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Introduction
Motivation

Schwinger predicted creation of electron-positron pairs from vacuum
in strong external electric field. [Schwinger J., Phys. Rev. (1951)]

Experimental realisation of this novel phenomenon is still afar.

Ec =
m2c3

eℏ
≈ 1.32× 1018Vm−1

Many condensed matter systems exhibit behaviour (analogous) known
in high energy physics in the low energy regime. (due to vanishing or
small band gap)

Is there a condensed matter analog to Schwinger pair production?

Biplab Mahato (UWr) KE approach to Graphene 2 / 13



Introduction
Motivation

Schwinger predicted creation of electron-positron pairs from vacuum
in strong external electric field. [Schwinger J., Phys. Rev. (1951)]

Experimental realisation of this novel phenomenon is still afar.

Ec =
m2c3

eℏ
≈ 1.32× 1018Vm−1

Many condensed matter systems exhibit behaviour (analogous) known
in high energy physics in the low energy regime. (due to vanishing or
small band gap)

Is there a condensed matter analog to Schwinger pair production?

Biplab Mahato (UWr) KE approach to Graphene 2 / 13



Introduction
Motivation

Schwinger predicted creation of electron-positron pairs from vacuum
in strong external electric field. [Schwinger J., Phys. Rev. (1951)]

Experimental realisation of this novel phenomenon is still afar.

Ec =
m2c3

eℏ
≈ 1.32× 1018Vm−1

Many condensed matter systems exhibit behaviour (analogous) known
in high energy physics in the low energy regime. (due to vanishing or
small band gap)

Is there a condensed matter analog to Schwinger pair production?

Biplab Mahato (UWr) KE approach to Graphene 2 / 13



Introduction
Motivation

Schwinger predicted creation of electron-positron pairs from vacuum
in strong external electric field. [Schwinger J., Phys. Rev. (1951)]

Experimental realisation of this novel phenomenon is still afar.

Ec =
m2c3

eℏ
≈ 1.32× 1018Vm−1

Many condensed matter systems exhibit behaviour (analogous) known
in high energy physics in the low energy regime. (due to vanishing or
small band gap)

Is there a condensed matter analog to Schwinger pair production?

Biplab Mahato (UWr) KE approach to Graphene 2 / 13



Introduction
Motivation

Schwinger predicted creation of electron-positron pairs from vacuum
in strong external electric field. [Schwinger J., Phys. Rev. (1951)]

Experimental realisation of this novel phenomenon is still afar.

Ec =
m2c3

eℏ
≈ 1.32× 1018Vm−1

Many condensed matter systems exhibit behaviour (analogous) known
in high energy physics in the low energy regime. (due to vanishing or
small band gap)

Is there a condensed matter analog to Schwinger pair production?

Biplab Mahato (UWr) KE approach to Graphene 2 / 13



Introduction
Why Graphene?

Single layer of Carbon atoms
arranged in a hexagonal lattice.

Two bands touches each other
at Dirac Points.

Theory around Dirac points look
exactly like the theory of
massless Dirac
particles[Novoselov et al. Nature

(2005)].
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Effect of External Electric Field

Parallels between Schwinger process in QED vacuum and Graphene
QED Graphene

Dirac Sea Fermi Sea
Electron-Positron pairs Electron-Hole pairs

Proposed in the paper [Dora B., Moessner R.,Phys Rev B., (2010)]

n(p⃗, t) = Θ(px)Θ(eEt − px) exp

(
−
πvFp

2
y

ℏeE

)

N(t) =
2eE

π2vFℏ

√
vF eEt2

ℏ
≈ E 3/2

Different stages
Classical Kubo Schwinger/Kibble-Zurek

t ≪ h
W

h
W ≪ t ≪

√
ℏ

vF eE

√
ℏ

vF eE
≪ t ≪ ℏ

eaE

j ≈ Et j ≈ E j ≈ tE 3/2
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Kinetic Equation Approach
Formalism1

Hamiltonian

H(t) = vF
1

L2

∑
p⃗

Ψ†(p⃗, t)P⃗σ⃗Ψ(p⃗, t)

Diagonalise the Hamiltonian using unitary transformation to go to the
quasiparticle picture.

Ψ → UΨ = Φ =

(
a(p⃗, t)

b†(−p⃗, t)

)
Distribution functions

fe(p⃗, t) = ⟨a†(p⃗, t)a(p⃗, t)⟩ fh(p⃗, t) = ⟨b†(−p⃗, t)b(−p⃗, t)⟩

Equation of motion: i ddtΨ = vF P⃗σ⃗Ψ

1Based on works by Smolyansky S. A., Blaschke D., Schmidt S. ...,e.g. see

[Smolyansky et. al. Particles (2020); 2004.03759]
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Kinetic Equation
Numerical Solutions

Kinetic Equation

ḟ (p⃗, t) =
1

2
λ(p⃗, t)

∫ t

t0

dt ′λ(p⃗, t ′)(1− 2f (p⃗, t ′)) cos θ(t, t ′)

where λ(p⃗, t) = ev2F
E1P2 − E2P1

ε(p⃗, t)2
, θ(t, t ′) = 2

ℏ
∫ t
t′ dt

′′ε(p⃗, t ′′) and

ε(p⃗, t) = vF

√
P2
1 + P2

2

The above Integral equation is equivalent to the following set of
Ordinary Differential Equations

ḟ =
1

2
λu u̇ = λ(1− 2f )− 2ε

ℏ
v v̇ =

2ε

ℏ
u

These can be solved numerically for any given external electric field E .
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Results

The numerical method works for all kind of external field model

Sauter Pulse

E (t) = E0 cosh
−2(κt)

Gaussian Pulse

E (t) = E0e
−t2/2τ2
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Results

The numerical method works for all kind of external field model

Sauter Pulse

E (t) = E0 cosh
−2(κt)

Gaussian Pulse

E (t) = E0e
−t2/2τ2

The created pair align (in momentum space) along the direction of the
applied electric field
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Approximate Solution2

Low Density Approximation f ≪ 1

f (t) =

(
1

2

∫ t

−∞
dt ′λ(t ′) cos θ(t ′,−∞)

)2

+

(
1

2

∫ t

−∞
dt ′λ(t ′) sin θ(t ′,−∞)

)2

Effective mass Approximation

Replace momentum with its time average

P2 →< P(t)2 >= p2 + e2 < A(t)2 >= p2 + e2m2
∗v

2
F

λ∗(p⃗, t) = − ev2
F

ε2∗(p⃗)
E (t) := Λ(p)E (t)

Distribution functions can directly be computed via

f (p⃗, t) = Λ2(p⃗)

(
1

2

∫ t

−∞
dt ′λ∗(t

′) cos θ∗(t
′,−∞)

)2

2[Blaschke et al., (2022); 2201.10594]
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Comparison

Slope = 1.52 ≈ 3
2

The Approximate solution deviates from the exact solution for large

external fields.
2πm∗v2

F
ℏκ < 1 or E0 <

ℏκ2

2πevF
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Summary and Outlook

Graphene can be a testing ground to gain insight about the structure
of QED vacuum.

Recently some experimental signature of this process was seen in
graphene superlattices. [Berdyugin et. al., Science, 2022]

Future Works

Include back-reaction and collision terms

Gapped system [ S. P. Gavrilov, D. M. Gitman, Phys. Rev. D,1996]

⟨j(t)⟩ ≈ tE
d+1
2 exp

(
−π∆2

evFEℏ

)
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Thank You
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Supplimentary slide
1[Dora B., Moessner R.,Phys Rev B., 2010]

Constant Electric field E

n(p⃗, t) = Θ(px)Θ(eEt − px) exp

(
−
πvFp

2
y

ℏeE

)

N(t) =
2eE

π2vFℏ

√
vF eEt2

ℏ
≈ E 3/2t
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Comparison with other methods

[Panferov A., EPJ WoC 204,06008 (2019); 1901.01395]
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