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Brief Summary

Mathematical mechanisms
an incomplete overview

a) Altered entropy formula (Rényi, Chravda-Hrvat, Tsallis,
Thurner, Biró, . . . )

b) Altered energy constraint only for special interaction
classes EPL 84, 56003, 2008

c) Non-linear master eq. (generalize: Fokker-Planck,
Boltzmann eq., H-theorem) PRL 95, 162302, 2005

d) Energy dependent noise→ Biró at.al. QM 2005 PRL 94,
132302, 2005

e) LGGR: linear growth rate, constant reset rate Biró, Néda,
et.al. 2019 PhysA 499, 335, 2018
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Motivation
for a) entropy formulas

math phantasy (need for generalization)

purposeful design (e.g. to get power-law)

finite heat bath effect (calculable for ideal gas) PhysA 392,
3132, 2013

deformed addition (composition algebra, formal logarithm)
JPG 37, 094027, 2010
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Motivation
for b) nonadditive energy composition

E12 = ε1V1 + ε2V2 + G12(V1 ∩ V2) V1 ∩ V2 = A12`int

long range interaction

fractal interface

edge of chaos (weak chaos)

ultrarelativistic, int depends on Q2 = 2E1E2(1− cos Θ12)

E12 = E1 + E2 + G(E1 · E2).
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Insert: Abstract composition rules
formal logarithm

x ⊕ y = h(x , y) (1)

with h(x , 0) = x , h(y , 0) = y and associativity h(h(x , y), z) = h(x , h(y , z)).

The formal logarithm, K (x ⊕ y) = K (x) + K (y), is a map to addition.

Its partial derivative against y at y = 0:

K ′(h(x , 0))
∂

∂y
h(x , y)

∣∣∣∣
y=0

= K ′(0) (2)

reveals how to obtain form.log. from the rule:

K (x) =

x∫
0

du
∂
∂v h(u, v)

∣∣∣
v=0

(3)
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Composition rules
examples for form.log.-s

Original rule: h(x , y), asymptotic attractor: i(x , y) = K−1(K (x) + K (y)).

h(x , y) = x + y → K (x) = x , attractor: i(x , y) = x + y

h(x , y) = x + y + G(xy) → K (x) = 1
G′(0)

ln (1 + G′(0)x),

and i(x , y) = x + y + G′(0)xy .

h(u, v) = u+v
1+uv/c2 → K (u) = c atanh(u/c),

and i(u, v) = h(u, v).

For stable rules i(x , y) = h(x , y)
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Non-Extensivity q 6= 1
size dependence of non-additive parameter

Observe/assume: S12 = S1 + S2 + (q − 1)S1S2.

multiply, X = (q − 1)S,

conclude X12 = X1 + X2 + X1X2.

The X-rule is universal: size independent, sizeof(X) ∼ O(1).

1. sizeof(S) ∼ O(N)→ q − 1 ∼ O(1/N)

2. q − 1� O(1/N)→ sizeof(S)� O(N).
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Motivation
for c) nonlinear stohasticity

econophysics models PhysA 387, 1603, 2008

stochiometric factors in physical chemistry (3-gluon
processes)
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Motivation
for d) energy dependent noise

ṗi + Γij (E)pj = ζi ,
〈
ζiζj
〉

= 2Dij (E)δ(t − t ′), Dij (E) = T
(

Γij (E) + D′ij (E)
)

non-Abelian plasma: colored noise PRL 94, 132302, 2005

insurance models: risk calculation

quality control in industry

hadronization EPJA 40, 325, 2009
The total energy dependent individual noise calls for finite

reservoirs
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Motivation
for e) LGGR reset dynamics

Evolution: still vs catastrophic periods

Income and wealth distribution

Distribution of citations, likes and shares

A certain hadronization model for QGP with re-heating

PhysA 499, 335, 2018

e−
E
T → e−

∫ dE
T (E) =

1
D(E)

e−
∫ Γ(E)

D(E)
dE
. (4)
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Below the thermodynamical limit
Ideal gas = constant heat capacity

Boltzmann: P = k log W .

Boltzmann: P ∝ 1/Ω.

Einstein: Ω = eS(E)

Sickur–Tetrode: Ω(E) ∝ EN

Avogadro: 6 · 1023, 1/
√

N ≈ 10−10;

neurons in human brain: 1011, 1/
√

N ≈ 0, 03 % ;

new particles in HIC: 6000, 1/
√

N ≈ 1 %;

multiplicity in pp: 6 - 60, 1/
√

N ≈ 40 %.
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One particle energy distribution
from phase space volume ratio

P1(ω) =
Ω1(ω)Ωn(E − ω)

Ωn+1(E)
= w1(ω) ·

(E − ω)n

En
(5)

n may fluctuate.

Let the PDF be Pn. Then the effective 1-PTL energy distribution is

P eff
1 (ω) =

∞∑
n=0

Pn

(
1−

ω

E

)n
. (6)
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Phase space dimension fluctuation
Blind chance models

distribute n particles among k cells: for repeated combination (bosons) we get
(n+k

n

)
possibilities. (n + k

k

)
Blind chance subspace:

Bn,k (f ) ≡ lim
K→∞

(n+k
n

)(N−n+K−k
N−n

)(N+K +1
N

) =
(n + k

n

)
f n(1 + f )−n−k−1. (7)

Here f = N/K kept fixed.

There are other mechanisms resulting NBD
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Phase space dim according to NBD
interpreting T and q

E fixed, N fluctuates

Peff
1 (ω) =

∞∑
N=0

(
1−

ω

E

)N
BN,K (f ) =

(
1 + f

ω

E

)−K−1
(8)

Here 〈N〉 = f (K + 1). Comapre with TP-distribution and gain

T =
E
〈N〉

, q = 1 +
1

K + 1
. (9)
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Thermodynamical limit
Boltzmann, Poisson

The limit is E →∞, and 〈N〉 → ∞ with T fixed.

ΠN (f ) = lim
K∞, f fix

BN,K (f ) =
aN

N!
e−a (10)

with a = 〈N〉 = Kf/(1 + f ).

The 1-PTL energy distribution becomes Boltzmannian

Peff
1 (ω) =

∞∑
N=0

(
1−

ω

E

)N
ΠN (f ) = e−aω/E (11)

again T = E/ 〈N〉.
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Approximate Tsallis–Pareto
ideal gas, general N-fluctuations

The effective 1-PTL energy expanded for ω � E :

Peff
1 (ω) =

∞∑
N=0

PN

(
1−

ω

E

)N
= 1 −

〈N〉
E
ω +

〈N(N − 1)〉
E2

ω2

2
+ . . . (12)

and compared to the Tsallis distribution of it:

PTP
1 (ω) =

(
1 + (q − 1)

ω

T

)−1/(q−1)
= 1 −

ω

T
+

q
2
ω2

T 2
+ . . . (13)

Conclusion:

subleading in ω � E

T =
E
〈N〉

, q =
〈N(N − 1)〉
〈N〉2

= 1−
1
〈N〉

+
∆N2

〈N〉2
. (14)
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General system, general fluctuations
subleading expansion

〈
ΩN (E − ω)

ΩN (E)

〉
=
〈

eS(E−ω)−S(E)
〉
≈
〈

e−ωS′(E)+ω2S′′(E)/2+...
〉

= 1 − ω
〈
S′(E)

〉
+

ω2

2

〈
S′(E)2 + S′′(E)

〉
+ . . . (15)

Comparing with Tsallis expansion interprets the parameters as

subleading in ω � E

1
T

=
〈
S′(E)

〉
, q = 1−

1
C

+ T 2∆β2 (16)

Here 〈S′(E)〉 = 1/T , 〈S′′(E)〉 = −1/CT 2 and
〈
S′(E)2〉 = 1/T 2 + ∆β2.

Biró Tsallis mechanisms 17 / 33



A list of mechanisms
Ideal Gas with Finite Heat Bath

Local Growth Global Reset
Brief Summary

Design qK = 1
by using appropriate K (S)

〈
eK (S(E−ω))−K (S(E))

〉
= 1− ω

〈
d

dE
K (S(E))

〉

+
ω2

2

〈
d2

dE2
K (S(E)) +

(
d

dE
K (S(E))

)2
〉

(17)

Note d
dE K (S(E)) = K ′S′ and d2

dE2 K (S(E)) = K ′′S′ 2 + K ′S′′.
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FormLog entropy K (S)
Tsallis parameters TK , qK

Using a universal K (S) FormLog we get

1
TK

= K ′
1
T

qK

T 2
K

=
(

K ′′ + K ′ 2
)( 1

T 2
+ ∆β2

)
− K ′

1
CT 2

. (18)

Useful notations: F = 1/K ′ = TK /T (then F (0) = 1) and T 2∆β2 = λ/C.

qK =

(
1 +

λ

C

)
(1− F ′) −

1
C

F . (19)
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DiffEq for the FormLog
solve general qK = 1

(λ+ C)F ′ + F = λ+ C(1− qK ) = 1 + C(q − qK ). (20)

With qK = 1 one solves (λ+ C)F ′ + F = λ.

Case λ = 0 (no reservoir fluctuations): K ′′

K ′ = 1
C .

Finite resvoir effects 1/C are encoded in K ′′ non-additivity
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Set qK = 1
UTI principle, λ = 0

With C independent of S we had q = 1− 1/C and obtain

K (S) = C
(

eS/C − 1
)

(21)

Now, repeating subdivisions of a big set, one arrives at

K (S) =
∑

i

pi K (− ln pi ). (22)

For the above K (S) is Tsallis entropy (additive), S is Rényi entropy (non-additive)

K (S) =
1

1− q

∑
i

(pq
i − pi ), S =

1
1− q

ln
∑

i

pq
i . (23)
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Set qK = 1
solution for constant C and λ

Define µ = C + λ. Then
λK ′ 2 − K ′ + µK ′′ = 0. (24)

Solution
K (S) =

µ

λ
ln
(

1− λ+ λeS/µ
)
. (25)

FormLog as double deformation

K (S) = h−1
µ/λ

( hµ(S) ) with hA(S) = A
(

eS/A − 1
)

(26)
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Set qK = 1
with C and λ constant, µ = C + λ

Finally we arrive at

K (S) =
µ

λ

∑
i

pi ln
(

1− λ+ λp−1/µ
i

)
(27)

Boltzmann Gaussian fluctuations (λ = 1 irresp. µ): K (S) = −
∑

i
pi ln pi .

Tsallis No fluctuations (λ = 0, µ = C): K (S) = C
∑

i

(
p1−1/C

i − pi

)
.

Lambert W Extreme fluctuations (λ = µ→∞): K (S) =
∑

i
pi ln(1− ln pi )
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Diffusion and LGGR Scheme

Biró Tsallis mechanisms 24 / 33



A list of mechanisms
Ideal Gas with Finite Heat Bath

Local Growth Global Reset
Brief Summary

LGGR master equation
discrete version

Ṗn = µn−1Pn−1 + δn,0 〈γ〉 − (µn + γn)Pn (28)

Stationary distribution Qn for n ≥ 1 satisfies

0 = µn−1Qn−1 − (µn + γn)Qn (29)

Solution:

Qn =
µ0Q0

µn

n∏
j=1

(
1 +

γj

µj

)−1

(30)
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LGGR master equation
particular cases 1

Simplest model: µn = µ, γn = γ state independent rates

Qn = Q0 e−n ln(1+γ/µ) (31)

”Temperature” factor: 1/T = ln(1 + γ/µ)

For rare resets γ � µ: µ = Tγ (fluct.-diss.)

Generalized fluctuation dissipation (Einstein-Kubo) formula:

µn =
1

Qn

∞∑
j=n+1

γj Qj . (32)
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LGGR master equation
particular cases 2

Next simplest: µn = σ(n + b), γn = γ linearly preferential growth

Qn =
γ

γ + bσ
(b)n

(b + 1 + γ/σ)n
(33)

With the Pochhammer symbol (b)n = b(b + 1) · · · (b + n − 1).

No ”temperature” here!

Waring distribution, power-law tailed asymptotics:

Qn →
γ

γ + bσ
Γ(b + 1 + γ/σ)

Γ(b)
n−1−γ/σ (34)
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LGGR master equation
particular cases 3

For γn = σ(n − a) and µn = σ a
k (n + k)

Qn =
(n + k − 1

n

) ankk

(a + k)n+k
(35)

the stationary solution is an NBD with 〈n〉 = a.

k = 1 case: Qn = (1− q)qn, geometrical distribution.

k =∞ case: Qn = an

n!
e−a, Poisson.
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LGGR master equation
NBD interpretation

State n: having n hadrons, a new is created with rate µn.

Reset: a collective re-melting into QGP (or overlap of wide resonances)

critical n = a: less hadrons lead to γn < 0 = QGP→ n hadrons.

n = 0: QGP is created with rate −γ0 = σa.

µn growth rate by one: k scales the Matthew principle, how much n hadrons
assist to create a further one.

γ0 + µ0 = 0: no hadron loss rate from zero hadrons.
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LGGR master equation
continuous version

∂
∂t P(x , t) = − ∂

∂x (µ(x)P(x , t))− γ(x)P(x , t) Q(x) = µ(0)Q(0) e
−

x∫
0

γ(t)+µ′(t)
µ(t) dt
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Further LGGR features
convergence speed estimate

1 Define entropic divergence with a κ(ξ) ≥ 0 fct. of ξ = P(x , t)/Q(x):

ρ[P,Q] ≡
∞∫

0

κ(ξ)Q dx ≥ 0

2 Based on Ṗ look for ξ̇ and κ̇. Note: κ(1) = 0, and fix ξ(0, t) = 1 boundary.

3 Conclude that ρ̇ = −
∞∫
0
κγQ dx ≤ 0.

4 Using Jensen inequality with p(x) = γQ/ 〈γ〉∞ get a limit on the minimal speed
to Q as

ρ̇ ≤ − 〈γ〉∞ κ

( 〈γ〉t
〈γ〉∞

)
.
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Brief Summary

Tsallis–Pareto distribution is natural

It is the next to simplest (including the simplest)

Modern stat.phys. models are relevant in high-energy physics

Outlook

Colleauge 1: Good.

Colleague 2: Even Better.

Enemy: Wrong!

The Last Question: if the whole universe exists due to entropy (Hawking,
Bekenstein, Verlinde, etc) due to which entropy?
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formal entropy
formal cocktail
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