Backreaction of mesonic fluctuations on the axial anomaly at finite temperature

Gergely Fejős and András Patkós

Eötvös Lorand University Institute of Physics

Margaret Island Symposium 2022

May 15, 2022

不良 トイラト イラト

Outline

 U_A(1) symmetry: Anomalous breakdown and characteristic signal-quantities Thermal evolution of signal-quantities T-dependence of Kobayashi-Maskawa-'t Hooft coupling

 Thermal behavior of the anomaly in an extended linear meson model * Interpretation of non-monotonic behavior of KMT coupling

• Conclusion and Outlook

*arXiv:2112.14903, Phys. Rev. D105 (2022) 096007ロト イヨト イヨト イヨト ヨー つへで

Backreaction of mesonic fluctuations on the axial anomaly at f

• The $U_A(1)$ anomaly

$$\partial_{\mu} j_{5\mu}(x) = 2im_f \rho_{5f}(x) - 2N_f g^2 q(x),$$

$$j_{5\mu} = \sum_f \bar{\psi}_f \gamma_{\mu} \gamma_5 \psi_f, \quad \rho_5 = \bar{\psi}_f \gamma_5 \psi_f, \quad q(x) = \frac{1}{32\pi^2} \text{Tr} F_{\mu\nu} \tilde{F}_{\mu\nu}.$$

• Topological susceptibility

$$\chi = \int d^3x \langle q^*(x)q(0) \rangle$$

• Topological mass splitting (chiral limit, $m_{Goldstone} = 0$)

$$\chi = \frac{f_\pi^2 m_{\eta_0}^2}{2N_f} + \mathcal{O}(1/N_c)$$

→ 同 ▶ → 臣 ▶ → 臣 ▶ ○ 臣 → ○ � ()

• Instanton-induced 2N_f-quark interaction

$$V_{\mathcal{K}M\mathcal{T}} = -\mathcal{K} \left[\det \bar{\psi} P_+ \psi + \det \bar{\psi} P_- \psi \right]$$

At high temperature:

exponential suppression of KMT-coupling due to suppression of instanton density

$$K_T = K_0 \exp(-\lambda T^2), \qquad \lambda \sim \frac{8}{3} (\pi R_{size})^2$$

向下 イヨト イヨト

• Characteristic patterns of mass degeneracy

• Similar pattern in meson susceptibilities: $\chi_{\Phi} = \int_{X} \langle \Phi(x) \Phi(0) \rangle$

• Monotonic decrease of χ with increasing temperature

Combined effect of chiral symmetry restoration (f_{π}) and suppression of anomalous singlet mass $(m_{\eta_0}^2)$

```
Lattice: Bonati et al. (2016), Borsányi et al. (2016)
```

```
U(3) ChPT: Gómez Nicola et al. (2019)
```

 Non-monotonic *T*-dependence of KMT coupling Leading large N_c expression of χ in Nambu–Jona-Lasinio model (Fukushima *et al.* (2001)) Fixing K_T by requiring accurate agreement with lattice data.

Gergely Fejős and András Patkós

Backreaction of mesonic fluctuations on the axial anomaly at f

Effective S+P Meson Model:

$$\Gamma = \int_X \Big(\operatorname{Tr} \left[\partial_i M^{\dagger} \partial_i M \right] + V[M] \Big), \qquad M = (s_a + i\pi_a) T^a.$$

 $U_L(3) \times U_R(3)$ symmetry $\longrightarrow V = V_{sym}[M]$ depends on group invariants

$$\begin{split} \rho &= \, \mathrm{Tr}\,(M^{\dagger}M), \ \ \tau &= \, \mathrm{Tr}\,(M^{\dagger}M - \, \mathrm{Tr}\,(M^{\dagger}M)/3)^2, \\ \rho_3 &= \, \mathrm{Tr}\,(M^{\dagger}M - \, \mathrm{Tr}\,(M^{\dagger}M)/3)^3. \end{split}$$

Anomaly represented by KMT-determinant: $\Delta = \det M^{\dagger} + \det M$ Ansatz for the full effective potential (with linear explicit breaking fields $H = h_0 T^0 + h_8 T^8$ and backreaction on couplings through ρ): $V_{sym} = U(\rho) + C(\rho)\tau + D(\rho)\rho_3,$ $V(\rho, \tau, \rho_3, \Delta; H) = V_{sym} + A(\rho)\Delta - \operatorname{Tr}(H(M + M^{\dagger})),$

周 ト イモト イモト

Momentum scale (k) dependent couplings due to meson-fluctuations below hadronisation scale $\Lambda \sim 1$ GeV

$$\partial_k V_k = \partial_k U_k(\rho) + \partial_k C_k(\rho)\tau + \partial_k A_k(\rho)\Delta + \partial_k D(\rho)\rho_3$$

Set of RGE derived for U_k , C_k , A_k , D_k and integrated $k \in (\Lambda \rightarrow 0)$ Initial functional (in principle determined by QCD dynamics)

$$U_{\Lambda}(\rho) = m^2 \rho + g_1 \rho^2$$
, $C_{\Lambda}(\rho) = g_2$, $D_{\Lambda}(\rho) = 0$

Anomaly suppression at very high T:

$$A_{\Lambda}(\rho) = a \left[\Theta(T_0 - T) + e^{-\frac{8}{3}(\pi R_{size})^2(T^2 - T_0^2)} \Theta(T - T_0) \right]$$

 m^2, g_1, g_2, a determined from observed T = 0 pseudoscalar spectra $(m_{\pi}^2, m_K^2, m_{\eta}^2, m_{\eta'}^2)$; PCAC determines h_0, h_8 through condensates

$$h_{0} = \frac{1}{\sqrt{6}}m_{\pi}^{2}v_{n-s} + \sqrt{\frac{2}{3}}m_{K}^{2}v_{s}, \quad h_{8} = \frac{2}{\sqrt{3}}m_{\pi}^{2}v_{n-s} - \frac{2}{\sqrt{3}}m_{K}^{2}v_{s},$$

Results: A) *T*-independent $A_{\Lambda} = a$

 T_c : crossover temperature from inflection of

•
$$v_{non-strange} = \frac{1}{\sqrt{3}} \left(\sqrt{2} \langle s_0 \rangle + \langle s_8 \rangle \right) \rightarrow 158 \text{MeV},$$

• $v_{strange} = \frac{1}{\sqrt{3}} \left(\langle s_0 \rangle - \sqrt{2} \langle s_8 \rangle \right) \rightarrow 148 \text{MeV},$

Gergely Fejős and András Patkós

Backreaction of mesonic fluctuations on the axial anomaly at f

•
$$|m_{\pi} - m_{\sigma}| \rightarrow 167 \mathrm{MeV}$$

Gergely Fejős and András Patkós Backreaction of mesonic fluctuations on the axial anomaly at f

 $|A_{k=0}(\rho, T)|$ and the backreaction of condensate evaporation

Results: B) *T*-dependent A_{Λ} Instanton motivated *T*-dependence sets in for $T \ge T_0$ $T_0 = 143 \text{MeV}$ (leaves T_c from $v_{non-strange}$ unchanged)

Gergely Fejős and András Patkós

Backreaction of mesonic fluctuations on the axial anomaly at f

 $U_A(1)$ related mass differences vary non-monotonically

Conclusion

Phenomenological non-monotonic temperature dependence of the KMT coupling first established by Fukushima *et al.* (2001) is reconstructed with FRG method in a linear meson model with extended effective potential to result from

- non-perturbative backreaction of the chiral condensate on the RG-evolution of the field dependent coefficient of the 't Hooft determinant;
- instanton motivated explicit *T*-dependence introduced into this coefficent at the cut-off scale.

Results confirm results of earlier less complete investigations of Fejős and Hosaka (2016)

Conclusion and Outlook

Outlook

• Linearizing the effective potential only in τ and allowing general dependence on the 't Hooft-determinant

$$V(
ho, au,\Delta) = U(
ho,\Delta) + C(
ho) au$$

brings in effects of higher charged topological configurations (Pisarski, Rennecke, 2019);

- Introducing θ-term into the effective action of the linear meson model provides access also to the topological susceptibility;
- Wave function renormalisation effects are expected to have modest influence.

イロト 不得 トイラト イラト・ラ

Technology

◆□ > ◆□ > ◆豆 > ◆豆 > -

≡ ∽ ९ (~

$$\begin{aligned} \partial_{k}U_{k}(\rho) &= \frac{\Omega}{2}T\sum_{n}\tilde{\partial}_{k}(8\log D_{8} + \log D_{0}),\\ \partial_{k}A_{k}(\rho) &= \Omega T\sum_{n}\tilde{\partial}_{k}\left[\frac{8}{D_{8}}\left(A_{k}'(\omega_{n}^{2} + k^{2} + U_{k}') + \frac{2}{3}\rho C_{k}A_{k}' + A_{k}C_{k}\right) \right. \\ &\left. + \frac{1}{D_{0}}\left((4A_{k}' + \rho A_{k}'')(\omega_{n}^{2} + k^{2} + U_{k}') + U_{k}''(\rho A_{k}' - 3A_{k})\right)\right]\end{aligned}$$

with

$$D_{8} = (\omega_{n}^{2} + k^{2} + U_{k}')(\omega_{n}^{2} + k^{2} + U_{k}' + \frac{4}{3}\rho C_{k}) - \frac{1}{3}\rho A_{k}^{2},$$

$$D_{0} = (\omega_{n}^{2} + k^{2} + U_{k}')(\omega_{n}^{2} + k^{2} + U_{k}' + 2\rho U_{k}'') - \frac{4}{3}\rho (A_{k} + \rho A_{k}')^{2}.$$

イロト イヨト イヨト イヨト

3

FRG equation of C_k

$$\begin{split} \partial_k C_k &= \Omega T \sum_n \tilde{\partial}_k \left\{ \frac{7}{2D_8} \left(2C'_k (\omega_n^2 + k^2 + U'_k) + \frac{4}{3} \rho C_k C'_k + 2C_k^2 \right) \\ &+ \frac{2}{D_8} \left(\frac{3}{2} C'_k (\omega_n^2 + k^2 + U'_k) + \frac{1}{3} \rho C_k C'_k - \frac{1}{4} A_k A'_k \right) \\ &- \frac{2}{3D_8^2} \left(A_k^2 + \frac{4}{3} \rho C_k^2 + 4C_k (\omega_n^2 + k^2 + U'_k) \right)^2 \\ &+ \frac{1}{D_0} \left((3C'_k + \rho C''_k) (\omega_n^2 + k^2 + U'_k) + \frac{3}{2} A'_k (A_k + \rho A'_k) + \rho C'_k U''_k \right) \\ &- \frac{4}{3D_8^2} \left(\frac{1}{16} A_k^4 + \frac{7}{12} \rho A_k^2 C_k^2 + \frac{2}{9} \rho^2 C_k^4 (\omega_n^2 + k^2 + U'_k) \left(A_k^2 + \frac{1}{3} \rho C_k^2 \right) C_k \right) \\ &+ \frac{5}{4} (\omega_n^2 + k^2 + U'_k)^2 C_k^2 \right) - \end{split}$$

・ロト ・ 一 ト ・ モ ト ・ モ ト

臣

,

$$\begin{split} &-\frac{8}{D_0D_8} \left((\omega_n^2 + k^2 + U_k')^2 \Big(\frac{5}{12} C_k^2 + \frac{3}{16} (U_k'' + \frac{4}{3}\rho C_k')^2 + \frac{1}{2} C_k (U_k'' + \frac{4}{3}\rho C_k') \Big) \right. \\ &+ (\omega_n^2 + k^2 + U_k') \Big(\frac{1}{6} \rho C_k^2 (U_k'' + \frac{2}{3} C_k') + \frac{1}{16} (U_k'' + \frac{4}{3}\rho C_k') (A_k^2 \\ &- 4\rho A_k A_k' - 4\rho^2 A_k'^2) + \frac{C_k}{24} (3A_k^2 - 4\rho^2 A_k'^2) \Big) \\ &+ \frac{2}{9} \rho^2 U_k'' C_k^3 - \frac{1}{9} \rho C_k^2 (A_k^2 - \rho A_k A_k' - 2\rho^2 A_k'^2) - \frac{1}{4} \rho C_k A_k^2 U_k'' \\ &- \frac{2}{9} \rho^2 C_k C_k' A_k (A_k + \rho A_k') - \frac{A_k}{48} (A_k + \rho A_k') (A_k^2 - 4\rho^2 A_k'^2) \Big) \\ &+ \frac{A_k^2}{6D_0D_8} \Big(4C_k (\omega_n^2 + k^2 + U_k') - A_k^2 \Big) \\ &+ \frac{(\omega_n^2 + k^2 + U_k')^2 A_k^2}{4D_0D_8^2} \Big(A_k^2 + \frac{8}{3} \rho A_k A_k' + \frac{4}{3} \rho^2 A_k'^2 - \frac{8}{3} \rho C_k (U_k'' - \frac{2}{3} C_k) \Big) \end{split}$$

・ロト ・日ト ・ヨト ・ヨト

臣

FRG equation of C_k contd.(2)

$$+ \frac{(\omega_n^2 + k^2 + U'_k)}{4D_0 D_8} \left(6(\omega_n^2 + k^2 + U'_k)(U''_k - \frac{2}{3}C_k)^2 - \frac{2A_k^2}{D_8}(\omega_n^2 + k^2 + U'_k)^2(U''_k - \frac{2}{3}C_k) + (A_k^2 + \frac{8}{3}\rho A_k A'_k + \frac{4}{3}\rho^2 A'^2_k) \left(\frac{4\rho C_k A_k^2}{3D_8} - 3(U''_k - \frac{2}{3}C_k)\right) \right) + \frac{1}{D_0} \left(A_k A'_k + \rho A'^2_k \left(\frac{1}{2} - \frac{(\omega_n^2 + k^2 + U'_k)^2}{D_8} \right) - \frac{\omega_n^2 + k^2 + U'_k}{4D_8} \left(A_k^2 (2C_k + U''_k) - 4\rho A_k A'_k (U''_k - \frac{2}{3}C_k) + 4\rho^2 A'^2_k (U''_k + \frac{2}{3}C_k) \right) \right) \right\},$$

ヘロト ヘロト ヘヨト ヘヨト