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Size of the physical system

What are the typical sizes?

• Typical size of the fireball in heavy ion collisions is a few fm.
• Neutron stars and compact stars built up from strongly

interacting matter (with extra structure) with a size ∼ 10 km.
• Several models with finite (different) size.
• In field theoretical calculations (LSM, NJL, DS, etc) usually the size is infinite.

Why does it matter?

• It can be seen that the properties of the system can change significantly.
• One example: In the phase diagram of QCD the CEP

(and the first order region) might disappear.
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Volume dependence

Studying finite size effects.

• General consideration in statistical physics: Finite size scaling theory (FSS).
• Specially for strongly interacting systems: Studying the volume effects in our models.
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Volume dependence

Studying finite size effects.

• General consideration in statistical physics: Finite size scaling theory (FSS).
• Specially for strongly interacting systems: Studying the volume effects in our models.

——————————————–
Volume dependence of phase transitions (thermodyn. singularities)

• No singularities in finite system.
• Scaling of thermodynamical quantities with the finite size.
• The direction of change may depend on the boundary condition.
• Physics may change qualitatively and quantitatively.

J. Cardy: Finite-Size Scaling (1988)
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Volume dependence

Studying finite size effects.

• General consideration in statistical physics: Finite size scaling theory (FSS).
• Specially for strongly interacting systems: Studying the volume effects in our models.

Models with finite volume: Straightforward.

Models with infinite volume: How to mimic the volume effect?

It is usual to have constraint
in momentum space.

• Discretization:
∫
dp→

∑
n

• Low momentum cutoff:
∫ ∞

0
dp→

∫ ∞

λ
dp

Tested also in HRG model:
Karsch, Morita and Redlich:
Phys. Rev. C 93, no.3, 034907 (2016)
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Volume dependence

Studying finite size effects.

• General consideration in statistical physics: Finite size scaling theory (FSS).
• Specially for strongly interacting systems: Studying the volume effects in our models.

Models with finite volume: Straightforward.

Models with infinite volume: How to mimic the volume effect?

It is usual to have constraint
in momentum space.

• Discretization:
∫
dp→

∑
n

• Low momentum cutoff:
∫ ∞

0
dp→

∫ ∞

λ
dp

Other effects – eg. surface – are not taken into account.
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Expected changes in the chiral phase diagram
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Finite size effects in different models

There are already results in HRG, (P)NJL, (P)LSM, DS, etc. calculations.
For example for the phase diagram:

LSM
Palhares, Fraga and Kodama,
J. Phys. G 38, 085101 (2011)

PNJL
Bhattacharyya, Deb, Ghosh, Ray and Sur,
Phys. Rev. D 87, no.5, 054009 (2013)

QM model FRG
Tripolt, Braun, Klein and Schaefer,
Phys. Rev. D 90, no.5, 054012 (2014)

DS approach
Bernhardt, Fischer, Isserstedt and Schaefer,
Phys. Rev. D 104, no.7, 074035 (2021)
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ELSM

Vector and axial vector meson Extended Polyakov Linear Sigma Model.
Effective model to study the phase diagram of strongly interacting matter at finite T and µ.
Phys. Rev. D 93, no. 11, 114014 (2016)

• Linear Sigma Model: "simple" quark-meson model

• Extended: Vector and Axial vector nonets (besides to Scalar and Pseudoscalar)
Isospin symmetric case: 16 mesonic degrees of freedom.

• Polyakov: Polyakov loop variables give 2 order parameters Φ, Φ̄.

• The mesonic Lagrangian Lm with chiral symmetry

SU(3)L × SU(3)R × U(1)V × U(1)A → SU(2)I × U(1)V

broken explicitly (and spontaneously) and with the axial anomaly taken into account
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ELSM

• Lm contains the dynamical, the symmetry breaking,
and the meson-meson interaction terms.

• U(1)A anomaly and explicit breaking of the chiral symmetry.
• Each meson-meson terms upto 4th order that are allowed by the chiral symmetry.

• Constituent quarks (Nf = 2 + 1) in Yukawa Lagrangian

LY = ψ̄ (iγµ∂µ − gF (S − iγ5P )− gV γ
µ(Vµ + γ5Aµ))ψ (1)

In the 2016 version gV = 0 was used. Phys. Rev. D 104, 056013 (2021)

• SSB with nonzero vev. for scalar-isoscalar sector ϕN , ϕS .
⇒ mu,d =

gF

2
ϕN , ms =

gF√
2
ϕS fermion masses in LY .

• Mean field level effective potential → the meson masses and the thermodynamics
are calculated from this.
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The grand potential

Thermodynamics: Mean field level effective potential:
• Classical potential.
• Fermionic one-loop correction with vanishing fluctuating mesonic fields.

ψ̄ (iγµ∂µ − diag(mu,md,ms))ψ

Functional integration over the fermionic fields.
The momentum integrals are renormalized.

• Polyakov loop potential.

Ω(T, µq) = UCl + tr
∫
K

log
(
iS−1

0

)
+ U(Φ, Φ̄) (2)

Field equations (FE):
∂Ω

∂Φ̄
=
∂Ω

∂Φ
=

∂Ω

∂ϕN
=

∂Ω

∂ϕS
= 0 (3)

Curvature meson masses:

M2
ab =

∂2Ω

∂φa∂φb

∣∣∣∣
{φi}=0

(4)
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Meson and constituent quark masses

The order parameters ϕN,S scales with the size below ∼ 5 fm.
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Order parameter

The initial (vacuum) value of the order parameter ϕN drops rapidly under ∼ 2.5 fm.
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Phase diagram and critical end point
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Summary

• Finite volume effects on thermodynamics and the phase diagram of strong interaction
can be studied with constraints in momentum space.

• The meson masses and other physical quantities start to significantly change
with the system size (for ELSM under ∼ 5 fm).

• The critical end point moves to lower temperature and higher chemical potential
with the decreasing size.

• The CEP and the first order region disappear at a small finite size
(∼ 2.5 fm for ELSM).

• Further study of the thermodynamics.
• Further study of the scaling of physical quantities.
• Open questions about the phase diagram.
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Thank you!



Backup: Phase diagram and critical end point – ϕN/S fixed
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Backup: Phase diagram in the chiral limit
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Backup: Finite volume effect in the chiral limit
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Backup: Thermodynamics – pressure – energy density
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