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About the Second Law

Universalities and more

Static part : existence of entropy as potential, dynamic part : entropy is

increasing in real processes. (Constant entropy: ideal process.)

Static universality. Absolute temperature: independent of material

structure. Particles and radiation.

Dynamic universality? Characteristic form of di�erential equations.

Transport. Scaling properties.

Static and dynamic parts : conditions of Lyapunov theorems. Material

stability. Possibility of repeated experiments.

Statistical mechanics cannot prove universal statements.

Universal theories : gravity and quantum mechanics.
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How to solve an inequality?
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Pure dissipation: heat conduction in CIT

CIT = Classical Irreversible Thermodynamics.
The calculation of entropy production (Eckart, 1940):

ρė +∇ · qqq = 0, de = Tds

ρṡ +∇ ·
( qqq
T

)
=
ρė

T
+∇ ·

( qqq
T

)
= qqq · ∇ 1

T
≥ 0

Solution of the inequality: qqq(e,∇e) = λT∇ 1

T = −λ∇T , λ(e) ≥ 0.

General aspects:

spacetime: comoving derivative, constitutive state space,

entropy: local thermodynamic potential,

entropy inequality.

Material properties (statistical and kinetic origin):

static EOS: e = cT ,

constitutive EOS?: qqq = −λ(e)∇T (e).
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Hidden covariance

Spacetime aspects - separation of material and motion

∂(ρe)

∂t
+∇ · (qqq + ρvvve) = 0, → ρė +∇ · qqq = 0

It is a change of frame:

comoving(substantial) time derivative: ė = ∂e
∂t + vvv · ∇e,

balance of mass,

convective and conductive current densities,

total and internal energies: e = eTOT − v2/2.
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Constitutive state space

Coleman-Noll and Liu procedures. Separation of functions and variables.
The entropy inequality is conditional :

ρė +∇ · qqq(e,∇e) = 0,

ρṡ(e,∇e) +∇ · JJJ(e,∇e)− Λ(ρė +∇ · qqq(e,∇e)) =

ρ
∂s

∂∇e
(∇e)··· + ρ

(
1

T
− Λ

)
ė + ... ≥ 0

Liu-procedure, Lagrange�Farkas-multipliers. It follows that:

∂s

∂∇e
(e,∇e) = 0, Λ =

1

T
, and qqq(e,∇e) · ∇

(
1

T
(e)

)
≥ 0

Constitutive state variables: (e,∇e)
→ thermodynamic state variables: (e)

Process direction variables: (ė, (∇e)···,∇2e)
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Farkas' lemma

Liu procedure: linear algebra and analysis.

Farkas(-Minkowski-Haar) lemma

If aaai 6= 000, i = 1, ..., n are vectors of a �nite dimensional vector space VVV and
S = {ppp ∈ V ∗V ∗V ∗|ppp · aaai ≥ 0, i = 1, ..., n} is a subset of the dual vector space, then the
following staments are equivalent for all bbb ∈ VVV vectors:
(i) ppp · bbb ≥ 0 for all ppp ∈ S .
(ii) There exist λ1, ..., λn nonnegative real numbers, so that bbb =

∑n
i=1

λiaaai .
Remark:

ppp · bbb −
n∑

i=1

λippp · aaai = ppp · (bbb −
n∑

i=1

λi · aaai ) ≥ 0, ∀ppp ∈ VVV ∗.

History:
Farkas proved it in his analysis of Fourier principle (of mechanics) in 1895 in
Hungarian. Minkowski and Haar provided independent proofs later. The lemma is
the base of the Bell inequalities and also the Karush-Kuhn-Thucker theorems of
optimisation.
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Evolution equations, variational derivatives

Scalar �eld evolution: ϕ̇ = f (ϕ, ∂iϕ)

Ṡ(ϕ, ∂iϕ)− λ(ϕ̇− f (ϕ, ∂iϕ)) = (∂ϕS − λ)ϕ̇+ ∂∂iϕS ∂i ϕ̇+ λf ≥ 0

∂ϕS − λ = 0, ∂∂iϕS = 0,

0 ≤ f ∂ϕS → f = l ∂ϕS , (l ≥ 0)

Extended approach: ϕ̇ = f (ϕ, ∂iϕ, ∂ijϕ)

Higher order state space: (ϕ, ∂iϕ, ∂ijϕ) ;

Constitutive entropy �ux;

Gradient constraints: ∂i ϕ̇ = ∂i f

Ṡ + ∂iJ
i − λ(ϕ̇− f )− Λi (∂i ϕ̇− ∂i f ) ≥ 0

∂ϕS = λ, ∂∂iϕS = Λi , ∂∂ϕS = 0

J i = −∂∂iϕS f + Ĵ i (ϕ, ∂iϕ) 0 ≤ f (∂ϕS − ∂i (∂∂iϕS)) = f
δS
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Korteweg �uids

Ván-Fülöp (Proc. Roy. Soc., 2004)
Ván-Kovács (Phil. Trans. Roy. Soc. A, 2020)
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Korteweg �uids: history

Capillarity.

Van der Waals : gradient of density is a thermodynamic variable.

Korteweg (1905): second gradient of density, pressure expansion.

Balances of mass, momentum and internal energy:

ρ̇+ ρ∇ · vvv = 0,

ρv̇vv +∇ ·PPP = 000,

(ρė +∇ · qqq = −PPP : ∇vvv .)

PPP =
(
p − α∆ρ− β(∇ρ)2

)
III − δ∇ρ ◦ ∇ρ− γ∇2ρ

α, β, γ, δ are density dependent material parameters.

Violently instable. Second law? Eckart �uids (1948)!
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Korteweg �uids � Liu procedure

Constitutive state variables : (e,∇e, ρ,∇ρ,∇2ρ, (vvv),∇vvv)
→ thermodynamic state variables: (e, ρ,∇ρ)

Process direction: (ė, (∇e)···,∇2e, ρ̇, (∇ρ)···, (∇2ρ)···,∇3ρ, v̇̇v̇v , (∇2vvv)···)

ρṡ +∇ · JJJ = qqq · ∇
(
1

T

)
−

−
[
PPP − pIII − ρ2

2

(
∇ · ∂s

∂∇ρ
III +∇ ∂s

∂∇ρ

)]
:
∇vvv
T
≥ 0

Rigorous methods are essential.

The pressure of an ideal, non-dissipative Korteweg �uid:

PPP = p(e, ρ)III +
ρ2

2

(
∇ · ∂s

∂∇ρ
III +∇ ∂s

∂∇ρ

)
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Korteweg �uids � quantum mechanics

PqPqPq =
ρ2

2

(
∇ · ∂s

∂∇ρ
III +∇ ∂s

∂∇ρ

)
'Holographic' property:

∇ ·PqPqPq = ρ∇φ , whre φ = ∇ · ∂(ρs)

∂∇ρ
− ∂ρs

∂ρ
= −δρ(ρs)

Momentum balance: continuum AND point mass

ρv̇vv +∇ ·PqPqPq = ρ(v̇vv +∇φ) = 0 → v̇vv = −∇φ

Mass scale independent quadratic free energy → general Gross-Pitaevskii
equation

s(e, ρ,∇ρ) = sQ

(
e− ~2

2m

(∇ρ)2

4ρ2

)
→ mv̇vv = −∇

(
~2

2

∆
√
ρ

√
ρ

)

Bohm potential → inverse Madelung transformation → nonlinear Schrödinger equation
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Newtonian gravity

Ván-Abe (Physica A, 2022)
Abe-Ván (arXiv:2205.05170, 2022)
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Scalar �eld and hydrodynamics

s(e − ϕ− ∇ϕ·∇ϕ
8πGρ

, ρ). Gibbs relation:

du = Tds +
p

ρ2
dρ = de − d

(
ϕ +
∇ϕ · ∇ϕ
8πGρ

)
.

The potential energy, ϕ, the �eld energy and internal energy are separated.

Balances of mass, momentum, internal energy + �eld equation:

ρ̇+ ρ∇ · vvv = 0,

ρv̇vv +∇ ·PPP = 000,

ρė +∇ · qqq = −PPP : ∇vvv .

Entropy inequality:

ρṡ +∇ · JJJ = Σ ≥ 0
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Gravity

Constitutive state variables : (e,∇e, ρ,∇ρ, (vvv),∇vvv , ϕ,∇ϕ,∇2ϕ)
→ thermodynamic state variabless : (e, ρ, ϕ,∇ϕ)

ρṡ +∇ · JJJ =(
qqq +

ϕ̇

4πG
∇ϕ
)
· ∇
(
1

T

)
+

ϕ̇

4πGT
(∆ϕ− 4πGρ)

−
[
PPP − pIII − 1

4πG

(
∇ϕ∇ϕ− 1

2
∇ϕ · ∇ϕIII

)]
:
∇vvv
T
≥ 0

Holographic property,

Dissipative AND nondissipative together, without variational principles.

Field equation:

τ

l2
ϕ̇ = ∆ϕ− 4πGρ− K∇ϕ · ∇ϕ.
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Nonlinear extension, static, nondissipative �eld

0 = ∆ϕ− 4πGρ− K∇ϕ · ∇ϕ.

Vacuum solutions ρ = 0:

ϕ(rrr) =
1

K
ln(r)

Spherical symmetric force �eld. Crossover. Apparent and real masses:

f (r) = − r1
Kr(r + r1)

= − GM

r(r + r1)
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Modi�ed gravity and Dark Matter

NGC 3198

Thanks to M. Pszota
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Summary and notes

Nonequilibrium thermodynamics

Thermodynamics 6= statistical physics.

Direct, rigorous, analytical methodology: Liu procedure.

Universal dynamics. Compatibility tests : Newtonian gravity and

quantum mechanics.

Euler-Lagrange equations without variational principles.

A uniform derivation of ideal and dissipative evolution equations.

Long-range are local.
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"This may be true, because it is mathematically trivial."
(somebody from Princeton, according to R. Pisarski)
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Thank you for the attention!
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Classical gradient expansions

Classi�ed by constitutive state spaces and constraints

Heat conduction. Internal energy or temperature. (e, ∂ie, ∂ije, ...).
Constraint: balance of internal energy.

Internal variables (e.g. phase �elds). (ϕ, ∂iϕ, ∂ijϕ, ...). Tensorial order
may be arbitrary.

Constraint: evolution equation, free or balance

(Ginzburg-Landau-Alen-Cahn, Cahn-Hilliard).

Fluid mechanics. Mass, velocity and energy. (ρ, ∂iρ, ∂ijρ, v
i (?), ...)), +

more gradients.

Constraints: balances of mass, momentum and energy.

Solid mechanics. Mass, strain and energy (εij , ∂kε
ij , ∂klε

ij , ...), and
more gradients.

Constraints: kinematics, balances of mass, momentum and energy.

General requirements: second law and objectivity.
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Equilibrium thermodynamics or thermostatics

Absolute temperature: does not depend on the material and the method of

the measurement. It is not the scale, not the zero point, it is the concept.

(Lord Kelvin, 1848. See e.g. Kardar, 2007).

Kelvin-Planck form of the second law

It is impossible to devise a cyclically operating device, the sole e�ect of

which is to absorb energy in the form of heat from a single thermal

reservoir and to deliver an equivalent amount of work.

A perpetuum mobile of second kind:

T

Q

W

24 / 29



Thermostatics 2

A heat engine. Absorbs and emits heat and produces work.

T1

T2

W

Q1

Q2
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Thermostatics 3

The reversible device is the most e�ective:

T1

T2

W

Q1

Q2
Q2

E�ciency depends only on the reservoir temperatures: η(TH ,TL)
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Thermostatics 4

More heat engines:

T1

T3

T2

Q3

Q3

Q1

Q2

T2

T1

Q1

Q2
W2

W1

W + W1 2

Properties of e�ciency:

η1(T1,T3)η2(T3,T2) = η3(T1,T2) → η(T1,T2) =
φ(T1)

φ(T2)
→ T =

1

φ
.

Conditions: reversible process and the Kelvin-Planck form. 27 / 29



Variational principles for dissipative processes

Condition: symmetry

Θ̂(ϕ) = 0 , ∃F : Dom(Θ̂)→ R, δF (ϕ) = Θ̂(ϕ)

δ derivation in a Banach (or Frechet) spaces, boundary conditions, ...

Necessary condition: Θ̂ is symmetric.

Many di�erent variational principles

Potentials : Θ̂ ◦ ϕ̂(ϕ) = 0, where Θ̂ ◦ ϕ̂ is symmetric

Integrating multipliers : T̂ ◦ Θ̂ = 0, where T̂ ◦ Θ̂ is symmetric

Change the operator: (Θ̂(ϕ))2 = 0, and neglect parts

Change the function space: Gyarmati principle, ...,

All of them are right, which one is the true?
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Connecting hydro to quantum

Gross-Pitaevskii equation:

i~
∂ψ

∂t
+

~2

2m
∆ψ + µ0ψ − g |ψ|2 ψ = 0

µ0 chemical potential, g interaction parameter (∼ S-wave scattering length).
Madelung transformation:

ψ =
√
ρe iϕ,

ρ density (probability or super�uid), ϕ velocity potential : vvv = ~
m∇ϕ.

i~
2ρ

(
∂ρ

∂t
+∇ · (ρvvv)

)
ψ −

(
m

~
m

∂ϕ

∂t
+ m

v2

2
− ~2

2m

∆
√
ρ

√
ρ
− µ0 + gρ

)
ψ = 0

Continuity and Bernoulli equations of classical rotation free �uids. Its gradient will
be:

mv̇ +∇(µ0 − gρ+ UQ) = 0

UQ(ρ,∇ρ,∇2ρ) is the Bohm potential. Special momentum balance.
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