Margaret Island Symposium 2022 on Vacuum Structure, Particles, and Plasmas

Scaling properties of jets in high-energy pp collisions

Róbert Vértesi^{1,*}

with

Antal Gémes^{1,2}, Gergely Gábor Barnaföldi¹ Gábor Papp³ Zoltán Varga^{1,4}

*vertesi.robert@wigner.ht

 ¹ Wigner Research Centre for Physics Centre of Excellence of the Hungarlan Academy of Sciences
 ² Trinity College, University of Cambridge
 ³ Institute of Physics, Eötvös Loránd University
 ³ Budapest University of Technology and Economics Radial jet profiles
 KNO-scaling within jets
 Heavy-flavor jets

Eötvös Loránd University

<u>и й е с у е т е м 1 7 8</u>

This work has been supported by the Hungarian NKFIH OTKA FK131979 and K135515 as well as the NKFIH 2019-2.1.11-TÉT-2019-00078, 2019-2.1.11-TÉT-2019-00050, 2019-2.1.6-NEMZKI-2019-00011, 2020-1.2.1-GYAK-2020-00013 grants

Motivation

- Collectivity in small systems with high-multiplicity at LHC
 - Substantial v_n eg. Yan-Ollitrault, PRL 112, 082301 (2014)
- Current understanding:
 - QGP is not necessary for collectivity
 - Vacuum-QCD effects at the soft-hard boundary: for instance multiple-parton interactions (MPI) eg. Schlichting, arXiv:1601.01177
 - and color reconnection (CR) [model element] eg. Ortiz-Bencédi-Bello, J.Phys.G 44 (2017)
- Jets:
 - A-A: sensitive probe of nuclear modification.
 - **pp**: No jet suppression expected; However: soft and hard processes are related by MPI
 => jets can serve to study this connection

1) Radial jet profiles

R. Vértesi - Scaling properties of jets

Radial jet profiles

PYTHIA 8.2 simulations

pp collisions at $\sqrt{s} = 7$ TeV, R=0.7, 50<p_T^{jet}<60 GeV/c, |y|<1

Z. Varga, R.V, G.G.B,

Adv. HEP 2019, 6731362 (2019)

7 multiplicity classes

1) Radial jet profiles

PP 2022 (Budapest, 15-18 May)

PYTHIA 8.2 simulations

pp collisions at \sqrt{s} = 7 TeV, R=0.7, 50<p_T^{jet}<60 GeV/*c*, |*y*|<1

7 multiplicity classes

jet profile curves intersect at R_{fix} in any p_T^{jet} window

generator: Pythia, Hijing++
tune: 4C, Monash, Monash*

R_{fix} independent of - •nPDF sets

•CR scheme or MPI

•jet algorithm: anti- k_{T} , C/A, k_{T}

 \Rightarrow Is it a scaling behavior? Z. Varga, R.V, G.G.B, Adv. HEP 2019, 6731362 (2019)

Parametrizing the jet profiles

- Detailed PYTHIA 8 simulations (4C)
 - Jet radius: 12 bins up to r=0.6
 - Multiplicity 6 bins up to N=100
 - Momentum: 20 bins up to $p_{T^{jet}}=400$

60<N<80, 15<p_T^{jet}<20 GeV/c

60<N<80, 100<p_T^{jet}<110 GeV/c

Parametrizing the jet profiles

- Detailed PYTHIA 8 simulations (4C) ᢓ
 - Jet radius: 12 bins up to r=0.6
 - Multiplicity 6 bins up to N=100
 - Momentum: 20 bins up to p_T^{jet}=400
- Statistically motivated distributions:
 - Gamma distribution

 $\rho(r) = Cr^{\gamma} e^{-\alpha r}$

NBD (Negative binomial distribution)

$$\rho(r) = C \frac{\Gamma(rk+a)}{\Gamma(a)\Gamma(rk+1)} p^{rk} (1-p)^a$$

Note: both in the wide-jet $(p \rightarrow 1)$ and narrow-jet $(p \rightarrow 1)$ and narrow-jet $(p \rightarrow 1)$, NBD reduces to a Gamma

Simultaneous fit with a ~br background

Gribov-90 Memorial Volume, 81 (2021) [arXiv:2008.08500]

Scaling of the jet profiles

 Scaling assumption: profiles at all multiplicities collapse into a single distribution,

$$\rho_N(r) = \lambda(N) f\left(\frac{r}{\kappa(N)}\right)$$

- Scaling is determined based on the Gamma distribution fits
 - Chosen "good" mid-multiplicity fits, then others scaled to it minimizing χ²
- The scaling works within 5-10% in the peak region

Gribov-90 Memorial Volume, 81 (2021) [arXiv:2008.08500]

Scaling factors

- The scaling parameter κ is approximately linear with multiplicity
- Ideally, $\lambda \kappa \sim 1$. This is fulfilled on the 10% level except for the lowest- p_T bin
 - Low- p_T increase is because leakage increases λ
 - Slight high-p_T decrease is because background determination

2) KNO-scaling within jets

- KNO scaling: the multiplicity distribution scales with \sqrt{s} Koba-Nielsen-Olesen, NPB 40, 317 (1972); Polyakov, Sov.Phys.JETP 32, 296 (1971)
- The KNO scaling breaks down at high \sqrt{s}
- KNO may be violated by the presence of multipleparton interactions or overlapping color strings Walker PRD 69, 034007 (2004); Abramovsky et al., arXiv:0706.3358

- Is KNO-scaling valid within a single jet?
- How is affected by MPI and CR?
- Is there a connection of KNO to radial scaling?

KNO within jet: multiplicity scaling with p_{T}^{jet}

Multiplicity (dominated by the jet multiplicity) vs. jet momentum p_T^{jet}

KNO within jet: multiplicity scaling with p_{T}^{jet}

- Multiplicity (dominated by the jet multiplicity) vs. jet momentum p_T^{jet}
- Parametrized with a NBD

$$P_N = \frac{\Gamma(Nk+a)}{\Gamma(a)\Gamma(Nk+1)} p^{Nk} (1-p)^a$$

KNO within jet: multiplicity scaling with p_{T}^{jet}

- Multiplicity (dominated by the jet multiplicity) vs. jet momentum $p_{T^{jet}}$
- Parametrized with a NBD

$$P_N = \frac{\Gamma(Nk+a)}{\Gamma(a)\Gamma(Nk+1)} p^{Nk} (1-p)^a$$

- Distributions at all p_T^{jet} fit well on a single NBD curve
- KNO-like scaling observed within a jet
 - In the following we quantify how well it is fulfilled

Multiplicity vs. p_{T}^{jet} : moments

qth statistical moment

$$\langle N^q \rangle = \sum_{N=1}^{\infty} P_N N^q$$

- sensitive to goodness of scaling
- insensitive to fluctuations
- no need to parametrize and fit
- Scaling:

$$\left\langle N^q(p_{\rm T}^{\rm jet}) \right\rangle = \lambda^q(p_{\rm T}^{\rm jet}) \left\langle N^q(p_0) \right\rangle \quad \lambda(p_0) = 1$$

Multiplicity vs. p_{T}^{jet} : moments

qth statistical moment

$$\langle N^q \rangle = \sum_{N=1}^{\infty} P_N N^q$$

- sensitive to goodness of scaling
- insensitive to fluctuations
- no need to parametrize and fit
- Scaling:

$$\left\langle N^q(p_{\rm T}^{\rm jet}) \right\rangle = \lambda^q(p_{\rm T}^{\rm jet}) \left\langle N^q(p_0) \right\rangle \quad \lambda(p_0) =$$

Phys.Rev.D 103 (2021) 5, L051503 [arXiv:2012.01132]

- $\log \langle N^q \rangle / q$ vs. $\log \langle N \rangle$ is a straight line with \sim unity slope
 - up to the 9th moment

=> scaling is fulfilled in the whole p_{T}^{jet} range

Moments: Role of MPI and CR

Phys.Rev.D 103 (2021) 5, L051503 [arXiv:2012.01132]

- No multiple-parton interactions: scaling is present
 - "possible physical" scenario producing low-activity events
- No color reconnection: no scaling
 - color-flow not handled, non-physical scenario

Slopes moment-by-moment

- Physical case (Monash): All 9 moments are consistent with unity, slope within ~1%
 - <u>Note</u>: scaling holds for different tunes & nPDFs (Monash, 4C, Monash*) and also for different jet algos (anti-k_T, C/A and k_T)
- **No CR**: Scaling is broken by ~15%
- No MPI (also no CR by construction): Scaling is fulfilled to ~2%.
- All fits are statistically good (χ²/NDF<8, ~proportional to the order of moment)

Phys.Rev.D 103 (2021) 5, L051503 [arXiv:2012.01132]

Slopes moment-by-moment

- Physical case (Monash): All 9 moments are consistent with unity, slope within ~1%
 - <u>Note</u>: scaling holds for different tunes & nPDFs (Monash, 4C, Monash*) and also for different jet algos (anti-k_T, C/A and k_T)
- **No CR**: Scaling is broken by ~15%
- No MPI (also no CR by construction): Scaling is fulfilled to ~2%.
- All fits are statistically good (χ²/NDF<8, ~proportional to the order of moment)
- The emerging picture is different from that of radial profile scaling, which holds for CR=off as well

Phys.Rev.D 103 (2021) 5, L051503 [arXiv:2012.01132]

3) How do heavy-flavor jets scale?

HF created via...

- LO Flavor Creation
- NLO Gluon Splitting and Flavor Excitation
- These contributions are of similar magnitudes Cao et al., Phys.Rev.C 93 (2016) 2, 024912
- Heavy-flavor jet production affected by:
 - Mass dependent effects: harder fragmentation, dead-cone effect
 - Color-dependent effects: HF initiated by quark jets only
 - => HF jets are different than LF jets
- Comparison of scaling LO and NLO: sensitivity to its origin (hard QCD process vs. jet development)

llten et al., PRD 96 (2017) 5, 054019

HF jets - production vs. fragmentation

All slopes are around unity within 5%

LO flavor-creation

- Inferior quality fits (χ²/ndf up to 22)
- Deviation from inclusive jets, depending on the mass

NLO gluon splitting

Follows inclusive jets (mostly gluon jets)

Scaling driven by initial hard process

- Direct HF quark pair creation djets
- Later development of jets has less influence, as multiplicity is not driven by fragmentation

manuscript under preparation

Summary

Radial jet-momentum profiles scale with multiplicity

Gribov-90 Memorial Volume, 81 (2021) [arXiv:2008.08500]

- Profiles can be parametrized with a Gamma dist. and scale with event multiplicity
- Scaling is present in a broad model class => fundamental statistical origin?
- Cross-check with real data would be essential

KNO-like scaling within a jet: scaling of multiplicities with jet momentum Phys.Rev.D 103 (2021) 5, L051503 [arXiv:2012.01132]

- Multiplicity distributions are NBD and can be collapsed into a single distribution
- This scaling holds without MPI but breaks down without CR
- KNO scaling is likely violated by complex QCD processes outside the jet development, such as single and double-parton scatterings or softer MPI
- This statement holds as long as the multiplicities are described. Testing for this scaling behavior can be an important element in model development

KNO-like scaling in heavy-flavor jets

- LO flavor creation: quark-mass dependent, imperfect scaling
- NLO gluon splitting: follows (gluon-dominated) light-jet pattern
- Jet scaling driven by the initial hard parton-production process

Margaret Island Symposium 2022 on Vacuum Structure, Particles, and Plasmas

Thank you!

Special thanks to Sándor Hegyi for fruitful discussions and guidance

This work has been supported by the Hungarian NKFIH OTKA FK131979 and K135515 as well as the NKFIH 2019-2.1.11-TÉT-2019-00078, 2019-2.1.11-TÉT-2019-00050, 2019-2.1.6-NEMZKI-2019-00011, 2020-1.2.1-GYAK-2020-00013 grants

1) Radial jet profiles

- CMS, JHEP 06, 160 (2012) Differential jet shape p(r) 🗕 pp Data (🗸 s=7 TeV) Pythia Tune Z2 10 Pythia Perugia2010 Pythia Tune D6T Pvthia8 ρ(r) Herwia++ $\rho(r) = \frac{1}{\delta r} \frac{1}{p_{\mathrm{T}}^{\mathrm{jet}}} \sum_{r_a < r_i < r_b} p_{\mathrm{T}}^i$ - CMS | L dt = 36 pb⁻¹, |y| < 1 10-1 50 GeV < P_T^{jet} < 60 GeV $r_i = \sqrt{(\phi_i - \phi_{jet})^2 + (\eta_i - \eta_{jet})^2}$ 1.3 MC/Data 0.7 0.1 0.2 0.3 0.4 0.5 0.6 radius (r) CMS@LHC pp collisions, $\sqrt{s} = 7$ TeV R=0.7 jets, $50 < p_T^{jet} < 60$ GeV/c, |y| < 1
 - Currently available LHC data are either multiplicity or transverse-momentum inclusive

PP 2022 (Budapest, 15-18 May)

Scaling of the jet profiles - log scale

 Scaling assumption: profiles at all multiplicities collapse into a single distribution,

$$\rho_N(r) = \lambda(N) f\left(\frac{r}{\kappa(N)}\right)$$

<u>Note</u>: Ideally, $\lambda = 1/\kappa$, however... "leakage" (distribution is cut-off at high *r* before normalization)

- Scaling is determined based on the Gamma distribution fits
 - Chosen "good" mid-multiplicity fits, then others scaled to it minimizing χ²
- The scaling works within 5-10% in the peak region

Parameters of the fits

Gamma distribution with background

 $\rho(r) = Cr^{\gamma} e^{-\alpha r} + br$

Monotonic trends observable

• Exception: lowest p_{T}

- Underdetermined background fit (mostly affects *b* and *C*)
- Leakage of jet outside R=0.7 (affects C)

Gribov-90 Memorial Volume, 81 (2021) [arXiv:2008.08500]

How good are the fits?

- The mean approximately scales linearly with multiplicity
- Except for the lowest $p_{\rm T}$ bin, $\kappa/\overline{\varrho}' \sim 1$ within 5%
- Hence,

» Radial profiles scale with multiplicity» The gamma distribution is an adequate description

Gribov-90 Memorial Volume, 81 (2021) [arXiv:2008.08500]

Is there really an R_{fix} ?

- Based on the parametrization of the Gamma distribution,
 *R*_{fix} is an approximate consequence of the scaling
- <u>Note</u>: R_{fix} would be exact if $\rho(r)$ fell linearly in the given region

Effects of finite-size bins (jet profiles)

Dotted lines: effect of binning on analytical curves. Qualitatively explains the behavior seen in the simulations.

PP 2022 (Budapest, 15-18 May)

3) KNO-like scaling: Heavy Flavor

Beauty-jets