Thermodynamics of rarefied gases

R. Kovács in collaboration with P. Ván, S. Simić and D. Madjarevic

Department of Energy Engineering, BME Department of Theoretical Physics, Wigner RCP, Budapest, Hungary

May 17, 2022

What are the plasmas from a continuum perspective?

lonized gases.

One utilization: fusion reactor, ionized rarefied gases.

What are the rarefied gases from a continuum perspective?

Low-pressure states of gases.

Problem: Navier-Stokes-Fourier equations are not valid.

Experimental arrangement

- There is some gas in a vessel.
- ② Under controlled pressure.
- On controlled temperature.
- Excited by a constant frequency.
- Incident signal is measured on the detector.

Fig. 1. The phase speed versus frequency. Experimental data: \bullet Mayer and Sessler; \bigcirc Greenspan. Theoretical results:

- ----- Navier-Stokes;
- ----- Woods-Troughton;
- -+-+- Anile-Pluchino;
- ----- Lebon-Cloot.

Reason: the presence of ballistic effects.

Solution: extending the Navier-Stokes-Fourier system.

Electrodynamic part is neglected.

Tool: irreversible thermodynamics.

Aspects of ballistic propagation

- Ballistic propagation: goes with speed of sound.
 - Rational Extended Thermodynamics (RET): phonon hydro, non-interacting particles, particle-wall interaction.
 ONLY for low temperature, rarefied or small systems...
 - Continuum theory: elastic wave propagation. It can be used even in **room temperature** case.

Speed of sound \Rightarrow mechanical coupling!

- Experiments
 - heat conduction: rarefied phonon gas
 - acoustics: rarefied gases

Generalization of fluid dynamics: Meixner's theory

 \bullet Balances: mass, energy, momentum \rightarrow

$$\begin{split} \dot{\rho} + \rho \partial^{i} v^{i} &= 0, \\ \rho \dot{e} + \partial^{i} q^{i} &= -P^{ij} \partial^{i} v^{j}, \\ \rho \dot{v}^{i} + \partial^{j} P^{ij} &= 0, \\ \text{and } P^{ij} &= \Pi^{ij} + p \delta^{ij} \text{ (static } (p) \text{ and dynamic } (\Pi^{ij}) \text{ pressure).} \end{split}$$

- entropy density: $s(e, \rho, Q^{ij}) = s_{eq}(e, \rho) \frac{m_1}{2}Q^{ij}Q^{ij}$,
- entropy current: $J^i = q^i/T$, classical! \rightarrow
- NO coupling!

Constitutive equations: generalized Navier-Stokes

$$q + \lambda \partial_x T = 0,$$

 $\tau_{\Pi} \dot{\Pi} + \Pi + \nu \partial_x v = 0.$
 Q^{ij} : pressure!
Heat conduction? Coupling? Not enough

Generalization of fluid dynamics: RET

Arima et al. (2014), derived from kinetic theory for polyatomic gases:

 $\begin{array}{l} \partial_t F + \partial_k F^k = 0, \mbox{ mass balance} \\ \partial_t F^i + \partial_k F^{ik} = 0, \mbox{ momentum balance} \\ \partial_t F^{ij} + \partial_k F^{ijk} = P^{ij}, \\ \partial_t G^{ii} + \partial_k G^{iik} = 0, \mbox{ energy balance} \\ \partial_t G^{ppi} + \partial_k G^{ppik} = Q^{ppi} \\ \hline \mbox{ Reason: energy is the trace of pressure!} \\ \hline \mbox{ Constitutive equations (1D), linearized, coupled!} \end{array}$

$$\tau_{q}\dot{q} + q + \lambda\partial_{x}T + aT_{0}\partial_{x}\Pi = 0,$$

$$\tau_{\Pi}\dot{\Pi} + \Pi + \nu\partial_{x}v + \frac{\nu}{1 + c_{v}^{*}}\partial_{x}q = 0.$$

Generalization of fluid dynamics: NET + IV

Non-equilibrium thermodynamics with internal variables Balances +

- entropy density: $s(e, \rho, q^i, Q^{ij}) = s_e(e, \rho) \frac{m_1}{2}q^iq^i \frac{m_2}{2}Q^{ij}Q^{ij}$
- entropy current: $J^i = b^{ij}q^j \rightarrow \text{coupling!}$

Constitutive equations (1D), linearized, coupled!

 $\begin{aligned} \tau_{q}\dot{q} + q + \lambda\partial_{x}T + \varepsilon\partial_{x}\Pi &= 0, \\ \tau_{\Pi}\dot{\Pi} + \Pi + \nu\partial_{x}v + \eta\partial_{x}q &= 0. \end{aligned}$

Q^{ij}: pressure = Meixner's theory! "Ballistic generalization": thermodynamic equivalence between phonon and real gases!

Rarefied gases: density dependence.

Cornerstone of rarefaction: density dependence

- Viscosity
 - Reality: same viscosity at 1 and $<10^{-4}$ atm? \rightarrow Experiments!
 - RET: constant, e.g., ν = pτ₂ → τ₂ ~ ¹/_ρ. (Only for?) Maxwell molecules. Density dependence: Enskog correction.
 - Continuum theory: $\nu \sim \rho \rightarrow$ role of kinematic viscosity!

Experiments: Gracki et al, 1969.

Cornerstone of rarefaction: density dependence

Assumptions:

- Viscosity
 - **RET**: constant, e.g., $\nu = p\tau_2 \rightarrow \tau_2 \sim \frac{1}{\rho}$.
 - Continuum theory: $\nu\sim\rho\rightarrow$ role of kinematic viscosity!
- Thermal conductivity
 - $\bullet\,$ Reality: same conductivity at 1 and $<10^{-4}$ atm?
 - **RET**: constant, i.e., $\lambda \sim \rho \tau_1$.
 - Continuum theory: $\lambda \sim \frac{1}{a}$ condition of ballistic effects!
- Relaxation time
 - Expectation: rarefaction leads to non-classical the behavior
 - **RET**: $\tau \sim \frac{1}{\rho}$
 - Continuum theory: $\tau \sim \frac{1}{\rho}$
- Coupling parameters
 - RET: constrained and can not be adjusted!
 - Continuum theory: free, $\Box_{12} \sim \frac{1}{\rho}$, $\Box_{21} \sim \rho$ (reciprocity)

Final benchmark: experiments

Scaling of $\frac{\omega}{p}$?! Kinetic theory: strict expectation. After calculating the dispersion relations...

 $\mathbf{O} = \mathbf{O} =$

- Classical and generalized NSF theory: ^w/_p dependence is obtained!
 Only for constant material parameters and ideal gas.
- 2 These should not be necessary!

Common point: to evaluate the measurements, ω and p must be given separately!

SEE THE EXPERIMENTS!

Experimental arrangement

- There is some gas in a vessel.
- ② Under controlled pressure.
- On controlled temperature.
- Excited by a constant frequency.
- Incident signal is measured on the detector.

Experiments - Rhodes (1946)

- If ω and p are given separately.
- Using the same temperature with varying the density.

Experiments - Mayer and Sessler (1957)

• The generalized theories effectively characterize the experiments.

• Unified framework for thermo-mechanical phenomena.

• Electrodynamics is missing. Future work.

Thank you for your kind attention!

About kinetic theory - phonon hydrodynamics

Momentum series expansion + truncation closure

$$u_{\langle i_1i_2...i_N\rangle} = \int kn_{\langle i_1...i_n\rangle} f dk.$$

$$\frac{\partial u_{\langle n \rangle}}{\partial t} + \frac{n^2}{4n^2 - 1} c \frac{\partial u_{\langle n-1 \rangle}}{\partial x} + c \frac{\partial u_{\langle n+1 \rangle}}{\partial x} = \begin{cases} 0 & n = 0 \\ -\frac{1}{\tau_R} u_{\langle 1 \rangle} & n = 1 \\ -\left(\frac{1}{\tau_R} + \frac{1}{\tau_N}\right) u_{\langle n \rangle} & 2 \le n \le N \end{cases}$$

It requires at least N=30 momentum equations to approximate the real propagation speeds!

Coupling between the heat flux and the pressure!

Ballistic-conductive system, tested on NaF experiments!

$$\rho c \partial_t T + \partial_x q = 0,$$

$$\tau_q \partial_t q + q + \lambda \partial_x T + \kappa \partial_x Q = 0,$$

$$\tau_Q \partial_t Q + Q + \kappa \partial_x q = 0.$$

Properties of the structure

• Thermo-mechanical coupling:

 $Q^{ij} \mid \rightarrow$ current density of the heat flux \rightarrow [pressure

Ballistic-conductive:

 $\tau_{q}\tau_{Q}\partial_{ttt}T + (\tau_{q} + \tau_{Q})\partial_{tt}T + \partial_{t}T = a\partial_{xx}T + (\kappa^{2} + \tau_{Q})\partial_{txx}T$

B.C. vs P.H.: κ is free!

Heat pulse experiment I

Arrangement for solids

Heat pulse experiment II

Not the expected results at low temperatures! Presence of second sound and ballistic propagation!

The ballistic-conductive model - Solutions

