FINITE VOLUME EFFECTS ON THE QCD PHASE DIAGRAM

Győző Kovács PhD student Eötvös University Wigner RCP Margaret Island Symposium 2022 May 15, 2022 COLLABORATORS: PÉTER KOVÁCS, WICNER RCP GYÖRCY WOLF, WICNER RCP POK MAN LO, WROCLAW U KRZYSTOF REDLICH, WROCLAW U

- System size: motivations and implementations
- Effects on the phase diagram in various models
- Results in the ELSM
- Summary

What are the typical sizes?

- Typical size of the fireball in heavy ion collisions is a few fm.
- Neutron stars and compact stars built up from strongly interacting matter (with extra structure) with a size ~ 10 km.
- Several models with finite (different) size.
- In field theoretical calculations (LSM, NJL, DS, etc) usually the size is infinite.

Why does it matter?

- It can be seen that the properties of the system can change significantly.
- One example: In the phase diagram of QCD the CEP (and the first order region) might disappear.

- General consideration in statistical physics: Finite size scaling theory (FSS).
- Specially for strongly interacting systems: Studying the volume effects in our models.

- General consideration in statistical physics: Finite size scaling theory (FSS).
- Specially for strongly interacting systems: Studying the volume effects in our models.

Volume dependence of phase transitions (thermodyn. singularities)

- No singularities in finite system.
- Scaling of thermodynamical quantities with the finite size.
- The direction of change may depend on the boundary condition.
- Physics may change qualitatively and quantitatively.

J. Cardy: Finite-Size Scaling (1988)

- General consideration in statistical physics: Finite size scaling theory (FSS).
- Specially for strongly interacting systems: Studying the volume effects in our models.

Models with **finite volume**: Straightforward.

- General consideration in statistical physics: Finite size scaling theory (FSS).
- Specially for strongly interacting systems: Studying the volume effects in our models.

Models with **finite volume**: Straightforward.

- General consideration in statistical physics: Finite size scaling theory (FSS).
- Specially for strongly interacting systems: Studying the volume effects in our models.

Models with **finite volume**: Straightforward.

- General consideration in statistical physics: Finite size scaling theory (FSS).
- Specially for strongly interacting systems: Studying the volume effects in our models.

Models with **finite volume**: Straightforward.

EXPECTED CHANGES IN THE CHIRAL PHASE DIAGRAM

EXPECTED CHANGES IN THE CHIRAL PHASE DIAGRAM

There are already results in HRG, (P)NJL, (P)LSM, DS, etc. calculations. For example for the phase diagram:

\mathbf{LSM}

Palhares, Fraga and Kodama, J. Phys. G **38**, 085101 (2011)

PNJL

Bhattacharyya, Deb, Ghosh, Ray and Sur, Phys. Rev. D 87, no.5, 054009 (2013)

QM model FRG

Tripolt, Braun, Klein and Schaefer, Phys. Rev. D **90**, no.5, 054012 (2014)

DS approach

Bernhardt, Fischer, Isserstedt and Schaefer, Phys. Rev. D **104**, no.7, 074035 (2021)

PBC

There are already results in HRG, (P)NJL, (P)LSM, DS, etc. calculations. For example for the phase diagram:

LSM

Palhares, Fraga and Kodama, J. Phys. G **38**, 085101 (2011)

PNJL

Bhattacharyya, Deb, Ghosh, Ray and Sur, Phys. Rev. D 87, no.5, 054009 (2013)

QM model FRG

Tripolt, Braun, Klein and Schaefer, Phys. Rev. D **90**, no.5, 054012 (2014)

DS approach

Bernhardt, Fischer, Isserstedt and Schaefer, Phys. Rev. D **104**, no.7, 074035 (2021)

There are already results in HRG, (P)NJL, (P)LSM, DS, etc. calculations. For example for the phase diagram:

LSM

Palhares, Fraga and Kodama, J. Phys. G **38**, 085101 (2011)

PNJL

Bhattacharyya, Deb, Ghosh, Ray and Sur, Phys. Rev. D 87, no.5, 054009 (2013)

QM model **FRG**

Tripolt, Braun, Klein and Schaefer, Phys. Rev. D **90**, no.5, 054012 (2014)

DS approach

Bernhardt, Fischer, Isserstedt and Schaefer, Phys. Rev. D **104**, no.7, 074035 (2021)

There are already results in HRG, (P)NJL, (P)LSM, DS, etc. calculations. For example for the phase diagram:

LSM

Palhares, Fraga and Kodama, J. Phys. G **38**, 085101 (2011)

PNJL

Bhattacharyya, Deb, Ghosh, Ray and Sur, Phys. Rev. D 87, no.5, 054009 (2013)

QM model FRG

Tripolt, Braun, Klein and Schaefer, Phys. Rev. D **90**, no.5, 054012 (2014)

DS approach

Bernhardt, Fischer, Isserstedt and Schaefer, Phys. Rev. D **104**, no.7, 074035 (2021)

Vector and axial vector meson Extended Polyakov Linear Sigma Model. Effective model to study the phase diagram of strongly interacting matter at finite T and μ . Phys. Rev. D 93, no. 11, 114014 (2016)

- Linear Sigma Model: "simple" quark-meson model
- Extended: Vector and Axial vector nonets (besides to Scalar and Pseudoscalar) Isospin symmetric case: 16 mesonic degrees of freedom.
- Polyakov: Polyakov loop variables give 2 order parameters Φ , $\overline{\Phi}$.
- The mesonic Lagrangian \mathcal{L}_m with chiral symmetry

 $SU(3)_L \times SU(3)_R \times U(1)_V \times U(1)_A \to SU(2)_I \times U(1)_V$

broken explicitly (and spontaneously) and with the axial anomaly taken into account

ELSM

- \mathcal{L}_m contains the dynamical, the symmetry breaking, and the meson-meson interaction terms.
 - $U(1)_A$ anomaly and explicit breaking of the chiral symmetry.
 - Each meson-meson terms up o 4th order that are allowed by the chiral symmetry.
- Constituent quarks $(N_f = 2 + 1)$ in Yukawa Lagrangian

$$\mathcal{L}_Y = \bar{\psi} \left(i \gamma^\mu \partial_\mu - g_F (S - i \gamma_5 P) - g_V \gamma^\mu (V_\mu + \gamma_5 A_\mu) \right) \psi \tag{1}$$

In the 2016 version $g_V = 0$ was used.

Phys. Rev. D 104, 056013 (2021)

- SSB with nonzero vev. for scalar-isoscalar sector ϕ_N , ϕ_S . $\Rightarrow m_{u,d} = \frac{g_F}{2} \phi_N$, $m_s = \frac{g_F}{\sqrt{2}} \phi_S$ fermion masses in \mathcal{L}_Y .
- Mean field level effective potential \rightarrow the meson masses and the thermodynamics are calculated from this.

The grand potential

Thermodynamics: Mean field level effective potential:

- Classical potential.
- Fermionic one-loop correction with vanishing fluctuating mesonic fields.

$$\bar{\psi} \left(i \gamma^{\mu} \partial_{\mu} - \operatorname{diag}(m_u, m_d, m_s) \right) \psi$$

Functional integration over the fermionic fields. The momentum integrals are renormalized.

• Polyakov loop potential.

$$\Omega(T,\mu_q) = U_{Cl} + \operatorname{tr} \int_K \log\left(iS_0^{-1}\right) + U(\Phi,\bar{\Phi}) \tag{2}$$

Field equations (FE):

$$\frac{\partial\Omega}{\partial\bar{\Phi}} = \frac{\partial\Omega}{\partial\Phi} = \frac{\partial\Omega}{\partial\phi_N} = \frac{\partial\Omega}{\partial\phi_S} = 0 \tag{3}$$

Curvature meson masses:

$$M_{ab}^2 = \left. \frac{\partial^2 \Omega}{\partial \varphi_a \partial \varphi_b} \right|_{\{\varphi_i\}=0} \tag{4}$$

The grand potential

Thermodynamics: Mean field level effective potential:

- Classical potential.
- Fermionic one-loop correction with vanishing fluctuating mesonic fields.

$$\bar{\psi} \left(i \gamma^{\mu} \partial_{\mu} - \operatorname{diag}(m_u, m_d, m_s) \right) \psi$$

Functional integration over the fermionic fields.

The momentum integrals are renormalized. Low momentum cut!

• Polyakov loop potential.

$$\Omega(T,\mu_q) = U_{Cl} + \operatorname{tr} \int_K \log\left(iS_0^{-1}\right) + U(\Phi,\bar{\Phi})$$
(2)

Field equations (FE):

$$\frac{\partial\Omega}{\partial\bar{\Phi}} = \frac{\partial\Omega}{\partial\Phi} = \frac{\partial\Omega}{\partial\phi_N} = \frac{\partial\Omega}{\partial\phi_S} = 0 \tag{3}$$

Curvature meson masses:

$$M_{ab}^2 = \left. \frac{\partial^2 \Omega}{\partial \varphi_a \partial \varphi_b} \right|_{\{\varphi_i\}=0} \tag{4}$$

Meson and constituent quark masses

The order parameters $\phi_{N,S}$ scales with the size below ~ 5 fm.

SUMMARY

- Finite volume effects on thermodynamics and the phase diagram of strong interaction can be studied with constraints in momentum space.
- The meson masses and other physical quantities start to significantly change with the system size (for ELSM under ~ 5 fm).
- The critical end point moves to lower temperature and higher chemical potential with the decreasing size.
- The CEP and the first order region disappear at a small finite size (~ 2.5 fm for ELSM).
- Further study of the thermodynamics.
- Further study of the scaling of physical quantities.
- Open questions about the phase diagram.

THANK YOU!

