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OUTLINE

e System size: motivations and implementations
e Effects on the phase diagram in various models
e Results in the ELSM

e Summary



SIZE OF THE PHYSICAL SYSTEM

What are the typical sizes?

e Typical size of the fireball in heavy ion collisions is a few fm.

e Neutron stars and compact stars built up from strongly
interacting matter (with extra structure) with a size ~ 10 km.

e Several models with finite (different) size.

e In field theoretical calculations (LSM, NJL, DS, etc) usually the size is infinite.

Why does it matter?

e It can be seen that the properties of the system can change significantly.

e One example: In the phase diagram of QCD the CEP
(and the first order region) might disappear.
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Studying finite size effects.

e General consideration in statistical physics: Finite size scaling theory (FSS).

e Specially for strongly interacting systems: Studying the volume effects in our models.

Volume dependence of phase transitions (thermodyn. singularities)
e No singularities in finite system.
e Scaling of thermodynamical quantities with the finite size.
e The direction of change may depend on the boundary condition.

e Physics may change qualitatively and quantitatively.

J. Cardy: Finite-Size Scaling (1988)
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k Tested also in HRG model:

Karsch, Morita and Redlich:
Phys. Rev. C 93, no.3, 034907 (2016)



VOLUME DEPENDENCE

Studying finite size effects.

e General consideration in statistical physics: Finite size scaling theory (FSS).

e Specially for strongly interacting systems: Studying the volume effects in our models.

Models with finite volume: Straightforward.

Models with infinite volume: How to mimic the volume effect?
e Discretization: /dp — Z
n

It is usual to have constraint

H t . oo o0

10 momentum Space e Low momentum cutoff: / dp — / dp
0 A

Other effects — eg. surface — are not taken into account.
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FINITE SIZE EFFECTS IN DIFFERENT MODELS

There are already results in HRG, (P)NJL, (P)LSM, DS, etc. calculations.
For example for the phase diagram:

LSM

Palhares, Fraga and Kodama,
J. Phys. G 38, 085101 (2011)

PNJL

Bhattacharyya, Deb, Ghosh, Ray and Sur,
Phys. Rev. D 87, no.5, 054009 (2013)

QM model FRG

Tripolt, Braun, Klein and Schaefer,
Phys. Rev. D 90, no.5, 054012 (2014)

DS approach

Bernhardt, Fischer, Isserstedt and Schaefer,
Phys. Rev. D 104, no.7, 074035 (2021)
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FINITE SIZE EFFECTS IN DIFFERENT MODELS

There are already results in HRG, (P)NJL, (P)LSM, DS, etc. calculations.
For example for the phase diagram:
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ELSM

Vector and axial vector meson Extended Polyakov Linear Sigma Model.
Effective model to study the phase diagram of strongly interacting matter at finite 7" and p.
Phys. Rev. D 93, no. 11, 114014 (2016)

e Linear Sigma Model: "simple" quark-meson model

e Extended: Vector and Axial vector nonets (besides to Scalar and Pseudoscalar)
Isospin symmetric case: 16 mesonic degrees of freedom.

e Polyakov: Polyakov loop variables give 2 order parameters ®, ®.
e The mesonic Lagrangian £,, with chiral symmetry
SU(3)L X SU(3)R X U(l)v X U(l)A — SU(Q)[ X U(l)v

broken explicitly (and spontaneously) and with the axial anomaly taken into account



ELSM

e L., contains the dynamical, the symmetry breaking,
and the meson-meson interaction terms.

e U(1)4 anomaly and explicit breaking of the chiral symmetry.
o Each meson-meson terms upto 4th order that are allowed by the chiral symmetry.

o Constituent quarks (Ny =2+ 1) in Yukawa Lagrangian
f grang

Ly =9 (iv"0, — gr(S —ivsP) — gvv* (Vi + 15 4u)) ¥ (1)

In the 2016 version gy = 0 was used. Phys. Rev. D 104, 056013 (2021)

e SSB with nonzero vev. for scalar-isoscalar sector ¢, ¢g.
gr

V2

e Mean field level effective potential — the meson masses and the thermodynamics
are calculated from this.

9gr . .
= My,q = ?fﬁN, ms = ¢s fermion masses in Ly .

12



THE GRAND POTENTIAL

Thermodynamics: Mean field level effective potential:
e Classical potential.

e Fermionic one-loop correction with vanishing fluctuating mesonic fields.

¥ ("0, — diag(mu, ma, ms)) ¢
Functional integration over the fermionic fields.
The momentum integrals are renormalized.

e Polyakov loop potential.
T, 1) = Uen + tr/ tog (i85 1) + U (®, @) 2)
K

Field equations (FE):
o o0 0 00

9% 90  dpn  Ods
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THE GRAND POTENTIAL

Thermodynamics: Mean field level effective potential:
e Classical potential.

e Fermionic one-loop correction with vanishing fluctuating mesonic fields.

Q/) (i'yuap« - diag(mU7 mqd, ms)) 1/"

Functional integration over the fermionic fields.

The momentum integrals are renormalized. Low momentum cut!
e Polyakov loop potential. [

T, 1) = Uen + tr/ tog (i85 1) + U (®, @) 2)
K
Field equations (FE):
00 _o0_ o0 _ o0
0d ~ 9 dpn  Opg
Curvature meson masses:
2 _ 9%Q
ab 880a690b

{pi}=0




MESON AND CONSTITUENT QUARK MASSES
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The order parameters ¢ g scales with the size below ~ 5 fm.
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ORDER PARAMETER

The initial (vacuum) value of the order parameter ¢ drops rapidly under ~ 2.5 fm.
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PHASE DIAGRAM AND CRITICAL
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SUMMARY

e Finite volume effects on thermodynamics and the phase diagram of strong interaction
can be studied with constraints in momentum space.

e The meson masses and other physical quantities start to significantly change
with the system size (for ELSM under ~ 5 fm).

e The critical end point moves to lower temperature and higher chemical potential
with the decreasing size.

e The CEP and the first order region disappear at a small finite size
(~ 2.5 fm for ELSM).

e Further study of the thermodynamics.
e Further study of the scaling of physical quantities.

e Open questions about the phase diagram.



THANK YOU!



BACKUP: PHASE DIAGRAM AND CRITICAL END POINT — d)N/S FIXED
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BACKUP: PHASE DIAGRAM IN THE CHIRAL LIMIT
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BAckuUP: FINITE VOLUME EFFECT IN THE CHIRAL LIMIT
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BACKUP: THERMODYNAMICS
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