Studying hadronization with Machine Learning techniques

Margaret Island Symposium 2022 on Vacuum Structure, Particles, and Plasmas

15-18 05 2022

biro.gabor@wigner.hu

Gergely Gábor Barnaföldi Bence Tankó-Bartalis

arXiv:2111.15655

Outline

- Machine Learning: the motivation
- Research goals
- Results
- Future directions
- Summary

Data, data, and more data

Large Hadron Collider data: 2021: 336 PB From 2022: 200+ PB/year Simulations: Computationally very expensive

1s LHC data ~ days of CPU time

Machine learning

- Data driven decisions
- Automated analysis
- Perform tasks without being • Meaningful explicitly programmed to do so Structure Image **Customer Retention** Compression Discovery Classification Big data **Idenity Fraud** Feature Diagnostics Classification Visualistaion Detection Reduction Elicitation а b Advertising Popularity Supervised Recommender Unsupervised Prediction Systems Learning Learning Weather Forecasting Clustering Machine Regression Targetted Population Market Marketing Growth Forecasting Prediction Learning Customer Estimating Classification Regression Segmentation life expectancy d С 000 Real-time decisions Game Al 000 000 00000 Reinforcement Learning Robot Navigation Clustering Semi-supervised **Skill Acquisition** classification Learning Tasks

Basic building blocks of a neural network

$$z_j = \sum_{i=1}^N x_i w_{ij} + b_j$$

Fully connected (dense):

Activation functions:

https://sefiks.com/2020/02/02/dance-moves-of-deep-learning-activation-functions/

Convolutional:

Softplus

 $y = ln(1+e^{X})$

Log of Sigmoid

Mish

y=x(tanh(softplus(x)))

				max pooling
Pooling:				20 30
12	20	30	0	7 112 37
8	12	2	0	
34	70	37	4	average pooling
112	100	25	12	13 8
				79 20

Loss functions, optimizers...

Regression losses

- MeanSquaredError class
- MeanAbsoluteError class
- MeanAbsolutePercentageError class
- MeanSquaredLogarithmicError class
- CosineSimilarity class
- mean_squared_error function mean absolute error function
- mean_absolute_percentage_error function
- mean_squared_logarithmic_error function
- cosine_similarity function
- Huber class
- huber function
- LogCosh class
- log_cosh function

Hinge losses for "maximum-margin" classification

- Hinge class
- SquaredHinge class
- CategoricalHinge class

Available optimizers

- SGD
- RMSprop
- Adam
- Adadelta Adagrad
- Adamax
- Nadam
- Ftrl

Probabilistic losses

- BinaryCrossentropy class
- CategoricalCrossentropy class

many nonling

3bd2b1164a53

- SparseCategoricalCrossentropy class
- Poisson class

Example: FCNN

Example: FCNN

PRC.53.2358 (1996), Bass, S. A.; Bischoff, A.; Maruhn, J. A.; Stöcker, H.; Greiner, W.

Popular architectures

Classifiers

- AlexNet (Comm. ACM. 60 (6): 84–90, 2012)
- VGG16 (138M parameters, 23 layers, arXiv:1409.1556)
- ResNet (25M+ parameters, arXiv:1512.03385)
- DenseNet (8M parameters, 121 layers, arXiv:1608.06993)

Object detection

- (Fast(er)) R-CNN (arXiv:1311.2524, arXiv:1504.08083, arXiv:1506.01497)
- YOLO (arXiv:1506.02640)
- Detectron (github.com/facebookresearch/detectron2)

Regression

Autonomous vehicles

Decision trees

Transformers

Generative adversarial networks (https://bit.ly/2YMCFdy) (Variational) autoencoders

Machine Learning in HEP

A Living Review of Machine Learning for Particle Physics

https://iml-wg.github.io/HEPML-LivingReview/

Matthew Feickert, Benjamin Nachman, arXiv:2102.02770

2021 May: **417** references 2021 November: **568** references

Today: **629** references

- Track reconstruction
- Quark/gluon jet separation
- Jet reconstruction
- Tuning Monte Carlo event generators
- GAN of detectors

. . .

Particle Track Reconstruction using Geometric Deep Learning

- Jet tagging in the Lund plane with graph networks [DOI]
 Vertex and Energy Reconstruction in JUNO with Machine Learning Methods
- MLPF: Efficient machine-learned particle-flow reconstruction using graph neural network

Accelerated Charged Particle Tracking with Graph Neural Networks on EDGAs

- 25th International Conference on Computing in High-Energy and Nuclear Physics
 25th International Conference on Computing in High-Energy and Nuclear Physics
- 25th International Conference on Computing in High-Energy and Nuclear Physics
 Graph Neural Network for Object Reconstruction in Liquid Argon Time Projection Chambers
- Instance Segmentation GNNs for One-Shot Conformal Tracking at the LHC
 Charged particle tracking via edge-classifying interaction networks
- Jet characterization in Heavy Ion Collisions by QCD-Aware Graph Neural
- Graph Generative Models for Fast Detector Simulations in High Energy Physics
 Segmentation of EM showers for neutrino experiments with deep graph neural networks
- Sets (point clouds)
- Energy Flow Networks: Deep Sets for Particle Jets [DOI]
- Energy Flow Networks: Deep Sets for Particle Jets
 ParticleNet: Jet Tagging via Particle Clouds [DOI]
- ABCNet: An attention-based method for particle tagging [DOI]
- Secondary Vertex Finding in Jets with Neural Networks
- Equivariant Energy Flow Networks for Jet Tagging
 Permutationless Many-Jet Event Reconstruction with Symmetry Preserving
- Permutationless Many-Jet Event Reconstruction with Symmetry Preserving Attention Network
 Zero-Permutation Jet-Parton Assignment using a Self-Attention Network
- Learning to Isolate Muons
 Point Cloud Transformers applied to Collider Physics
- Physics-inspired basis
- Physics-inspired basis
 Automating the Construction of Jet Observables with Machine Learning [DOI]
- How Much Information is in a Jet? [DOI]
 Novel Jet Observables from Machine Learning (DOI)
- Novel Jet Observables from Machine Learning [DOI]
 Energy flow polynomials: A complete linear basis for jet substructure [DOI]
- Energy now polynomials: A complete linear basis for jet
 Deep-learned Top Tagging with a Lorentz Layer [DOI]
- Resurrecting \$b\bar{b}h\$ with kinematic shapes

\$W/Z\$ tagging

- Jet-images deep learning edition [DOI]
- Parton Shower Uncertainties in Jet Substructure Analyses with Deep Neural Networks [DOI]
 QCD-Aware Recursive Neural Networks for Jet Physics [DOI]
- QCD-Aware Recursive Neural Networks for Jet Physics [DOI]
 Identification of heavy, energetic, hadronically decaying particles using machine-learning techniques [DOI]
- Boosted \$W\$ and \$2\$ tagging with jet charge and deep learning [DOI]
- Supervised Jet Clustering with Graph Neural Networks for Lorentz Boosted Bosons [DOI]
 Jet tagging in the Lund plane with graph networks [DOI]
- Jet tagging in the Lund plane with graph networks [DOI]
 A \$W^hpm\$ polarization analyzer from Deep Neural Networks

\$H\rightarrow b\bar{b\$}

- Automating the Construction of Jet Observables with Machine Learning [DOI]
- Boosting \$Hito b\bar b\$ with Machine Learning [DOI]
- Interaction networks for the identification of boosted \$H \rightarrow b\overline(b)\$ decays [DOI]
 Interpretable deep learning for two-prong let classification with let spectra [DOI]
- Interpretable deep learning for two-prong jet classification with jet spectra [DOI]
 Identification of heavy, encretic, hadronically decaying particles using machine-learning techniques [DOI]
- Disentangling Boosted Higgs Boson Production Modes with Machine Learning
- Benchmarking Machine Learning Techniques with Di-Higgs Production at the LHC
- The Boosted Higgs Jet Reconstruction via Graph Neural Network
 Extracting Signals of Higgs Boson From Background Noise Using Deep Neural Networks
- Considering segment of rings baser i form basequering reality (barry being compared in the start(b)) and the start(b) and the start basequering and the start baseq
- guarks and gluons
- Quark versus Gluon Jet Tagging Using Jet Images with the ATLAS Detector
- Deep learning in color: towards automated quark/gluon [DOI]
- Recursive Neural Networks in Quark/Gluon Tagging [DOI]
- DeepJet: Generic physics object based jet multiclass classification for LHC experiments
 Probing heavy ion collisions using quark and gluon jet substructure
- Proving nearly for consions using quark and gluon jet substructure
 JEDI-net: a jet identification algorithm based on interaction networks [DOI]
- Quark-Gluon Tagging: Machine Learning vs Detector [DOI]
- Towards Machine Learning Analytics for Jet Substructure [DOI]
- Quark Gluon Jet Discrimination with Weakly Supervised Learning IDOI

Classification

- Parameterized classifiers
- Parameterized neural networks for high-energy physics [DOI]
- Approximating Likelihood Ratios with Calibrated Discriminative Class
- E Pluribus Unum Ex Machina: Learning from Many Collider Events at Once
- Jet images
- How to tell quark jets from gluon jets
 Jet-Images: Computer Vision Inspired Techniques for Jet Tagging (DQI)
- Playing Tag with ANN: Boosted Top Identification with Pattern Recognition (DOI)
- Jet-images deep learning edition [DOI]
- Quark versus Gluon Jet Tagging Using Jet Images with the ATLAS Detector
- Boosting \$H\to b\bar b\$ with Machine Learning [DOI]
- Learning to classify from impure samples with high-dimensional data [DOI]
 Parton Shower Uncertainties in Jet Substructure Analyses with Deep Neural Networks [DOI]
- Parton Shower Uncertainties in Jet Substructure Analyses with Deep Neural Ne
- Deep learning in color: towards automated quark/gluon [DOI]
 Deep-learning Top Taggers or The End of QCD? [DOI]
- Deep-learning Top Taggers or The End of QCD? [DOI]
 Pulling Out All the Tops with Computer Vision and Deep Learning [DOI]
- Pulling Out All the Tops with Computer Vision and Deep Learning [
 Reconstructing boosted Higgs jets from event image segmentation
- Reconstructing boosted Higgs jets from event image segmer
 An Attention Based Neural Network for Jet Tagging
- An Attention Based Neural Network for Jet Tagging
- Quark-Gluon Jet Discrimination Using Convolutional Neural Networks [DOI]
 Learning to Isolate Muons
- Learning to Isolate Muons
 Deep learning jet modifications in heavy-ion collisions

Event images

- Topology classification with deep learning to improve real-time event selection at the LHC [DOI]
- Convolutional Neural Networks with Event Images for Pileup Mitigation with the ATLAS Detector
- Boosting \$Hto bibar b\$ with Machine Learning [DOI]
 End-to-End Physics Event Classification with the CMS Open Data: Applying Image-based Deep Learning on Detector
- Enc-to-End Mnysics Event Classification with the CMS Open Data: Applying Image-based Deep Learning on Detect Data to Directly Classify Collision Events at the LHC [DOI]
- Disentangling Boosted Higgs Boson Production Modes with Machine Learning
- Identifying the nature of the QCD transition in relativistic collision of heavy nuclei with deep learning [DOI]

Sequences

- Jet Flavor Classification in High-Energy Physics with Deep Neural Networks [DOI]
- Topology classification with deep learning to improve real-time event selection at the LHC [DOI]
- Jet Flavour Classification Using DeepJet [DOI]
- Development of a Vertex Finding Algorithm using Recurrent Neural Network
 Sequence-based Machine Learning Models in Jet Physics

Trees

- QCD-Aware Recursive Neural Networks for Jet Physics [DOI]
- Recursive Neural Networks in Quark/Gluon Tagging [DOI]

Graphs

IDOII

- Neural Message Passing for Jet Physics
- Graph Neural Networks for Particle Reconstruction in High Energy Physics detectors

Supervised Jet Clustering with Graph Neural Networks for Lorentz Boosted Bosons (DOI)

Track Seeding and Labelling with Embedded-space Graph Neural Networks

Neural Network-based Top Tagger with Two-Point Energy Correlations and Geometry of Soft Emissions [DOI]

Distance-Weighted Graph Neural Networks on FPGAs for Real-Time Particle Reconstruction in High Energy Physic

Graph neural network for 3D classification of ambiguities and optical crosstalk in scintillator-based neutrino detector

11

Probing stop pair production at the LHC with graph neural networks [DOI]

Probing triple Higgs coupling with machine learning at the LHC.

Casting a graph net to catch dark showers [DOI]

Graph neural networks in particle physics [DOI]

- Pileup mitigation at the Large Hadron Collider with graph neural networks [DOI]
 Unveiling CP property of top-Higgs coupling with graph neural networks at the LHC [DOI]
- JEDI-net: a jet identification algorithm based on interaction networks [DOI]
- Learning representations of irregular particle-detector geometry with distance-weighted graph networks [DOI]
 Interpretable deep learning for two-promo let classification with let spectra [DOI]

Parton shower and hadronization

The goal of this study

J.W. Monk: Deep Learning as a Parton Shower (arXiv:1807.03685) 10° $\frac{1}{N_J}\frac{dN_J}{dp_T}$ [GeV⁻¹] Dataset: 500 000 QCD pp event @ 7 TeV, generated by Sherpa Filter mask. Encodes which filter had largest output parameter model k_2 model k_3 10^{-3} (random if Kernel size, k $\mathbf{2}$ 3 none active Filter mask activate Input image size, N81 64 only one filter pe Filte Size of filter bank, F7 9 Levels of decomposition $\mathbf{5}$ 3 MaxPool acro Outpu Input event F filters event Regularisation, λ 500300 10^{-5} Learning rate 5×10^{-5} 1×10^{-5} Loss weight w_1 $\mathbf{5}$ 4 Downs: Downsample by spatial MaxPool Loss weight w_2 $\mathbf{2}$ $\mathbf{2}$ F Conv2D ole by repeate application of a bank of F filter 5×10^{1} 10^{2} Conv2DTranspose filter Loss weight w_3 1 1 Repeat Total number of trained weights 12672olution usir same bank of Conv2D filter

Hadronization

Partons \rightarrow hadrons Non-perturbative process Lund-fragmentation (Comput.Phys.Commun. 27 (1982) 243) string fragments hadrons right-to-left string fragmentation $\overline{\mathbf{B}}$ 0.00 FSR $\overline{B} B$ \sim ... meson RGBΒB η baryon BB \

anti- k_t , R = 0.4, $p_T \ge 40$ GeV Sherpa shower

 5×10

Jet p_T [GeV]

ME only ME + CNN k_2 ME + CNN k_3

Train and validation sets

Monte Carlo data: Pythia 8.303

Monash tune

Selection:

- All final particles with $|y| < \pi$
- At least 2 jets
 - Anti-k_T
 - R=0.6
 - p₁>40 GeV

Event number

- Train: 150 000
- Validation: 150 000
- ~20 GB raw data

S=A=0

Input:

Parton level

Discretized in the (y, ϕ) plane: $p_{x'}, p_{y'}, p_{z'}$. E, m, multiplicity

 $y \in [\pi,\pi]$, 62 bins

 $\phi \in [0, 2\pi]$ 31 bins

Hadron level output:

(Charged) event multiplicity, (tr-)sphericity, jet p_T, -mass, -width, -multiplicity

$$M_{xyz} = \sum_{i} \begin{pmatrix} p_{xi}^2 & p_{xi}p_{yi} & p_{xi}p_{zi} \\ p_{yi}p_{xi} & p_{yi}^2 & p_{yi}p_{zi} \\ p_{zi}p_{xi} & p_{zi}p_{yi} & p_{zi}^2 \end{pmatrix}$$

Eigenvalues: $\lambda_1 > \lambda_2 > \lambda_3$ $\sum_i \lambda_i = 1$
Sphericity: $S = \frac{3}{2}(\lambda_2 + \lambda_3)$
Transverse sphericity: $S_{\perp} = \frac{2\lambda_2}{\lambda_1 + \lambda_2}$ 22

S=3/4 A=0

Models

Stacking more layers: solve complex problems more efficiently, get highly accurate results **BUT:**

Vanishing/exploding gradients (not to confuse with overfitting)

Results

Proton-proton @ 7 TeV, Training + Validation

	Model 1	Model 2
Trainable parameters	1.13 M	1.90 M

Prediction at other CM energies

 $\sqrt{s} = 13 \text{ TeV}$

How to do it more effectively?

Dimensionality

Input:

Parton level

Discretized in the (y,ϕ) plane: p_x, p_y, p_z, E, m, multiplicity

$$\left.\begin{array}{cc} y \in [\pi,\pi], & \text{62 bins} \\ \phi \in [0,2\pi] & \text{31 bins}\end{array}\right\} := M$$

Reduction with Singular Value Decomposition:

$$M_{n \times m} = U_{n \times n} \Sigma_{n \times m} V_{m \times m}^T$$

- Unitarity
- Ordered by importance
- Guaranteed to exist, unique

$$M \approx \sum_{i=1}^{r} \sigma_{i} u_{i} v_{i}^{T} + \mathcal{O}(\epsilon), \quad r \leq \min\{n, m\}$$

Reduce the input to $\mathcal{O}(10^{2})$

Data-Driven Science and Engineering (S. L. Brunton, J. N. Kutz)

 $\mathcal{O}(10^2)$ Pixels with information

VS

Dimensionality (work in progress)

Summary

Traditional computer vision algorithms capture the main features of high-energy event variables successfully

Generalization to other CM energies: multiplicity scaling

Prospects

Dimensional reduction

Various architectures (hyperparameter fine-tuning)

Other observables (p_{τ} , rapidity, particle species)

Heavy ion (centralities, collective effects)

Thank you for your attention!

The research was supported by OTKA grants K135515, K123815, NKFIH 2019-2.1.6-NEMZKI-2019-00011, 2020-2.1.1-ED-2021-00179, the **Wigner Scientific Computational Laboratory** (former Wigner GPU Laboratory) and NKFIH within the framework of the MILAB Artificial Intelligence National Laboratory Program.

Prediction at other CM energies

 $\sqrt{s} = 900 \text{ GeV}$

Prediction at other CM energies

 $\sqrt{s} = 5.02 \text{ TeV}$

