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A list of mechanisms

Mathematical mechanisms

a) Altered entropy formula (Rényi, Chravda-Hrvat, Tsallis,
Thurner, Bir6, ...)

b) Altered energy constraint only for special interaction
classes EPL 84, 56003, 2008

c) Non-linear master eq. (generalize: Fokker-Planck,
Boltzmann eq., H-theorem) PRL 95, 162302, 2005

d) Energy dependent noise — Bir¢ at.al. QM 2005 PRL 94,
132302, 2005

e) LGGR: linear growth rate, constant reset rate Bird, Néda,
et.al. 2019 PhysA 499, 335, 2018
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A list of mechanisms

Motivation

for a) entropy formulas

@ math phantasy (need for generalization)
@ purposeful design (e.g. to get power-law)

@ finite heat bath effect (calculable for ideal gas) PhysA 392,
3132, 2013

@ deformed addition (composition algebra, formal logarithm)
JPG 37, 094027, 2010

=]1(¢] Tsallis mechanisms



A list of mechanisms

Motivation

for b) nonadditive energy composition

Eip =eVy + Vo + Gia(Vi N Va) Vin Vo = Aqalin

@ long range interaction
@ fractal interface
@ edge of chaos (weak chaos)

@ ultrarelativistic, int depends on @2 = 2E,E,(1 — cos ©15)

Ei»=E + E + G(E1 ° E2)
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A list of mechanisms

Insert: Abstract composition rules

formal logarithm

x@y = h(x,y) O
with h(x,0) = x, h(y,0) = y and associativity h(h(x, y), z) = h(x, h(y, 2)).
The formal logarithm, K(x @ y) = K(x) + K(y), is a map to addition.

Its partial derivative against y at y = 0:

K'(h(x,0)) %h(x,y)\ = KO @)
y:

reveals how to obtain form.log. from the rule:

X

du
K = _ 3
(X) ! gvh(u’ V)‘V:O ( )
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A list of mechanisms

Composition rules

examples for form.log.-s

Original rule: h(x,y), asymptotic attractor: i(x, y) = K=1(K(x) + K(¥))-

@ h(x,y) = x+y — K(x) = x,attractor: i(x,y) = x+y

@ hi(x,y) = x+y+Gxy) — K(x) = G+@I"(1 + G'(0)x),
and i(x,y) = x+y + G'(0)xy.

@ h(u,v) = % —  K(u) = catanh(u/c),

and i(u,v) = h(u,v).

For stable rules i(x, y) = h(x, y)
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A list of mechanisms

Non-Extensivity g # 1

size dependence of non-additive parameter

Observe/assume: Si2=81+S+(q—1)5S,.
multiply, X=(qg—1)S,

conclude X2 = X1 + Xo + X1 Xa.

The X-rule is universal: size independent, sizeof(X) ~ O(1).
1. sizeof(S) ~ O(N) = g— 1~ O(1/N)

2.g—1> O(1/N) — sizeof(S) < O(N).
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A list of mechanisms

Motivation

for ¢) nonlinear stohasticity

@ econophysics models PhysA 387, 1603, 2008

@ stochiometric factors in physical chemistry (3-gluon
processes)
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A list of mechanisms

Motivation

for d) energy dependent noise

pi+TiEp =G, {(G¢G)=2Dy(E)5(t—t'), DyE) =T (r,-,-(E) + D,fj(E))
@ non-Abelian plasma: colored noise PRL 94, 132302, 2005
@ insurance models: risk calculation
@ quality control in industry

@ hadronization EPJA 40, 325, 2009

The total energy dependent individual noise calls for finite
reservoirs
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A list of mechanisms

Motivation

for e) LGGR reset dynamics

@ Evolution: still vs catastrophic periods
@ Income and wealth distribution
@ Distribution of citations, likes and shares

@ A certain hadronization model for QGP with re-heating
PhysA 499, 335, 2018

-5 L/ = o D) )
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Ideal Gas with Finite Heat Bath

Below the thermodynamical limit

Ideal gas = constant heat capacity

Boltzmann: P = k log W. Avogadro: 6 - 1023, 1/v/N ~ 10~10;

Boltzmann: P oc 1/9. neurons in human brain: 10'", 1/v/N ~ 0,03 % ;
Einstein: Q = eS(E) new particles in HIC: 6000, 1/v/N ~ 1 %;
Sickur-Tetrode: Q(E) oc EN multiplicity in pp: 6 - 60, 1/v/N ~ 40 %.
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Ideal Gas with Finite Heat Bath

One particle energy distribution

from phase space volume ratio

Q1 (w)Qn(E — w) (E—w)"
P. = YRR 2 — 5
() o w(w) ®)
n may fluctuate.
Let the PDF be Pn. Then the effective 1-PTL energy distribution is
eff o AN
At = 3 Pa(1-) ®)
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Ideal Gas with Finite Heat Bath

Phase space dimension fluctuation

Blind chance models

distribute n particles among k cells: for repeated combination (bosons) we get (’“,;k)
possibilities.
(n + k)
k
Blind chance subspace:

n+k N—n+¢—k Kk
Bau(f) = Jim_ G 2£+Kﬁ1‘) A ("T) a4 e, 7)
N

Here f = N/K kept fixed.

There are other mechanisms resulting NBD
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Ideal Gas with Finite Heat Bath

Phase space dim according to NBD
interpreting T and g

E fixed, N fluctuates

(oo}

=35 (-2) a0 - (+12) " e

N=0

Here (N) = f(K +1). Comapre with TP-distribution and gain

E 1
T=— =1 —
q +K+1

) @
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Ideal Gas with Finite Heat Bath

Thermodynamical limit

Boltzmann, Poisson

The limit is E — oo, and (N) — co with T fixed.

a
= i B )= —e @ 10
Mu(f) i v,k (F) NTE (10)
with a = (N) = Kf/(1 + ).
The 1-PTL energy distribution becomes Boltzmannian
ad N
Pw) = S (1= 2) " nn(f) = e7a/E 11
(w) NZ:O( 2)" M) = e (1)

again T = E/ (N).
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Ideal Gas with Finite Heat Bath

Approximate Tsallis—Pareto

ideal gas, general N-fluctuations

The effective 1-PTL energy expanded for w < E:

RO _wo\N o (N) (N(N = 1)) ?
PW)—%”NU E) S - By =B S R
and compared to the Tsallis distribution of it:
T wy—1/(a-1 w  quf
PPw) = (1+@-17) =l-" 4+l (13)
Conclusion:
subleading in w <« E
E (N(N = 1)) 1 AN
Teey @ o qo—a—" (14)
(N) (N)? (N) (N2
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Ideal Gas with Finite Heat Bath

General system, general fluctuations

subleading expansion

QN(E—W)> _ /. S(E=w)=S(E)\ ~ [.—wS(E)+w?S"(E)/2+...
< onE) / <e > ~ <e >

=1 - w(S(E)) + %2 <S’(E)2+S”(E)> T (15)

Comparing with Tsallis expansion interprets the parameters as

subleading inw < E

17 = (S'(E)), qg=1- 16 + 72032 (16)

Here (S'(E)) = 1/T, (S"(E)) = —1/CT? and (S'(E)?) = 1/T2 + Ap2.
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Ideal Gas with Finite Heat Bath

Design gk = 1

by using appropriate K(S)

d
K(S(E-w))=K(SEEN\ — 1 _, (L
<e > 1—w <dEK(S(E))>

w? [ P d 2
e <dEzK(S(E)) + (geKsEn) > ()

& K(S(E)) = K"S'2 + K'S".

Note ZLK(S(E)) = K'S’ and &
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Ideal Gas with Finite Heat Bath

FormLog entropy K(S)

Tsallis parameters Tk, gk

Using a universal K(S) FormLog we get

1 1
- K _

T« T

9k 2 1 2 ;1

- (K“+K' )<ﬁ+A,8) S (18)

Useful notations: F = 1/K’ = Ty /T (then F(0) = 1) and T?AB% = \/C.

A P 1
= (1+3)0-F) - F. (19)
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Ideal Gas with Finite Heat Bath

DiffEq for the FormLog

solve general gx = 1

A+ CF + F =X+C(1-ax) = 1+ C(q—qk)- (20)
With gx = 1 one solves (A + C)F' + F = X.

. . 1"
Case X\ = 0 (no reservoir fluctuations): ’f(—, = ‘5

Finite resvoir effects 1/C are encoded in K" non-additivity
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Ideal Gas with Finite Heat Bath

Set gx = 1

UT!I principle, A =0

With C independent of Swe had g = 1 — 1/C and obtain
K(S) = C(e5/° 1) (21)
Now, repeating subdivisions of a big set, one arrives at

= Zp,- K(—Inp;). (22)

For the above K(S) is Tsallis entropy (additive), S is Rényi entropy (non-additive)

’
K(S) 72 ol — S = 17q|n > Pl (23)
i
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Ideal Gas with Finite Heat Bath

Set gx = 1

solution for constant C and \

Define u = C + X. Then
AK'2 — K"+ K" = 0. (24)

Solution u
K(S) = Sin (1= x+2e81). (25)

FormLog as double deformation

K(S) = h 1\ (hu(8))  with  ha(S) = A(es/A—1) (26)
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Ideal Gas with Finite Heat Bath

Set gx = 1

with C and X constant, u = C + \

Finally we arrive at
K(S) = %Zp,' In (1 —A+Ap7‘/“) 27)
i
Boltzmann Gaussian fluctuations (A = 1 irresp. u): K(S) = —>_ p; Inp;.
i

Tsallis No fluctuations (A =0,u = C): K(S) =C> (p;_uc — p,-).
i

Lambert W Extreme fluctuations (A = p — o0): K(S) = >_p; In(1 —Inp;)
i
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Local Growth Global Reset

Diffusion and LGGR Scheme

Mn- n-l P,
— >
— e — — @ g%
n»l n'l
a
uyFy u,,F, b,
— = S >
0 e e n n+l
V(.... - N
4 Y|
r Y
b
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Local Growth Global Reset

LGGR master equation

discrete version

Pn = pn—1Pa—1 + no () — (n+¥n)Pn (28)

Stationary distribution Q, for n > 1 satisfies

0 = pn—1Qn—1 — (pn + ) Qn (29)
Solution:
Q A
Q, = X0 °H(1+”> (30)
Hn =1 Hj
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Local Growth Global Reset

LGGR master equation

particular cases 1

Simplest model: pn = p,vn =~ state independent rates
Qn = QO e_" In(1+v/p) (31)
"Temperature” factor: 1/T = In(1 + v/ u)

For rare resets v < u: w= Ty (fluct.-diss.)

Generalized fluctuation dissipation (Einstein-Kubo) formula:

1 oo
Hn = 6 Z ’Yij- (32)

N j=n+1
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Local Growth Global Reset

LGGR master equation

particular cases 2

Next simplest: un = o(n+ b),vn =~ linearly preferential growth
v (B)n
Qn = 33
"= %5 (b1 +a/o)n 9
With the Pochhammer symbol (b), = b(b+1)---(b+n—1).
No "temperature” here!
Waring distribution, power-law tailed asymptotics:
Y r(b+1+’7/0) —1—~/o
n 34
T D) (34)
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Local Growth Global Reset

LGGR master equation

particular cases 3

For vn = o(n— a) and pun = o (n + k)

_ Nk
n+k 1) a'k (35)

O = ( n (a+ k)ntk

the stationary solution is an NBD with (n) = a.

k =1 case: Qn = (1 — g)g", geometrical distribution.

n q
k = oo case: Qn = e~ 2, Poisson.
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Local Growth Global Reset

LGGR master equation
NBD interpretation

State n: having n hadrons, a new is created with rate pn.

Reset: a collective re-melting into QGP (or overlap of wide resonances)
@ critical n = a: less hadrons lead to v» < 0 = QGP — n hadrons.
@ n = 0: QGP is created with rate —yg = ca.

@ ., growth rate by one: k scales the Matthew principle, how much n hadrons
assist to create a further one.

@ o + po = 0: no hadron loss rate from zero hadrons.
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Local Growth Global Reset

LGGR master equation

continuous version

X ’
A(O)+p" (1)
S o

P0Gt = =& (WP, 1)) =v()P(x,t)  Q(x) = u(0)Q(0)e ©

T.S. Bird, Z. Néda / Physica A 499 (2018) 335-361

Table 1

Resetting and growth rates for the most common stationary PDF-s.
r(x) nx) Qx)
y m Exponential: ~e (/1
y o(x+b) Tsallis-Pareto: ~(1 +x/b)~177/7
y ox e <1 Weibull; ~x e~
y o(x +a)x+b) Pearson: ~(x + a)~'~*(x + b)~1*¥
Y oe* Gompertz: ~exp( ge”‘ — x)
In(x/a) ox Log-Normal: Q(x)dx ~ e’ dy
X a? Gauss: ~e ¥/

e—ax

o(ax —c) ox Gamma: ~x<!




Local Growth Global Reset

Further LGGR features

convergence speed estimate

@ Define entropic divergence with a x(£) > 0 fct. of € = P(x, t)/Q(x):
P.0)= [ s€)Qdx > 0
0

@ Based on P look for £ and #. Note: x(1) = 0, and fix £(0, t) = 1 boundary.

o0
© Conclude that p = — [ kyQdx < 0.
0

@ Using Jensen inequality with p(x) = vQ/ (7)o et a limit on the minimal speed

to Qas
P== e “(&i)
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Brief Summary

Brief Summary

@ Tsallis—Pareto distribution is natural
@ It is the next to simplest (including the simplest)

@ Modern stat.phys. models are relevant in high-energy physics

Outlook
@ Colleauge 1: Good.
@ Colleague 2: Even Better.
@ Enemy: Wrong!

@ The Last Question: if the whole universe exists due to entropy (Hawking,
Bekenstein, Verlinde, etc) due to which entropy?
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