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Thermodynamics of rarefied gases

What are the plasmas from a continuum perspective?

Ionized gases.

One utilization: fusion reactor, ionized rarefied gases.
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Thermodynamics of rarefied gases

What are the rarefied gases from a continuum perspective?

Low-pressure states of gases.

Problem: Navier-Stokes-Fourier equations are not valid.
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Thermodynamics of rarefied gases

Experimental arrangement

1 There is some gas in a
vessel.

2 Under controlled pressure.

3 On controlled
temperature.

4 Excited by a constant
frequency.

5 Incident signal is
measured on the detector.
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Thermodynamics of rarefied gases
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Thermodynamics of rarefied gases

Reason: the presence of ballistic effects.

Solution: extending the Navier-Stokes-Fourier system.

Electrodynamic part is neglected.

Tool: irreversible thermodynamics.
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Thermodynamics of rarefied gases

Aspects of ballistic propagation

Ballistic propagation: goes with speed of sound.

Rational Extended Thermodynamics (RET): phonon hydro,
non-interacting particles, particle-wall interaction.
ONLY for low temperature, rarefied or small systems...
Continuum theory: elastic wave propagation. It can be used
even in room temperature case.

Speed of sound ⇒ mechanical coupling!

Experiments

heat conduction: rarefied phonon gas
acoustics: rarefied gases
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Thermodynamics of rarefied gases

Generalization of fluid dynamics: Meixner’s theory

Balances: mass, energy, momentum →
ρ̇+ ρ∂ iv i = 0,
ρė + ∂ iqi = −P ij∂iv j ,
ρv̇ i + ∂jP ij = 0,
and P ij = Πij + pδij (static (p) and dynamic (Πij) pressure).

entropy density: s(e, ρ,Q ij) = seq(e, ρ)− m1
2 Q ijQ ij ,

entropy current: J i = qi/T , classical! →
NO coupling!

Constitutive equations: generalized Navier-Stokes

q + λ∂xT = 0,
τΠΠ̇ + Π + ν∂xv = 0.

Q ij : pressure!
Heat conduction? Coupling? Not enough.
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Thermodynamics of rarefied gases

Generalization of fluid dynamics: RET

Arima et al. (2014),
derived from kinetic theory for polyatomic gases:

∂tF + ∂kF
k = 0, mass balance

∂tF
i + ∂kF

ik = 0, momentum balance
∂tF

ij + ∂kF
ijk = P ij ,

∂tG
ii + ∂kG

iik = 0, energy balance
∂tG

ppi + ∂kG
ppik = Qppi

Reason: energy is the trace of pressure!
Constitutive equations (1D), linearized, coupled!

τqq̇ + q + λ∂xT + aT0∂xΠ = 0,

τΠΠ̇ + Π + ν∂xv +
ν

1 + c∗v
∂xq = 0.
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Thermodynamics of rarefied gases

Generalization of fluid dynamics: NET + IV

Non-equilibrium thermodynamics with internal variables
Balances +

entropy density: s(e, ρ, qi ,Q ij) = se(e, ρ)− m1
2 qiqi − m2

2 Q ijQ ij

entropy current: J i = bijqj → coupling!

Constitutive equations (1D), linearized, coupled!

τqq̇ + q + λ∂xT + ε∂xΠ = 0,

τΠΠ̇ + Π + ν∂xv + η∂xq = 0.

Q ij : pressure = Meixner’s theory!
”Ballistic generalization”: thermodynamic equivalence between

phonon and real gases!
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Thermodynamics of rarefied gases

Rarefied gases: density dependence.
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Thermodynamics of rarefied gases

Cornerstone of rarefaction: density dependence

Viscosity
Reality: same viscosity at 1 and < 10−4 atm? → Experiments!
RET: constant, e.g., ν = pτ2 → τ2 ∼ 1

ρ .

(Only for?) Maxwell molecules.
Density dependence: Enskog correction.
Continuum theory: ν ∼ ρ → role of kinematic viscosity!

Experiments: Gracki et al, 1969.
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Thermodynamics of rarefied gases

Cornerstone of rarefaction: density dependence

Assumptions:

Viscosity
RET: constant, e.g., ν = pτ2 → τ2 ∼ 1

ρ .
Continuum theory: ν ∼ ρ → role of kinematic viscosity!

Thermal conductivity
Reality: same conductivity at 1 and < 10−4 atm?
RET: constant, i.e., λ ∼ ρτ1.
Continuum theory: λ ∼ 1

ρ condition of ballistic effects!

Relaxation time
Expectation: rarefaction leads to non-classical the behavior
RET: τ ∼ 1

ρ

Continuum theory: τ ∼ 1
ρ

Coupling parameters
RET: constrained and can not be adjusted!
Continuum theory: free, □12 ∼ 1

ρ , □21 ∼ ρ (reciprocity)
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Thermodynamics of rarefied gases

Final benchmark: experiments

Scaling of ω
p ?!

Kinetic theory: strict expectation.
After calculating the dispersion relations...

1 Classical and generalized NSF theory: ω
p dependence is

obtained!
Only for constant material parameters and ideal gas.

2 These should not be necessary!

Common point: to evaluate the measurements,
ω and p must be given separately!

SEE THE EXPERIMENTS!
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Thermodynamics of rarefied gases

Experimental arrangement

1 There is some gas in a
vessel.

2 Under controlled pressure.

3 On controlled
temperature.

4 Excited by a constant
frequency.

5 Incident signal is
measured on the detector.
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Thermodynamics of rarefied gases

Experiments - Rhodes (1946)

If ω and p are given separately.
Using the same temperature with varying the density.

NSF
Kinetic theory

L-G NSF
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Thermodynamics of rarefied gases

Experiments - Mayer and Sessler (1957)
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Thermodynamics of rarefied gases

Outlook

The generalized theories effectively characterize the
experiments.

Unified framework for thermo-mechanical phenomena.

Electrodynamics is missing. Future work.
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Thermodynamics of rarefied gases

Thank you for your kind attention!
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Thermodynamics of rarefied gases

About kinetic theory - phonon hydrodynamics

Momentum series expansion + truncation closure

u⟨i1 i2...iN⟩ =

∫
kn⟨i1...in⟩fdk.

∂u⟨n⟩
∂t

+
n2

4n2 − 1
c
∂u⟨n−1⟩

∂x
+ c

∂u⟨n+1⟩

∂x
=


0 n = 0
− 1

τR
u⟨1⟩ n = 1

−
(

1
τR

+ 1
τN

)
u⟨n⟩ 2 ≤ n ≤ N

It requires at least N=30 momentum equations to approximate
the real propagation speeds!

Coupling between the heat flux and the pressure!
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Thermodynamics of rarefied gases

Ballistic-conductive system, tested on NaF experiments!

ρc∂tT + ∂xq = 0,

τq∂tq + q + λ∂xT + κ∂xQ = 0,

τQ∂tQ + Q + κ∂xq = 0.

Properties of the structure

Thermo-mechanical coupling:

Q ij → current density of the heat flux → pressure

Ballistic-conductive:
τqτQ∂tttT + (τq + τQ)∂ttT + ∂tT = a∂xxT + (κ2 + τQ)∂txxT

B.C. vs P.H.: κ is free!
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Thermodynamics of rarefied gases

Heat pulse experiment I

Arrangement for solids
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Thermodynamics of rarefied gases

Heat pulse experiment II

Not the expected results at low temperatures!
Presence of second sound and ballistic propagation!

Jackson, Walker and
McNelly (1968):
NaF experiments
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Thermodynamics of rarefied gases

The ballistic-conductive model - Solutions
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