we reconcile
with classical thermodynamics the area law widespread in quantum systems. Recently, a similar behavior was
exhibited in mathematical models with scale-invariant correlations [C. Tsallis, M. Gell-Mann, and Y. Sato,
Proc. Natl. Acad. Sci. U.S.A. 102 15377 (2005)]. Finally, we find that the system critical features are marked
by a maximum of the special entropic index q.



Block entropy for the d=7+71 model, with central charge c, at its quantum

phase transition at 7=0 and critical transverse “magnetic” field
I ' I ' I ' I
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Spherical capacitor (overdamped colloid)

Peg(1)/ Py (17)

Debye-Huckel (Yukawa) (g=1)
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G.A. Casas, F.D. Nobre and E.M.F. Curado (2019)

[see also P. Quarati and A. Scarfone, Astrophys. J. 666, 1303 (2007)]



SIMPLE APPROACH: TWO-DIMENSIONAL SINGLE RELATIVISTIC FREE PARTICLE

C.Y. Wong, G. Wilk, L.J.L. Cirtoand C. T.,
EPJ Web of Conferences 90, 04002 (2015), and PRD 91, 114027 (2015)
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Equilibrium Distribution of Heavy Quarks in Fokker-Planck Dynamics

D. Brian Walton"* and Johann Rafelski®’
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2Physics Department, University of Arizona, Tucson, Arizona 85721
(Received 8 July 1999)

We obtain an explicit generalization, within Fokker-Planck dynamics, of Einstein’s relation between
drag, diffusion, and the equilibrium distribution for a spatially homogeneous system, considering both the
transverse and longitudinal diffusion for dimension n > 1. We provide a complete characterization of the
equilibrium distribution in terms of the drag and diffusion transport coefficients. We apply this analysis
to charm gquark dynamics in a thermal quark-gluon plasma for the case of collisional equilibration.
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FIG. 1. Calculated data (diamonds) and linear fit for the ratio
in Eq. (25) for a charmed quark m. = 1.5 GeV thermalizing
in gluon background at 7, = 500 MeV. Dashed line: result
expected for a Boltzmann-Jiittner distribution, 77 = T},.
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Fractals, nonextensive statistics, and QCD
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In this work, we analyze how scaling properties of Yang-Mills field theory manifest as self-similarity of
truncated n-point functions by scale evolution. The presence of such structures, which actually behave as
fractals, allows for recurrent nonperturbative calculation of any vertex. Some general properties are indeed
independent of the perturbative order, what simplifies the nonperturbative calculations. We show that for
sufficiently high perturbative orders a statistical approach can be used, the nonextensive statistics is
obtained, and the Tsallis index, g, is deduced in terms of the field theory parameters. The results are applied
to QCD in the one-loop approximation, where ¢ can be calculated, resulting in a good agreement with the
value obtained experimentally. We discuss how this approach allows us to understand some intriguing
experimental findings in high energy collisions, as the behavior of multiplicity against collision energy,
long-tail distributions, and the fractal dimension observed in intermittency analysis.




First-principle Yang-Mills/QCD grounds yields
1 11 2
" = - N —ng (Deppman, Megias and Menezes PRD 2020)
q —_—

where NC = number of colors

N ;= number of flavors

hence

8
(N,N)=(36) = q=_=114

(Deppman, Megias and Menezes PRD 2020)

1
(N,,N,)=(33) = q:?0:1.11

(Walton and Rafelski PRL 2000; C.T. 2022)



www.nature.com/scientificreports

SCIENTIFIC REP{i;}RTS

Received: 28 June 2017
Accepted: 12 January 2018
Published online: 29 January 2018

Generalized statistical mechanics
of cosmic rays: Application to
positron-electron spectral indices

G. CigdemYalcin® & Christian Beck?

. Cosmic ray energy spectra exhibit power law distributions over many orders of magnitude that are very
. well described by the predictions of g-generalized statistical mechanics, based on a g-generalized

Hagedorn theory for transverse momentum spectra and hard QCD scattering processes. QCD at largest

. center of mass energies predicts the entropic index to be g = 2. Here we show that the escort duality of
. the nonextensnve thermodynamic formalism predicts an energy split of effective temperature given by

- AkT =z kTH = +18 MeV, where T, is the Hagedorn temperature. We carefully analyse the measured

. data of the AMS-02 collaboration and provide evidence that the predicted temperature split is indeed

. observed, leading to a different energy dependence of thee” and e~ spectral indices. We also observe a

- distinguished energy scale E* ~ 50 GeV where the e* and e~ spectral indices differ the most. Linear

. combinations of the escort and non-escort g-generalized canonical distributions yield excellent

. agreement with the measured AMS-02 data in the entire energy range.
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The book is devoted to the
mathematical foundations of

Mathematical Foundations of
Nonextensive Statistical
Mechanics

nonextensive statistical mechanics.

This is the first book containing

the systematic presentation of the

mathematical theory and concepts

related to nonextensive statistical

mechanics, a current generalization

of Boltzmann-Gibbs statistical

mechanics introduced in 1988 by one of the authors and based on a
nonadditive entropic functional extending the usual Boltzmann-Gibbs-
von Neumann-Shannon entropy. Main mathematical tools like the
g-exponential function, g-Gaussian distribution, g-Fourier transform,
g-central limit theorems, and other related objects are discussed rigorously
with detailed mathematical rational. The book also contains recent results
obtained in this direction and challenging open problems. Each chapter
is accompanied with additional useful notes including the history of
development and related bibliographies for further reading.

Sabir Umarov
Constantino Tsallis
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