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Correspondence of multiplicity and energy distributions

For the count probability distribution, P (N), the generating function G (z) is defined as:

G (z) =
∞∑

N=0

P (N) zN . (1)

We shall discuss multiplicity distributions P (N) in quasi power-law ensembles and their
generating functions G (z). They are connected with the energy distributions F (E) of
elements in the ensemble.
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Correspondence of multiplicity and energy distributions

Distributions P (N) used in this talk: Poisson (PD), negative binomial (NBD) and binomial (BD) and their
generating functions G (z).

P (N) G (z)
PD λN

N! exp (−λ) exp [λ (z − 1)]

NBD Γ(N+k)
Γ(N+1)Γ(k) pN (

1 − p
)k

[
1 − p

1−p (z − 1)
]−k

BD K!
N!(K−N)! p

N (
1 − p

)K−N [
1 + p (z − 1)

]K

Note, that generating functions of NBD and BD are in fact some quasi-power functions of
z and as such can be written in the form of the corresponding Tsallis distributions.
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Correspondence of multiplicity and energy distributions

The multiplicity generating function

G (z) = expq [⟨N⟩ (1 − z)]

=
[
1 +

(
q − 1

)
⟨N⟩ (1 − z)

] 1
1−q , (2)

where q − 1 = 1/k for NBD, q − 1 = −1/K for BD, and q − 1→ 0 for PD.
For

z = 1 −
E
U

(3)

with the total available energy

U =
N∑

i=1

Ei, (4)

Eq. (2) gives the energy distribution

F (E) = G (z = 1 − E/U) =
[
1 +

(
q − 1

) E
T

] 1
1−q

(5)

which is the well known Tsallis distribution, and which for q→ 1 becomes Boltzmann-Gibbs
distribution.
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Correspondence of multiplicity and energy distributions

For fixed number of particles N, energy distribution emerges directly from the calculus of
probability for a situation known as induced partition. In short: N − 1 randomly chosen
independent points {U1, . . . , UN−1} split a segment (0,U) into N parts, whose length is
distributed according to:

F (E|N) =
N − 1

U

(
1 −

E
U

)N−2
. (6)

The length of the kth part corresponds to the value of energy Ek = Uk+1 −Uk (for ordered
Uk). Whereas for fixed N one have equation (6), then for N fluctuating according to P (N),
the resulting energy distribution is

F (E) =
∞∑

N=2

P (N) F (E|N) . (7)

For P (N) given by BD, PD, and NBD, equation (7) leads to Tsallis distribution.
Relationships between Poissonian multiplicity distribution and Boltzmann-Gibbs energy
distribution are discussed in [Eur. Phys. J. A 57 3].
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Correspondence of multiplicity and energy distributions
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Multiplicity distributions and corresponding energy distributions. Figure taken from [Eur. Phys. J. A 57 3].
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Correspondence of multiplicity and energy distributions

The statistical properties of the energy division between a set of particles are
completely characterized by the generating function G(z).

Despite correspondence between multiplicity and energy distributions, the
multiplicity distribution gives in practice complementary information to the energy
distribution, because P(N) is defined by the Nth derivative of G(z) = F(E) at E = U, i.e.,
in the region not available experimentally in measurements at collider experiments.
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Relaxation and correlation times
of nonequilibrium multiparticle systems

The evolution of the particle distribution can be studied through the Boltzmann transport
equation (BTE),

d f (r, p, t)
dt

=
∂ f
∂t
+ u⃗ · ∇r f + F⃗ · ∇p f = C[ f ], (8)

where f (r, p, t) is the distribution of particles which depends on position r, momentum p
and time t, F⃗ is the external force, u⃗ is the velocity and C[ f ] is the collision term. Assuming
in what follows homogeneity of the system (∇r f = 0) and absence of external forces
(F⃗ = 0) Eq. (8) reduces to

d f (r, p, t)
dt

=
∂ f
∂t
= C[ f ]. (9)
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Relaxation and correlation times
of nonequilibrium multiparticle systems

In the relaxation time approximation (RTA) the collision term is assumed to be equal to

C[ f ] =
feq − f
τrel

, (10)

where feq is the local equilibrium distribution and τrel is the relaxation time, understood as
the time taken by the non-equilibrium system to reach equilibrium. In this approximation
BTE simplifies to

∂ f
∂t
=

feq − f
τrel

. (11)

Solving this equation for the initial conditions such that at t = 0 one has initial distribution,
f = fin, and at freeze-out time, t = t f one has final distribution, f = f f in (to be identified with
the actually measured distribution) one gets that

f f in = fin exp
(
−

t f

τrel

)
+ feq

[
1 − exp

(
−

t f

τrel

)]
. (12)
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Relaxation and correlation times
of nonequilibrium multiparticle systems

Using fin and feq in the form of Tsallis distribution (with, respectively, qin and qeq) we get f f in
for different values of t f /τrel.

f f
in
(p
T
)

pT [GeV/c]

tf/τrel = 0
tf/τrel = 5
tf/τrel = 10
tf/τrel = ∞

Schematic transverse momenta distributions f f in resulting from the relaxation time approximation
scenario for qin = 1.25, qeq = 1.0, T = 0.14 GeV, and for t f /τrel = 0, 5, 10, ∞ (curves from top to down).
Figure taken from [Phys. Rev. D 103 114026].
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Relaxation and correlation times
of nonequilibrium multiparticle systems

However, if we would require that all distributions f (t) in Eq. (12) have the form of Tsallis
distributions depending on time entirely via the time dependence of the corresponding
nonextensivity parameters, f (t) = f [q(t)], then the time evolution would be given by

∂ f (t)
∂t
= F[q(t)] (13)

Assuming further that the dependence of q on time is given by

∂q
∂t
=

qeq − q
τrel

, (14)

and remembering that we always assume that qeq = 1, we have that

q − 1 =
(
qin − 1

)
exp

(
−

t f

τrel

)
(15)
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Relaxation and correlation times
of nonequilibrium multiparticle systems

Figure below shows the resultant schematic distributions f f in for different t f /τrel; they all

have form of Tsallis distribution with q = q
(
t = t f

)
as given by Eq. (15).

f f
in
(p
T
)

pT [GeV/c]

tf/τrel = 0
tf/τrel = 1
tf/τrel = 2
tf/τrel = 3
tf/τrel = ∞

Schematic transverse momenta distributions for f f in calculated from Eq. (13) for t f /τrel = 0, 1, 2, 3, ∞
(curves from top to down). The values for T, qin, qeq are the same as for previous figure. Figure taken
from [Phys. Rev. D 103 114026].
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Relaxation and correlation times
of nonequilibrium multiparticle systems

To deduce energy dependence of t f /τrel from data on pT distributions we use the formula
fitting pT at all energies available:

f f in
(
pT

)
=

2 − q
T

[
1 + (q − 1)

pT

T

] 1
1−q

(16)

characterized by the energy dependent Tsallis q parameter and the temperature
parameter T.
Also fin can be selected in this form, but with q characteristic for hard scattering. The high
pT differential cross section dσ/dpT ∝ p−γT with γ = 4, what translates to qin − 1 = 1/γ.
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Relaxation and correlation times
of nonequilibrium multiparticle systems

We calculate the relation between temperatures deduced from different components of
Eq. (12) using the fact that for Tsallis distribution

⟨pT⟩ =
T

3 − 2q
. (17)

Using this in Eq. (12) one obtains that

⟨pT⟩(3 − 2q) = ⟨pT⟩ +
[
⟨pT⟩

(
3 − 2qin

)
− ⟨pT⟩

]
· exp

(
−

t f

τrel

)
(18)

and assuming that ⟨pT⟩ = const during the time evolution one gets that

t f

τrel
= ln

(
qin − 1
q − 1

)
. (19)
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Relaxation and correlation times
of nonequilibrium multiparticle systems

Using for q = q(s) values obtained from the experimental data on transverse momentum
distributions for different energies [J. Phys. G 37 115009], [Phys. Rev. D 91 114027], [Eur.
Phys. J. A 51 80] we obtain the ratio t f /τrel.

t f
/τ

re
l

√
s [GeV]

0.14 + 7.06 · s−0.166

Energy dependence of t f /τrel obtained from the experimental data. Based on data from: [Phys. Rev. D
91 114027] (triangle), [J. Phys. G 37 115009] (circles) and [Eur. Phys. J. A 51 80] (diamonds). Figure taken
from [Phys. Rev. D 103 114026].
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Relaxation and correlation times
of nonequilibrium multiparticle systems

We will now move on to correlation time τcor which determines multiplicity distribution
P(N). Its scaled variance is given by the correlation function ν2 (t1, t2) = ν2 (t = |t1 − t2|) by
the relation

Var (N)
⟨N⟩

= 1 + ⟨N⟩⟨ν2⟩, (20)

where

⟨ν2⟩ =

∫ ∫
ν2 (t1, t2) dt1dt2 =

2
t2

f

∫ t f

0

(
t f − t

)
ν2(t)dt. (21)
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Relaxation and correlation times
of nonequilibrium multiparticle systems

For the correlation function of the the form

ν2(t) = exp
(
−

2t
τcor

)
(22)

one gets

⟨ν2⟩ =

(
τcor

t f

)2 [
exp

(
−

t f

τcor

)
− 1 + 2

t f

τcor

]
(23)

and the scaled variance is equal to

Var (N)
⟨N⟩

= 1 +
⟨N⟩

2

(
τcor

t f

)2 [
exp

(
−

t f

τcor

)
− 1 + 2

t f

τcor

]
. (24)
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Relaxation and correlation times
of nonequilibrium multiparticle systems

Using Var (N) and ⟨N⟩ values evaluated from the charged-particle multiplicity distributions
for non-single-diffractive proton-proton (antiproton) collisions we obtain the ratio t f /τcor.
Combining the results of both approaches, we present the ratio τrel/τcor in the energy
range from 10 GeV to 7 TeV.

t f
/τ

co
r

√
s [GeV]

0.0778 + 67.12 · s−0.25

τ r
el
/τ

co
r

√
s [GeV]

Energy dependence of t f /τcor and τrel/τcor obtained from experimental data: [J. Phys. G 37 083001],
[Acta Phys. Polon. B 19 763]. Figure taken from [Phys. Rev. D 103 114026].
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Conclusions

We demonstrated that energy distributions are connected with multiplicity
distributions by their generating functions.

We have shown that if all the distributions occurring in the RTA have the same
functional form of a quasi-power Tsallis distribution the time evolution of which
depends on the time evolution of its control parameter, nonextensivity q(t), then it is
more convenient to consider only the time evolution of this control parameter.

This talk is based on [Eur. Phys. J. A 57 3] and [Phys. Rev. D 103 114026].
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Additional slides
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Correspondence of multiplicity and energy distributions:
Boltzmann-Gibbs energy distribution and Poissonian multiplicity
distribution

Suppose that one has N independently produced particles with energies {E1,...,N},
distributed according to Boltzmann distribution,

F (E) =
1
T

exp
(
−

E
T

)
(25)

with “temperature” parameter T = ⟨E⟩. The sum of energies, U =
∑N

i=1 Ei is then distributed
according to gamma distribution

FN (U) =
1

T (N − 1)!

(U
T

)N−1
exp

(
−

U
T

)
= FN−1 (U)

U
N − 1

(26)

with cumulative distribution equal to:

FN (> U) = 1 −
N−1∑
i=1

1
(i − 1)!

(U
T

)i−1
exp

(
−

U
T

)
. (27)
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Correspondence of multiplicity and energy distributions:
Boltzmann-Gibbs energy distribution and Poissonian multiplicity
distribution

Looking for such N that
∑N

i=0 Ei ≤ U ≤
∑N+1

i=0 Ei we find its distribution which has known
Poissonian form

P (N) = FN+1 (> U) − FN (> U)

=
(U/T)N

N!
exp

(
−

U
T

)
=
⟨N⟩N

N!
exp (−⟨N⟩) (28)

with ⟨N⟩ = U/T.
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Correspondence of multiplicity and energy distributions:
Boltzmann-Gibbs energy distribution and Poissonian multiplicity
distribution

For the constrained systems (if the available energy is limited, U = const), whenever we
have independent variables {E1,...,N} taken from the exponential distribution (25), the
corresponding multiplicity N has Poissonian distribution. However, if the multiplicity is
limited, N = const, the resulting conditional probability becomes:

F (E|N) =
F1 (E) FN−1 (U − E)

FN (U)

=
N − 1

U

(
1 −

E
U

)N−2
(29)

and only in the limit N→∞ the energy distribution goes to the Boltzmann distribution (25).
For fluctuating multiplicity according to Poisson distribution, the energy distribution is given
by the Boltzmann distribution.
In the same way Tsallis energy distribution is connected with the NBD of multiplicity
[Physica A 376 279].

24 / 20



Correspondence of multiplicity and energy distributions: Imprints
of acceptance

In experiments, particle multiplicity is measured usually only within some window of
phase-space. Let us assume that the detection process is a Bernoulli process described
by the BD (K = 1 and p = α for a fixed experimental acceptance α < 1). The number of
registered particles is

M =
N∑

i=1

ni, (30)

where ni follows the BD with the generating function GBD (z) and N comes from P (N) with
the generating function G (z).
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Correspondence of multiplicity and energy distributions: Imprints
of acceptance

The measured multiplicity distribution

P (M) =
1

M!
dMH (z)

dzM

∣∣∣∣∣∣
z=0

(31)

is therefore given by generating function H (z) = G (GBD (z)). Such rough procedure applied
to NBD, BD or PD gives again the same distributions but with modified parameters:
p→ αp/

[
1 − p (1 − α)

]
for NBD, p→ αp for BD, and λ→ αλ for PD. The measured multiplicity

distribution is given by

P (M) =
∞∑

N=M

P (N) P (M|N) (32)

with the acceptance function

P (M|N) =
N!

M! (N −M)!
αM (1 − α)N−M (33)

Detection process extend P (M) distribution to multiplicities M = 0 and M = 1, namely:
P (0) =

∑
∞

N=2 P (N) (1 − α)N and P (1) =
∑
∞

N=2 P (N) Nα (1 − α)N−1.
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Relaxation and correlation times
of nonequilibrium multiparticle systems: RTA and beyond

The form of the function F from Eq. (13) can be deduced by taking f (t) given by Tsallis
distribution with q = q(t) and calculating d f/dt. As a result, we get that

F
[
pT , q(t)

]
= f

[
pT , q(t)

]
·

{
ln

[
1 + (q(t) − 1)

pT

T

]
+

T
T + [q(t) − 1]pT

−
[q(t) − 1]2 + 1

2 − q(t)

}
·

1
[q(t) − 1]2

dq(t)
dt
.

(34)
Note that approximately (because ln x + 1/x ≈ 1) we get that

∂ f
∂t
=
− f

(2 − q)
dq(t)

dt
=

f
τrel

q − 1
2 − q

. (35)
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