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Vacuum in Quantum Physics vs in Cosmology
Vacuum energy

“Old” CC problem: Why such small and positive?

“New” CC problem: Why non-zeroth and exists at all?

Vacuum in Quantum Physics has incredibly wrong energy scale!

 “…the worst theoretical prediction 

in the history of physics“   
(Hobson 2006)

Topological QCD vacuum 
unique strongly-coupled subsystem!

Higgs condensate

in Quantum Physics in Cosmology

ρc ≡
3H2

0

κ
∼ 10−47GeV4

κ = 8πG , G = M−2

PL

Λcosm ∼ 0.7ρc

ρM ∼ 0.3ρc

Λcosm ∼ 10−47GeV4

Rµν −
1

2
gµνR = κ(Λ0gµν + Tmat

µν ) (0.1)
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• Let’s forget about the “bare” vacuum (DE: “phantom”, “quintessence”, “ghost”… etc) 
Zero vacuum density in the Minkowski limit, by (Casimir-like) definition, then (Zhitnitsky et al) 

• Let’s look closer at the vacuum state — why/how does it become “invisible” to gravity? 
     

ρc ≡
3H2

0

κ
∼ 10−47GeV4

κ = 8πG , G = M−2

PL

Λcosm ∼ 0.7ρc

ρM ∼ 0.3ρc

Λcosm ∼ 10−47GeV4

Λcosm ≡ εFLRW − εMink , (0.1)

Rµν −
1

2
gµνR = κ(Λ0gµν + Tmat

µν ) (0.2)
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Quantum-topological (chromomagnetic) vacuum in QCD

Two possible approaches to this problem:

simply imposing a cancellation of the “bare” vacuum by hands!!
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in our numerical simulations, the typical differences be-
tween the nucleation temperatures for any of the three
transitions in Eq. (3) are above 20 GeV. This means that
no �!H1 transition happens in practice since by the
time the universe cools down below Tn(H2!H1), the H2

bubbles are already completely percolated and no phase
� remains.

Since in our scenario an occurrence of simultaneous
strong first-order transitions is highly unlikely, in what
follows we are focused on well-separated transitions �!
H2 and H2!H1 that occur at very different time scales
such that H2 bubbles percolate before the H2!H1 tran-
sition takes over. In this case, the well known formalism
of Ref. [11, 50, 51] for derivation of the GWs spectrum as
the energy density per logarithmic frequency of the GW
radiation, h2⌦GW, emerging from single-step transitions
can be used.

In the framework of this formalism, the GW signal is
a linear superposition of three components parameteriz-
ing bubble wall collisions, sound waves generated by the
phase transitions as well as magnetohydrodynamics tur-
bulences in the plasma.

For successive well-separated transitions the net GW
energy density is just the mere superposition of the cor-
responding contributions emerging from the single-step
transitions yielding well-separated (in frequency) GWs
signals, or peaks in the GW spectrum. Even though, it

is quite obvious that such a superposition should natu-
rally lead to the multi-peaked signatures in the power
spectrum of GWs, an explicit calculation in a particu-
larly simple extension of the Higgs sector that adopts, at
least, one short-lasting and one long-lasting transitions
is lacking the literature.

Consider the two sequential breaking steps in the right
hand side of Eq. (3) where the first one �!H2 is in fact
generated by thermal loop effects, in the spirit of the
models studied in, e.g. Refs. [25, 35–37, 40].

✏vac⇠10�2GeV4
⇠108GeV4 (5)

For instance, the [0]!�!H1 pattern, where the first
[0]!� step becomes a first-order transition due to the ef-
fect of cubic contributions in the thermal m/T expansion.
For such transitions, a sample of the corresponding GW
signals are displayed in Fig. 1. Here, we observe two well-
separated peaks but with amplitudes much smaller than
those found in the left panel. This is a consequence of rel-
atively weak first-order phase transitions whose strengths
are of the order vn/Tn⇠0.2�0.5. In particular, the loop-
generated ones, which have a much larger time scale than
those that are already first-order at tree level, have their
frequencies shifted to the left.

Note, the peak-amplitude is mostly determined by the
time scale of the transition and by the release of la-
tent heat. Therefore, the very fast tree-level transitions
result in much smaller peak-amplitudes than the loop-
induced ones unless the released latent heat in the latter
is large enough to compensate this effect, as shown in
the right panel of Fig. ??. This second example indicates
that the observation of such a pattern would provide us
with a rather detailed information about dynamics of the
EWPT. However, in the considered toy-model, such sig-
nals with well-separated peaks in the GW spectrum are
not expected to be detectable in the currently planned
observatories, and a new generation of interferometers
covering smaller amplitudes and a wider range of fre-
quencies is needed. One can hope to have two detectable
peaks within reach of near-future GW measurements in
the following two cases: (i) for a larger energy budget
with an enhanced release of the latent heat, and (ii) in
more complicated multi-scalar models (e.g. with mixing)
where the loop-induced transitions, followed by another
strong first-order transition, emerge within the detection
limits (e.g. Ref. [26]).
Exotic cosmological objects. The bubble percolation
process typically occurs in the range of �T < 10 GeV.
This means that if the nucleation temperatures of the
corresponding transition steps are not too different (sep-
arated by a few GeV at most), which is likely to occur
e.g. when symmetries in the tree-level potential enforces
them to be identical as in e.g. Ref. [48], then various ex-

otic cosmological objects can emerge.
In particular, different transition sequences e.g. �!H1

and �!H2 could be realized during the same cosmolog-
ical evolution time leading to a universe where “coexist-
ing” bubbles of different broken phases expand simulta-
neously. In addition, even more exotic cosmological ob-
jects may emerge. Indeed, consider the second and third
steps in the pattern [0]!�!H2!H1, occurring at typ-
ical nucleation temperatures Tn(�!H2)&Tn(H2!H1).
Between Tn(�!H2) and Tn(H2!H1), the H2-bubbles
nucleate and expand in a universe filled with the �-phase.
Then at Tn(H2!H1), while they are still expanding, the
H1-bubbles emerge and nucleate inside the H2-bubbles.
As such, the �-phase becomes populated with the H2-
bubbles containing the H1-bubbles inside giving rise to
the “nested” bubbles. The new H1-bubbles would nucle-
ate in the parts of the universe that still remain in the �-
phase i.e. the direct �!H1 transition quickly eliminates
the �-phase outside of the H2-bubbles formed at an ear-
lier time. In the end of this process, one ends up with
the H1-bubbles inside the H2-bubbles which exist in a
universe filled with the H1-phase. Since the H2-bubbles
cannot expand in a universe filled with the stable H1-
phase, they are pushed inwards and collapse while the
H1-bubbles nucleate inside them representing the nucle-
ation of such “reoccurring” bubbles.

We would like to point out that a complete knowledge
of the bubble dynamics is needed in order to precisely de-
scribe the phase transitions, from nucleation to percola-
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Effective YM action and Savvidy vacuum

gluon condensate (Savvidy vacuum)
trace anomaly:
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(A12) can be constructed keeping only the first two non-
vanishing harmonic Fourier-terms, namely,

g(t) ' A cos
⇣2⇡t
Tg

⌘
+ (1�A) cos

⇣6⇡t
Tg

⌘
, (A16)

A =
2

k

Z 1

0

g

(1� g2)3/4
cos

⇣
⇡

2k

Z 1

g

dx

(1� x2)3/4

⌘
dg ⇡ 1.14 .

In Fig. 11 we observe that the formula (A16) approxi-
mates the exact solution for the universal g(t) function
found from Eq. (A12) with a very good accuracy.
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G. Röpke, Phys. Rev. D 67, 105013 (2003).

[52] G. Prokhorov, R. Pasechnik and G. Vereshkov, JHEP
1407, 003 (2014) [arXiv:1307.5695 [hep-th]].

[53] H. P. Pavel, arXiv:1205.2237 [hep-th].
[54] H. P. Pavel, PoS ConfinementX , 071 (2012)

[arXiv:1303.3763 [hep-th]].
[55] H. P. Pavel, EPJ Web Conf. 71, 00104 (2014)

[arXiv:1405.1970 [hep-th]].
[56] J. Cervero and L. Jacobs, Phys. Lett. B 78, 427 (1978).
[57] M. Henneaux, J. Math. Phys. 23, 830 (1982).
[58] Y. Hosotani, Phys. Lett. B 147, 44 (1984).
[59] G. ’t Hooft, Nucl. Phys. B 79, 276 (1974).
[60] A. M. Polyakov, JETP Lett. 20, 194 (1974) [Pisma Zh.

Eksp. Teor. Fiz. 20, 430 (1974)].
[61] V. F. Mukhanov, H. A. Feldman and R. H. Branden-

berger, Phys. Rept. 215, 203 (1992). doi:10.1016/0370-
1573(92)90044-Z

24

The energy-momentum tensor:

Classical YM Lagrangian:

make basic concluding remarks.

II. SPATIALLY HOMOGENEOUS ISOTROPIC YM CONDENSATES

The gauge-invariant Lagrangian of the classical Yang-Mills (YM) field in the SU(N)
(N = 2, 3, . . . ) gauge theory reads

Lcl = −
1

4
F a
µνF

µν
a , (2.1)

where
F a
µν = ∂µA

a
ν − ∂νA

a
µ + gYM fabcAb

µA
c
ν

is the YM stress tensor with internal (adjoint rep) a, b, c = 1, . . . N2 − 1 and Lorentz µ, ν =
0, 1, 2, 3 indices. Here, gYM is the gauge coupling constant. The corresponding generating
functional of such a theory is given by the Euclidean functional integral

Z ∝
∫
[DA] e−Scl[A]+

∫
Ja
µA

a
µd

4x , Scl[A] =

∫
Lcld

4x , (2.2)

which is dominated by minima of the classical action Scl[A], the important particular case
being represented by instanton configurations [50] (for a detailed review, see e.g. Refs. [25–
27]).

Let us identify the spatially-homogeneous isotropic YM condensates in SU(N), N = 2, 3
gauge theory. For this purpose, it is most useful to work in the ghost-free temporal (Hamilton
or Weyl) gauge fixed by a condition

Aa
0 = 0 , (2.3)

which is the basis of the Hamiltonian formulation. In this gauge, the asymptotic states of
the S-matrix automatically contain transverse modes only which enables to formulate the
YM theory in the Heisenberg representation consistently beyond the PT (for more details,
see e.g. Ref. [53, 54]).

In the SU(2) gauge theory, due the local isomorphism of the isotopic SU(2) gauge group
and the SO(3) group of spatial 3-rotations, the unique (up to a rescaling) SU(2) YM con-
figuration in the temporal gauge can be parameterized in terms of a scalar time-dependent
spatially-homogeneous field U(t) and non-isotropic/non-homogeneous YM waves Ãak

(
t, #x

)

(see e.g. Refs. [5, 55–57]). In the QFT formulation, the inhomogeneous YM wave modes
Ãak are interpreted as YM quanta (e.g. gluons) while U(t) contributes to the ground state
of the theory. Below, we are focused only on the homogeneous YM mode

Aak

(
t, #x

)
= δakU(t) , a, k = 1, 2, 3 . (2.4)

In the absence of gravity, the spatially homogeneous isotropic part δikU(t) of Eq. (2.4)
satisfies the classical YM equations

(U̇)2 + g2YM U4 = const , (2.5)

which can be integrated analytically [34] in terms of Jacobi Elliptic functions,

U(t) = U0 cd(gYMU0t|− 1) , U(0) = U0 , U̇(0) = 0 . (2.6)
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of the theory. Below, we are focused only on the homogeneous YM mode

Aak

(
t, #x

)
= δakU(t) , a, k = 1, 2, 3 . (2.4)

In the absence of gravity, the spatially homogeneous isotropic part δikU(t) of Eq. (2.4)
satisfies the classical YM equations

(U̇)2 + g2YM U4 = const , (2.5)

which can be integrated analytically [34] in terms of Jacobi Elliptic functions,

U(t) = U0 cd(gYMU0t|− 1) , U(0) = U0 , U̇(0) = 0 . (2.6)
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Effective YM Lagrangian:

order to construct the realistic EYM equations describing YM condensate dynamics in a non-
stationary background of expanding Universe one must consistently incorporate, at least,
the lowest-order corrections from the vacuum polarisation in the effective YM Lagrangian.

The effective action and Lagrangian of the quantum gauge theory consistently accounting
for the trace anomaly relation [52] is given in terms of the gauge-invariant operator of the
least dimension J by [44]

Seff [A] =

∫
Leffd

4x , Leff =
J

4g2YM(J)
, J = −F2 , F2 ≡ Fa

µνFµν
a , (3.1)

respectively, where Aa
µ ≡ gYMAa

µ and Fa
µν ≡ gYMF a

µν . One considers the effective action
(3.1) as a classical model [44] which possesses well-known properties of the full quantum
theory such as (i) local gauge invariance, (ii) RG evolution and asymptotic freedom, (iii)
correct quantum vacuum configurations, and (iv) trace anomaly. These provide a sufficient
motivation and physics interest in cosmological aspects of the considering effective model.

In asymptotically free gauge theories like QCD the quantum vacuum configurations are
controlled by the strong coupling regime. Performing an analysis in Euclidean spacetime,
in Ref. [44] it was shown that the vacuum value of the gauge invariant 〈J〉 in a strongly-
coupled quantum gauge theory does not vanish as it does in the classical gauge theory and
the corresponding functional integral is not dominated by the minima of the classical action
(2.2). Moreover, it was shown that there are no instanton solutions to the effective action
(3.1) such that the ground state of the quantum YM theory does not contain the classical
instanton configurations. Instead, the quantum vacuum can be understood as a state with
ferromagnetic properties (Savvidy vacuum) which undergoes the spontaneous magnetisation
providing a consistent description of the nonperturbative QCD vacuum alternative to the
conventional instanton model [44].

The PT can be applied to the effective action in the limit of large mean fields, i.e.
J → ∞, away from the classical ground state. To the one-loop approximation widely used
in the literature [5, 34, 43, 44], the effective Lagrangian of the considered effective theory
properly generalised to the FLRW background reads (see also Ref. [11])

L1−loop
eff =

b J

128π2
ln
( J

(ξλ)4

)
, J = −

Fa
µνFµν

a√
−g

=
6

a4

[
a2U̇2 −

1

4
U4

]
, g ≡ det(gµν) ,

gµν = a(η)2diag(1, −1, −1, −1) ,
√
−g = a4(η) , t =

∫
a(η)dη . (3.2)

where b is the one-loop β-function coefficient (e.g. in pure SU(3) gauge theory b = 11) free
parameter ξ reflects an arbitrariness in multiplicative normalisation of the invariant J , and
λ is the scale parameter. In what follows, we are interested in the chromoelectric mirror
gluon condensate corresponding to J > 0. Both parameters ξ and λ are not fixed by the
theory but can be determined from phenomenology in realistic gauge theories such as QCD
where λ → ΛQCD ( 280 MeV.

Now we come to an analysis of the equations of motion for physical time evolution of
the homogeneous YM condensate in the effective YM action approach in the cosmological
environment. For this purpose, we first consider the perturbative effective toy-model (3.2)
and then extend it to the generic non-perturbative case (3.1). While an extrapolation of
the effective one-loop approximated Lagrangian of SU(3) gauge theory into deeply infrared
(strongly-coupled) regime for the QCD and MQCD vacua has very little physical sense, we
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significant fine tuning between the usual QCD and Mir-
ror QCD vacua parameters which would be a problem for
getting a naturally small CC term. Within this paper
we show that even in the framework of standard QFT
it is possible to recover as a result the cancellation of
SU(2) Yang-Mills (YM) contributions to the vacuum en-
ergy within the same theory. This achievement holds a
certain generality, since SU(2) subgroups of SU(N) YM
theories can always be picked out, being the ones that
must be accounted for the cosmological applications. The
vacua compensation mechanism will be analyzed for ef-
fective YM theories, in both the perturbative and the
non-perturbative cases, and then applied to address the
QCD electric and magnetic condensates. Our approach
is based on the Savvidy vacuum model [10–13], as an ef-
fective method describing the ground state dynamics in
quantum YM field theories at long distances. Interest-
ingly enough, the Savvidy vacuum model has received
a further support from another approach based on the
analysis of the gluon condensation within the framework
of the Functional RG (FRG) [14–16].

As the main result of this work, we find the stabil-
ity conditions of the considered Savvidy vacuum solu-
tions for the gauge-invariant homogeneous gluon con-
densate, and obtain analytic expressions for the density,
the pressure and the scale factor in the non-stationary
Friedmann-Lemâıtre-Robertson-Walker (FLRW) Uni-
verse filled with the gluon condensate, which fluctuates
near the minimum of the e↵ective Lagrangian.

II. EFFECTIVE YM THEORY AND THE
MIRROR SYMMETRY

We may start showing how to recover the e↵ective action
of SU(N) YM theories, following the seminal Refs. [10]
recently followed by Refs. [17–21]. We then generalize
these findings for a non-stationary FLRW background of
expanding Universe.

In order to incorporate the conformal anomaly via the
variational procedure, the gauge coupling gYM should ac-
quire a dependence on the quantum fields, according to
the RG equations. The order parameter of the theory is
denoted with J , a gauge-invariant operator of the least
dimension [12]. In what follows, the running coupling
constant gYM recasts conventionally as ḡ, so to encode
the dependence on J in the e↵ective Lagrangian Le↵ ,
namely,

Le↵ =
J

4ḡ2
, ḡ2 = ḡ2(J ) , J = �

F
a
µ⌫F

µ⌫
a

p
�g

, (1)

where g ⌘ det(gµ⌫), gµ⌫ = a(⌘)2diag(1, �1, �1, �1) is
the FLRW metric, A

a
µ are the SU(N) connections and

F
a
µ⌫ – their field-strength. Through the paper a, b, ...

denote internal indices of SU(N) in the adjoint represen-
tation.

For FLRW metrics J simplifies into

J =
2
p
�g

X

a

(Ea ·Ea �Ba ·Ba) ⌘
2
p
�g

(E2
�B2) ,

which is cast in terms of the electric field Ea and the
magnetic field Ba components. We define the spatial av-
erage quantity hJ i, and distinguish the cases in which:
i) hJ i is higher than zero, meaning that the average
chromo-electric (CE) components hE2

i dominate over the
averaged chromo-magnetic (CM) terms hB2

i; ii) vicev-
ersa, the case of a chromo-magnetically dominated state
hJi < 0 corresponds to a CM condensate.
Through the rest of the paper we will work only with

spatially averaged quantities, thus from now on we re-
move the h. . . i, for simplicity. Our approach must be
thought as a chromo-dynamical mean field theory, in
analogy to many condensed matter models1.
The gauge coupling satisfies the RG equation

2J
dḡ2

dJ
= ḡ2� ,

where � = �(ḡ2) and the running of the coupling constant
ḡ2 is determined by the exact �-function — both the
quantities can be either positive or negative, in general.
By the standard variational procedure, starting from

the e↵ective action (1) we arrive at the all-loop e↵ective
YM equations of motion, supplemented by the RG equa-
tion, which can be represented as follows

�!
D

ab
⌫


F

µ⌫
b

ḡ2
p
�g

✓
1�

�(ḡ2)

2

◆�
= 0 , (2)

�!
D

ab
⌫ ⌘

⇣
�ab
�!
@ ⌫
p
�g

p
�g

� fabc
A

c
⌫

⌘
, (3)

d ln |ḡ2|

d ln |J |/µ4
0

=
�(ḡ2)

2
, (4)

where µ0 is a scale parameter. Thus, for the system of
equations (2), we find the exact (partial) ground-state
solution

�(ḡ2⇤) = 2 , ḡ2⇤ ⌘ ḡ2(J ⇤) , J
⇤ > 0 , (5)

which we refer to the CE condensate, in what follows.
Is this the only possible ground state solution in a YM
theory?

III. MIRROR SYMMETRY

The e↵ective YM Lagrangian (1) in a vicinity of the
ground state J ' J

⇤ is Z2 ⇥ Z0
2-symmetric w.r.t. si-

multaneous permutations

Z2 : J
⇤
 ! �J

⇤ , (6)

1
For example, the Ginzburg-Landau model describes the evolution

of spatially averaged observables in superconductive materials,

which in turn are crystals with local impurities and anisotropies

— see e.g. Ref. [33].

2

NOTE: the RG equation

3

in our numerical simulations, the typical differences be-
tween the nucleation temperatures for any of the three
transitions in Eq. (3) are above 20 GeV. This means that
no �!H1 transition happens in practice since by the
time the universe cools down below Tn(H2!H1), the H2

bubbles are already completely percolated and no phase
� remains.

Since in our scenario an occurrence of simultaneous
strong first-order transitions is highly unlikely, in what
follows we are focused on well-separated transitions �!
H2 and H2!H1 that occur at very different time scales
such that H2 bubbles percolate before the H2!H1 tran-
sition takes over. In this case, the well known formalism
of Ref. [11, 50, 51] for derivation of the GWs spectrum as
the energy density per logarithmic frequency of the GW
radiation, h2⌦GW, emerging from single-step transitions
can be used.

In the framework of this formalism, the GW signal is
a linear superposition of three components parameteriz-
ing bubble wall collisions, sound waves generated by the
phase transitions as well as magnetohydrodynamics tur-
bulences in the plasma.

For successive well-separated transitions the net GW
energy density is just the mere superposition of the cor-
responding contributions emerging from the single-step
transitions yielding well-separated (in frequency) GWs
signals, or peaks in the GW spectrum. Even though, it
is quite obvious that such a superposition should natu-
rally lead to the multi-peaked signatures in the power
spectrum of GWs, an explicit calculation in a particu-
larly simple extension of the Higgs sector that adopts, at

least, one short-lasting and one long-lasting transitions
is lacking the literature.

Consider the two sequential breaking steps in the right
hand side of Eq. (3) where the first one �!H2 is in fact
generated by thermal loop effects, in the spirit of the
models studied in, e.g. Refs. [25, 35–37, 40].

✏vac⇠10
�2GeV4

⇠108GeV4 (5)

Z2: J !�J , (6)

Le↵=
J

4ḡ2(J )
, J=�Fa

µ⌫F
µ⌫
a , (7)

For instance, the [0]!�!H1 pattern, where the first
[0]!� step becomes a first-order transition due to the ef-
fect of cubic contributions in the thermal m/T expansion.
For such transitions, a sample of the corresponding GW
signals are displayed in Fig. 1. Here, we observe two well-
separated peaks but with amplitudes much smaller than
those found in the left panel. This is a consequence of rel-
atively weak first-order phase transitions whose strengths
are of the order vn/Tn⇠0.2�0.5. In particular, the loop-
generated ones, which have a much larger time scale than
those that are already first-order at tree level, have their
frequencies shifted to the left.

Note, the peak-amplitude is mostly determined by the
time scale of the transition and by the release of la-
tent heat. Therefore, the very fast tree-level transitions
result in much smaller peak-amplitudes than the loop-
induced ones unless the released latent heat in the latter
is large enough to compensate this effect, as shown in
the right panel of Fig. ??. This second example indicates
that the observation of such a pattern would provide us
with a rather detailed information about dynamics of the
EWPT. However, in the considered toy-model, such sig-
nals with well-separated peaks in the GW spectrum are
not expected to be detectable in the currently planned
observatories, and a new generation of interferometers
covering smaller amplitudes and a wider range of fre-
quencies is needed. One can hope to have two detectable
peaks within reach of near-future GW measurements in
the following two cases: (i) for a larger energy budget
with an enhanced release of the latent heat, and (ii) in
more complicated multi-scalar models (e.g. with mixing)
where the loop-induced transitions, followed by another
strong first-order transition, emerge within the detection
limits (e.g. Ref. [26]).
Exotic cosmological objects. The bubble percolation
process typically occurs in the range of �T < 10 GeV.
This means that if the nucleation temperatures of the

corresponding transition steps are not too different (sep-
arated by a few GeV at most), which is likely to occur
e.g. when symmetries in the tree-level potential enforces
them to be identical as in e.g. Ref. [48], then various ex-
otic cosmological objects can emerge.

In particular, different transition sequences e.g. �!H1

and �!H2 could be realized during the same cosmolog-
ical evolution time leading to a universe where “coexist-
ing” bubbles of different broken phases expand simulta-
neously. In addition, even more exotic cosmological ob-
jects may emerge. Indeed, consider the second and third
steps in the pattern [0]!�!H2!H1, occurring at typ-
ical nucleation temperatures Tn(�!H2)&Tn(H2!H1).
Between Tn(�!H2) and Tn(H2!H1), the H2-bubbles
nucleate and expand in a universe filled with the �-phase.
Then at Tn(H2!H1), while they are still expanding, the
H1-bubbles emerge and nucleate inside the H2-bubbles.
As such, the �-phase becomes populated with the H2-
bubbles containing the H1-bubbles inside giving rise to
the “nested” bubbles. The new H1-bubbles would nucle-
ate in the parts of the universe that still remain in the �-
phase i.e. the direct �!H1 transition quickly eliminates
the �-phase outside of the H2-bubbles formed at an ear-
lier time. In the end of this process, one ends up with
the H1-bubbles inside the H2-bubbles which exist in a
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2(J ⇤) !�ḡ2(J ⇤), (6)

Le↵=
J
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In the case of the CE vacuum, the energy-momentum
tensor simplifies to the trace-form

T
µ
µ=�

�(ḡ2⇤)

8ḡ2⇤
J

⇤=�
1

4ḡ2⇤
J

⇤
. (10)

For the CM vacuum case, the energy-momentum tensor
appears more complicated:

T
⌫
µ=

2

ḡ2

⇣
F

a
µ�F

⌫�
a �

1

4
�
⌫
µJ

⇤
⌘
��

⌫
µ
�(ḡ2⇤)

8ḡ2⇤
J

⇤
. (11)

However, if we consider its trace, we obtain exactly the
same trace-tensor of the CE vacua, but with an opposite
sign:

T
µ
µ=

1

4ḡ2⇤
J

⇤
. (12)
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quencies is needed. One can hope to have two detectable
peaks within reach of near-future GW measurements in
the following two cases: (i) for a larger energy budget
with an enhanced release of the latent heat, and (ii) in
more complicated multi-scalar models (e.g. with mixing)
where the loop-induced transitions, followed by another
strong first-order transition, emerge within the detection
limits (e.g. Ref. [26]).

Exotic cosmological objects. The bubble percolation
process typically occurs in the range of �T < 10 GeV.

3

in our numerical simulations, the typical differences be-
tween the nucleation temperatures for any of the three
transitions in Eq. (3) are above 20 GeV. This means that
no �!H1 transition happens in practice since by the
time the universe cools down below Tn(H2!H1), the H2

bubbles are already completely percolated and no phase
� remains.

Since in our scenario an occurrence of simultaneous
strong first-order transitions is highly unlikely, in what
follows we are focused on well-separated transitions �!
H2 and H2!H1 that occur at very different time scales
such that H2 bubbles percolate before the H2!H1 tran-
sition takes over. In this case, the well known formalism
of Ref. [11, 50, 51] for derivation of the GWs spectrum as
the energy density per logarithmic frequency of the GW
radiation, h2⌦GW, emerging from single-step transitions
can be used.

In the framework of this formalism, the GW signal is
a linear superposition of three components parameteriz-
ing bubble wall collisions, sound waves generated by the
phase transitions as well as magnetohydrodynamics tur-
bulences in the plasma.

For successive well-separated transitions the net GW
energy density is just the mere superposition of the cor-
responding contributions emerging from the single-step
transitions yielding well-separated (in frequency) GWs
signals, or peaks in the GW spectrum. Even though, it
is quite obvious that such a superposition should natu-
rally lead to the multi-peaked signatures in the power
spectrum of GWs, an explicit calculation in a particu-
larly simple extension of the Higgs sector that adopts, at
least, one short-lasting and one long-lasting transitions
is lacking the literature.

Consider the two sequential breaking steps in the right
hand side of Eq. (3) where the first one �!H2 is in fact
generated by thermal loop effects, in the spirit of the
models studied in, e.g. Refs. [25, 35–37, 40].
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ḡ2

h
1�

�(ḡ2)
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For instance, the [0]!�!H1 pattern, where the first
[0]!� step becomes a first-order transition due to the ef-
fect of cubic contributions in the thermal m/T expansion.
For such transitions, a sample of the corresponding GW
signals are displayed in Fig. 1. Here, we observe two well-
separated peaks but with amplitudes much smaller than
those found in the left panel. This is a consequence of rel-
atively weak first-order phase transitions whose strengths
are of the order vn/Tn⇠0.2�0.5. In particular, the loop-
generated ones, which have a much larger time scale than
those that are already first-order at tree level, have their
frequencies shifted to the left.

Note, the peak-amplitude is mostly determined by the
time scale of the transition and by the release of la-
tent heat. Therefore, the very fast tree-level transitions
result in much smaller peak-amplitudes than the loop-
induced ones unless the released latent heat in the latter
is large enough to compensate this effect, as shown in
the right panel of Fig. ??. This second example indicates
that the observation of such a pattern would provide us
with a rather detailed information about dynamics of the
EWPT. However, in the considered toy-model, such sig-
nals with well-separated peaks in the GW spectrum are
not expected to be detectable in the currently planned
observatories, and a new generation of interferometers
covering smaller amplitudes and a wider range of fre-
quencies is needed. One can hope to have two detectable
peaks within reach of near-future GW measurements in

the following two cases: (i) for a larger energy budget
with an enhanced release of the latent heat, and (ii) in
more complicated multi-scalar models (e.g. with mixing)
where the loop-induced transitions, followed by another
strong first-order transition, emerge within the detection
limits (e.g. Ref. [26]).
Exotic cosmological objects. The bubble percolation
process typically occurs in the range of �T < 10 GeV.
This means that if the nucleation temperatures of the
corresponding transition steps are not too different (sep-
arated by a few GeV at most), which is likely to occur
e.g. when symmetries in the tree-level potential enforces
them to be identical as in e.g. Ref. [48], then various ex-
otic cosmological objects can emerge.

In particular, different transition sequences e.g. �!H1

and �!H2 could be realized during the same cosmolog-
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spectrum of GWs, an explicit calculation in a particu-
larly simple extension of the Higgs sector that adopts, at
least, one short-lasting and one long-lasting transitions
is lacking the literature.

Consider the two sequential breaking steps in the right
hand side of Eq. (3) where the first one �!H2 is in fact
generated by thermal loop effects, in the spirit of the
models studied in, e.g. Refs. [25, 35–37, 40].
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2(J ⇤) !�ḡ2(J ⇤), �(ḡ2⇤) !��(ḡ
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For instance, the [0]!�!H1 pattern, where the first
[0]!� step becomes a first-order transition due to the ef-
fect of cubic contributions in the thermal m/T expansion.
For such transitions, a sample of the corresponding GW
signals are displayed in Fig. 1. Here, we observe two well-
separated peaks but with amplitudes much smaller than
those found in the left panel. This is a consequence of rel-
atively weak first-order phase transitions whose strengths
are of the order vn/Tn⇠0.2�0.5. In particular, the loop-
generated ones, which have a much larger time scale than
those that are already first-order at tree level, have their
frequencies shifted to the left.

Note, the peak-amplitude is mostly determined by the
time scale of the transition and by the release of la-
tent heat. Therefore, the very fast tree-level transitions
result in much smaller peak-amplitudes than the loop-
induced ones unless the released latent heat in the latter
is large enough to compensate this effect, as shown in
the right panel of Fig. ??. This second example indicates
that the observation of such a pattern would provide us
with a rather detailed information about dynamics of the
EWPT. However, in the considered toy-model, such sig-
nals with well-separated peaks in the GW spectrum are
not expected to be detectable in the currently planned

observatories, and a new generation of interferometers
covering smaller amplitudes and a wider range of fre-
quencies is needed. One can hope to have two detectable
peaks within reach of near-future GW measurements in
the following two cases: (i) for a larger energy budget
with an enhanced release of the latent heat, and (ii) in
more complicated multi-scalar models (e.g. with mixing)
where the loop-induced transitions, followed by another
strong first-order transition, emerge within the detection
limits (e.g. Ref. [26]).

Exotic cosmological objects. The bubble percolation
process typically occurs in the range of �T < 10 GeV.
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in our numerical simulations, the typical differences be-
tween the nucleation temperatures for any of the three
transitions in Eq. (3) are above 20 GeV. This means that
no �!H1 transition happens in practice since by the
time the universe cools down below Tn(H2!H1), the H2

bubbles are already completely percolated and no phase
� remains.

Since in our scenario an occurrence of simultaneous
strong first-order transitions is highly unlikely, in what
follows we are focused on well-separated transitions �!
H2 and H2!H1 that occur at very different time scales
such that H2 bubbles percolate before the H2!H1 tran-
sition takes over. In this case, the well known formalism
of Ref. [11, 50, 51] for derivation of the GWs spectrum as
the energy density per logarithmic frequency of the GW
radiation, h2⌦GW, emerging from single-step transitions
can be used.

In the framework of this formalism, the GW signal is
a linear superposition of three components parameteriz-
ing bubble wall collisions, sound waves generated by the
phase transitions as well as magnetohydrodynamics tur-
bulences in the plasma.

For successive well-separated transitions the net GW
energy density is just the mere superposition of the cor-
responding contributions emerging from the single-step
transitions yielding well-separated (in frequency) GWs
signals, or peaks in the GW spectrum. Even though, it
is quite obvious that such a superposition should natu-
rally lead to the multi-peaked signatures in the power
spectrum of GWs, an explicit calculation in a particu-
larly simple extension of the Higgs sector that adopts, at
least, one short-lasting and one long-lasting transitions
is lacking the literature.

Consider the two sequential breaking steps in the right
hand side of Eq. (3) where the first one �!H2 is in fact
generated by thermal loop effects, in the spirit of the
models studied in, e.g. Refs. [25, 35–37, 40].
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8ḡ2
J . (8)

T
µ
µ=�

�(ḡ2)
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For instance, the [0]!�!H1 pattern, where the first
[0]!� step becomes a first-order transition due to the ef-
fect of cubic contributions in the thermal m/T expansion.
For such transitions, a sample of the corresponding GW
signals are displayed in Fig. 1. Here, we observe two well-
separated peaks but with amplitudes much smaller than
those found in the left panel. This is a consequence of rel-
atively weak first-order phase transitions whose strengths
are of the order vn/Tn⇠0.2�0.5. In particular, the loop-
generated ones, which have a much larger time scale than
those that are already first-order at tree level, have their
frequencies shifted to the left.

Note, the peak-amplitude is mostly determined by the
time scale of the transition and by the release of la-
tent heat. Therefore, the very fast tree-level transitions
result in much smaller peak-amplitudes than the loop-
induced ones unless the released latent heat in the latter
is large enough to compensate this effect, as shown in
the right panel of Fig. ??. This second example indicates
that the observation of such a pattern would provide us
with a rather detailed information about dynamics of the
EWPT. However, in the considered toy-model, such sig-
nals with well-separated peaks in the GW spectrum are
not expected to be detectable in the currently planned

observatories, and a new generation of interferometers
covering smaller amplitudes and a wider range of fre-
quencies is needed. One can hope to have two detectable
peaks within reach of near-future GW measurements in
the following two cases: (i) for a larger energy budget
with an enhanced release of the latent heat, and (ii) in
more complicated multi-scalar models (e.g. with mixing)
where the loop-induced transitions, followed by another
strong first-order transition, emerge within the detection
limits (e.g. Ref. [26]).

Exotic cosmological objects. The bubble percolation
process typically occurs in the range of �T < 10 GeV.
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Note, the RG equation (4) is symmetric w.r.t. separate
Z2 and Z0

2 transformations. These important symmetry
properties have relevant consequences on the stability of
the ground-state YM solutions in Minkowski spacetime.
Note, the Z0

2 symmetry e↵ectively “maps” the CE con-
densate solution with J

⇤ > 0 found in Eq. (5) to another,
CM condensate solution J

⇤ < 0, and vice versa. More-
over, due to the fact that the e↵ective Lagrangian Eq. (1)
is invariant under the Z2⇥Z0

2 symmetry, the CE (J ⇤ > 0)
and the CM (J ⇤ < 0) vacua should be associated with
two equal (mirror) minima of the e↵ective Lagrangian.

We emphasize that this symmetry, which reveals it-
self only in the ground state, does not explicitly show
itself in the EoM (2). The CE condensate corresponds
to a classical solution of the Eq. (2), which is satisfied
for �(ḡ2⇤) = 2. On the other hand, the CM vacuum
corresponds to �(ḡ2⇤) = �2, which does not imply the
vanishing of [1� �(ḡ2⇤)/2], as for the CE case, but rather
amounts to a 2 overall factor in Eq. (2). The CM vacuum
is obtained as a more complicated solution of Eq. (2),
which recasts equation
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Also considering the energy-momentum tensor associated
to the two minima, the symmetry does not appear explic-
itly.

The energy-momentum tensor of the Savvidy’s theory
has the form
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In the case of the CE vacuum, the energy-momentum
tensor simplifies to the trace-form

Tµ
µ = �

�(ḡ2⇤)
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For the CM vacuum case, the energy-momentum tensor
appears more complicated:

T ⌫
µ =

�2

ḡ2
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However, if we consider its trace, we obtain exactly the
same trace-tensor of the CE vacua, but with an opposite
sign:

Tµ
µ =
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Remarkably, the two mirror minima of the e↵ective La-
grangian have an opposite energy density, which is found
to be
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hTµ
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Indeed, the J ⇤
$ �J

⇤ transformation corresponds to an
exchange of the electric and the magnetic components,
which flip simultaneously the sign of the �-function and
ḡ2⇤ for a fixed minimal (negative) value of Le↵ .
The Perturbation Theory can be applied to the e↵ec-

tive action in the limit of large mean fields, i.e. |J |!1,
away from the nonperturbative ground state. We now
comment on the one-loop results obtained by Savvidy
for SU(N) YM theories, and then focus on a di↵erent
strategy to account for all-loops corrections, based on
the FRG approach. The latter has been developed in its
cosmological applications in Ref. [15], accounting for the
SU(2) gauge symmetry.
The standard one-loop SU(N) �-function reads
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48⇡2
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and the corresponding solution of the RG equation (4) is
given by
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Taking the position of the minimum of the e↵ective La-
grangian as the physical scale of the considering quantum
YM theory, i.e.
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we observe that indeed Z0
2 symmetry is a symmetry of

the ground state only.
Note, for one of the two possible branches related by

Z2 ⇥Z0
2 symmetry (7), the RG solution (15) can be con-

ventionally rewritten as
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Thus, the corresponding one-loop e↵ective action for the
pure SU(N) gauge theory takes the following form
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such that one recovers the well-known results obtained by
Savvidy in Ref. [10]. Note, due to the Z2⇥Z0

2 symmetry,
the CM and CE condensates correspond to the mirror
minima with the same value of the e↵ective Lagrangian.
In Fig. 1, we show the e↵ective SU(2) YM theory

Lagrangian dependence on J /�4 corresponding to one
particular branch of the RG equation (4) with J > 0.
As anticipated, there is a single minimum in the non-
perturbative domain 0 < J

⇤ < �4, hence, identified with
the CE condensate. The Mirror CM condensate solution
can then be obtained by means of Z2 ⇥ Z0

2 transforma-
tion (7), and it corresponds to the conventional one-loop
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FIG. 1. The e↵ective SU(2) YM theory Lagrangian depen-
dence on J /�4 corresponding to one particular branch of the
RG equation (4) with J > 0. The curves corresponding to
the one-loop and all-loop e↵ective Lagrangians are practically
indistinguishable.

result for the trace anomaly in SU(N) YM gluodynamics
(known e.g. from lattice QCD simulations).

How well the one-loop approximation reproduces the
all-loops vacuum state, given by the non-perturbative
ground-state solutions in Eq. (5)? We can answer this
question focusing on the case of SU(2), which is also
relevant for cosmology, in the framework of FRG [14–
16]. As is illustrated explicitly by two curves in Fig. 1,
the one-loop and the all-loops solutions approach the
zero of the e↵ective action at exactly the same values of
J = 0 and J = �4. The solutions also exhibit min-
ima that, although do not coincide, are very close to
each other: at one loop, |J

⇤
|/�4 = 1

e ' 0.3679 , and
L
⇤
e↵/�

4 = ±b/(192⇡2e) ' ±2.135 · 10�3; at all loops

|J
⇤
|/�4

' 0.3693 , and L
⇤
e↵/�

4 = ±2.163 · 10�3. Remark-
ably, the ground-state solutions for one-loop and all-loops
cases di↵er only at a per-mille level.
It is worth emphasizing that is not reductive to focus

on SU(2) YM theory. For any SU(N) gauge group, the
cosmological instantiation will be provided by the SU(2)
subgroups, for which an isomorphism between indices of
the adjoint representation and spatial indices may be re-
covered. On the other hand, the calculation of the super-
trace would be technically very di�cult to be achieved.
Because of the lack of any physical advantage, we can
skip this point without any loss of generality and physi-
cal insight.
As the bottomline of this consideration, for the two

mirror vacua found from Eq. (5), the net energy density
gets both CM (perturbative) and CE (nonperturbative)
vacua contributions with an equal modulus but an oppo-
site sign which therefore cancel out
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vac

��
J ⇤>0

+ ✏CM
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��
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⌘ 0 , (20)

if and only if both vacua do co-exist in the ground state
of the Universe. We notice that this statement is valid
both in one-loop and all-loops cases. From such a simple
argument the vacuum energy-density cancellation may
be envisaged. In the case of strongly-coupled SU(3) glu-
odynamics, such a cancellation is expected to happen be-
yond the confinement length-scale which would automat-
ically yield vanishing mean-fields of gluons at large dis-
tances (when averaged over macroscopic volumes). The
co-existence of the vacua in the quantum ground state
thus implies their mutual screening, yielding a vanishing
CC term in consistency with cosmological observations.

FIG. 2. The total energy density T 0
0 (t) of the homogeneous gluon condensate (left), the trace of the total QCD energy-

momentum tensor Tµ
µ (t) (middle) and the logarithm of the scale factor a(t) (right), are illustrated as functions of the physical

time t =
R
ad⌘ and in units of the characteristic time scale ⇤�1

QCD. The total energy density and the trace values for Q0 ⌘
Q(t0) = 1 are indicated by horizontal lines in the left and middle panels, respectively. Here, the initial conditions are chosen
as U0 = 0, U̇0 = (⇠⇤QCD)

2/
p
3e, Q0 > 1, ⇠ ' 4, and the gravitational constant is set to { = 10�7MeV�2, for simplicity of the

numerical analysis. Both quantities T 0
0 (t) and Tµ

µ (t) are plotted in dimensionless units, and thus are rescaled by ⇤4
QCD. The

amplitude of the quasi-periodic oscillations of Q = Q(t) decreases at large t � ⇤�1
QCD, and asymptotically approaches unity,

corresponding to the partial (de-Sitter) solution of the equations of motion.

IV. HOMOGENEOUS YM CONDENSATES

A gauge-invariant description of spatially homogeneous
isotropic YM condensates, which depend only on time,

can be obtained, assuming the gauge condition Aa
0 = 0.

Due to the local isomorphism of the isotopic SU(2) gauge

4

At least, for SU(2) gauge symmetry,
the all-loop and one-loop effective Lagrangians

are practically indistinguishable (by FRG approach)

(B16) can be constructed keeping only the first two non-
vanishing harmonic Fourier-terms, namely,
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⌘
+ (1�A) cos

⇣6⇡t
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⌘
, (B20)
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In Fig. 6 we observe that the formula (B20) approximates
the exact solution for the universal g(t) function found
from Eq. (B16) with a very good accuracy.
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Figure 10: The graph of W-function with its two real branches W0(x) and W≠1(x). The two branches
merge at the point (≠1/e, ≠1).

13 Appendix A

The Lambert-Euler W-function W (x) is the solution of the equation [68, 69, 70]:

We
W = x. (13.167)

There are two real branches of W (x) (see Fig.10). The solution for which ≠1 Æ W (x) is the principal

branch and denoted as W0(x). The solution satisfying W (x) Æ ≠1 is denoted by W≠1(x). On the

x-interval [0, Œ) there is one real solution, and it is nonnegative and increasing. On the x-interval

[≠1/e, 0) there are two real solutions, one increasing and the other one decreasing. Properties include:

W0(≠1/e) = W≠1(≠1/e) = ≠1, W0(0) = 0, W0(e) = 1, , W0(e1+e) = e, (13.168)
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4

Real-time evolution of the gluon condensate
significant fine tuning between the usual QCD and Mir-
ror QCD vacua parameters which would be a problem for
getting a naturally small CC term. Within this paper
we show that even in the framework of standard QFT
it is possible to recover as a result the cancellation of
SU(2) Yang-Mills (YM) contributions to the vacuum en-
ergy within the same theory. This achievement holds a
certain generality, since SU(2) subgroups of SU(N) YM
theories can always be picked out, being the ones that
must be accounted for the cosmological applications. The
vacua compensation mechanism will be analyzed for ef-
fective YM theories, in both the perturbative and the
non-perturbative cases, and then applied to address the
QCD electric and magnetic condensates. Our approach
is based on the Savvidy vacuum model [10–13], as an ef-
fective method describing the ground state dynamics in
quantum YM field theories at long distances. Interest-
ingly enough, the Savvidy vacuum model has received
a further support from another approach based on the
analysis of the gluon condensation within the framework
of the Functional RG (FRG) [14–16].

As the main result of this work, we find the stabil-
ity conditions of the considered Savvidy vacuum solu-
tions for the gauge-invariant homogeneous gluon con-
densate, and obtain analytic expressions for the density,
the pressure and the scale factor in the non-stationary
Friedmann-Lemâıtre-Robertson-Walker (FLRW) Uni-
verse filled with the gluon condensate, which fluctuates
near the minimum of the e↵ective Lagrangian.

II. EFFECTIVE YM THEORY AND THE
MIRROR SYMMETRY

We may start showing how to recover the e↵ective action
of SU(N) YM theories, following the seminal Refs. [10]
recently followed by Refs. [17–21]. We then generalize
these findings for a non-stationary FLRW background of
expanding Universe.

In order to incorporate the conformal anomaly via the
variational procedure, the gauge coupling gYM should ac-
quire a dependence on the quantum fields, according to
the RG equations. The order parameter of the theory is
denoted with J , a gauge-invariant operator of the least
dimension [12]. In what follows, the running coupling
constant gYM recasts conventionally as ḡ, so to encode
the dependence on J in the e↵ective Lagrangian Le↵ ,
namely,

Le↵ =
J

4ḡ2
, ḡ2 = ḡ2(J ) , J = �

F
a
µ⌫F

µ⌫
a

p
�g

, (1)

where g ⌘ det(gµ⌫), gµ⌫ = a(⌘)2diag(1, �1, �1, �1) is
the FLRW metric, A

a
µ are the SU(N) connections and

F
a
µ⌫ – their field-strength. Through the paper a, b, ...

denote internal indices of SU(N) in the adjoint represen-
tation.

For FLRW metrics J simplifies into

J =
2
p
�g

X

a

(Ea ·Ea �Ba ·Ba) ⌘
2
p
�g

(E2
�B2) ,

which is cast in terms of the electric field Ea and the
magnetic field Ba components. We define the spatial av-
erage quantity hJ i, and distinguish the cases in which:
i) hJ i is higher than zero, meaning that the average
chromo-electric (CE) components hE2

i dominate over the
averaged chromo-magnetic (CM) terms hB2

i; ii) vicev-
ersa, the case of a chromo-magnetically dominated state
hJi < 0 corresponds to a CM condensate.
Through the rest of the paper we will work only with

spatially averaged quantities, thus from now on we re-
move the h. . . i, for simplicity. Our approach must be
thought as a chromo-dynamical mean field theory, in
analogy to many condensed matter models1.
The gauge coupling satisfies the RG equation

2J
dḡ2

dJ
= ḡ2� ,

where � = �(ḡ2) and the running of the coupling constant
ḡ2 is determined by the exact �-function — both the
quantities can be either positive or negative, in general.
By the standard variational procedure, starting from

the e↵ective action (1) we arrive at the all-loop e↵ective
YM equations of motion, supplemented by the RG equa-
tion, which can be represented as follows

�!
D

ab
⌫


F

µ⌫
b

ḡ2
p
�g

✓
1�

�(ḡ2)

2

◆�
= 0 , (2)

�!
D

ab
⌫ ⌘
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�ab
�!
@ ⌫
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p
�g

� fabc
A

c
⌫

⌘
, (3)

d ln |ḡ2|

d ln |J |/�4
=

�(ḡ2)

2
, (4)

where � is the physical scale of the e↵ective YM theory.
Thus, for the system of equations (2), we find the exact
(partial) ground state solution

�(ḡ2⇤) = 2 , ḡ2⇤ ⌘ ḡ2(J ⇤) , (5)

which we refer to as “non-perturbative vacuum” realized
at J ⇤ > 0, or the CE condensate, in what follows. Is this
the only possible ground state solution in a YM theory?

III. MIRROR SYMMETRY

The e↵ective YM Lagrangian (1) in a vicinity of the
ground state J ' J

⇤ is Z2 ⇥ Z0
2-symmetric w.r.t. si-

multaneous permutations

Z2 : J
⇤
 ! �J

⇤ , (6)

1
For example, the Ginzburg-Landau model describes the evolution

of spatially averaged observables in superconductive materials,

which in turn are crystals with local impurities and anisotropies

— see e.g. Ref. [33].

2

• Basic qualitative features on the non-perturbative YM action  
are noticed already at one loop

FLRW metric in conformal time:

significant fine tuning between the usual QCD and Mir-
ror QCD vacua parameters which would be a problem for
getting a naturally small CC term. Within this paper
we show that even in the framework of standard QFT
it is possible to recover as a result the cancellation of
SU(2) Yang-Mills (YM) contributions to the vacuum en-
ergy within the same theory. This achievement holds a
certain generality, since SU(2) subgroups of SU(N) YM
theories can always be picked out, being the ones that
must be accounted for the cosmological applications. The
vacua compensation mechanism will be analyzed for ef-
fective YM theories, in both the perturbative and the
non-perturbative cases, and then applied to address the
QCD electric and magnetic condensates. Our approach
is based on the Savvidy vacuum model [10–13], as an ef-
fective method describing the ground state dynamics in
quantum YM field theories at long distances. Interest-
ingly enough, the Savvidy vacuum model has received
a further support from another approach based on the
analysis of the gluon condensation within the framework
of the Functional RG (FRG) [14–16].

As the main result of this work, we find the stabil-
ity conditions of the considered Savvidy vacuum solu-
tions for the gauge-invariant homogeneous gluon con-
densate, and obtain analytic expressions for the density,
the pressure and the scale factor in the non-stationary
Friedmann-Lemâıtre-Robertson-Walker (FLRW) Uni-
verse filled with the gluon condensate, which fluctuates
near the minimum of the e↵ective Lagrangian.

II. EFFECTIVE YM THEORY AND THE
MIRROR SYMMETRY

We may start showing how to recover the e↵ective action
of SU(N) YM theories, following the seminal Refs. [10]
recently followed by Refs. [17–21]. We then generalize
these findings for a non-stationary FLRW background of
expanding Universe.

In order to incorporate the conformal anomaly via the
variational procedure, the gauge coupling gYM should ac-
quire a dependence on the quantum fields, according to
the RG equations. The order parameter of the theory is
denoted with J , a gauge-invariant operator of the least
dimension [12]. In what follows, the running coupling
constant gYM recasts conventionally as ḡ, so to encode
the dependence on J in the e↵ective Lagrangian Le↵ ,
namely,

Le↵ =
J

4ḡ2
, ḡ2 = ḡ2(J ) , J = �

F
a
µ⌫F

µ⌫
a

p
�g
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where g ⌘ det(gµ⌫), gµ⌫ = a(⌘)2diag(1, �1, �1, �1) is
the FLRW metric, A
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µ are the SU(N) connections and

F
a
µ⌫ – their field-strength. Through the paper a, b, ...

denote internal indices of SU(N) in the adjoint represen-
tation.

For FLRW metrics J simplifies into

J =
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(Ea ·Ea �Ba ·Ba) ⌘
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�g

(E2
�B2) ,

which is cast in terms of the electric field Ea and the
magnetic field Ba components. We define the spatial av-
erage quantity hJ i, and distinguish the cases in which:
i) hJ i is higher than zero, meaning that the average
chromo-electric (CE) components hE2

i dominate over the
averaged chromo-magnetic (CM) terms hB2

i; ii) vicev-
ersa, the case of a chromo-magnetically dominated state
hJi < 0 corresponds to a CM condensate.
Through the rest of the paper we will work only with

spatially averaged quantities, thus from now on we re-
move the h. . . i, for simplicity. Our approach must be
thought as a chromo-dynamical mean field theory, in
analogy to many condensed matter models1.
The gauge coupling satisfies the RG equation

2J
dḡ2

dJ
= ḡ2� ,

where � = �(ḡ2) and the running of the coupling constant
ḡ2 is determined by the exact �-function — both the
quantities can be either positive or negative, in general.
By the standard variational procedure, starting from

the e↵ective action (1) we arrive at the all-loop e↵ective
YM equations of motion, supplemented by the RG equa-
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where µ0 is a scale parameter. Thus, for the system of
equations (2), we find the exact (partial) ground-state
solution

�(ḡ2⇤) = 2 , ḡ2⇤ ⌘ ḡ2(J ⇤) , J
⇤ > 0 , (5)

which we refer to the CE condensate, in what follows.
Is this the only possible ground state solution in a YM
theory?

III. MIRROR SYMMETRY
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d4xÃik(t, &x) = 0 , (0.5)

1

temporal (Hamilton) 
gauge

ρc ≡
3H2

0

κ
∼ 10−47GeV4

κ = 8πG , G = M−2

PL

Λcosm ∼ 0.7ρc

ρM ∼ 0.3ρc

Λcosm ∼ 10−47GeV4

Λcosm ≡ εFLRW − εMink , (0.1)

Rµν −
1

2
gµνR = κ(Λ0gµν + Tmat

µν ) (0.2)

Aa
0 = 0 (0.3)

eaiA
a
k ≡ Aik eai e

a
k = δik eai e

b
i = δab (0.4)

Aik(t, &x) = δikU(t) + Ãik(t, &x) 〈Ãik(t, &x)〉 =
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A. EYM equations of motion

By the variational principle, one obtains the EYM system of operator equations of motion
in a non-trivial spacetime
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where e is the base of the natural logarithm, T ν
µ
,mat corresponds to the energy-momentum

tensor of all the matter fields (except the considering YM field), and the ground-state energy
density

Λ̄ = ΛQCD
inst + Λcosm (4.2)

accounting for the QCD instanton effect (1.1) and the observable Λ-term (1.2) only. Note,
from now on in all the derivations below we perform a rescaling of the gluon condensate as
gYMU(t) → U(t) following the procedure (2.3) for convenience.

In what follows, we work in the flat FLRW conformal metric

gµν = a(η)2diag(1, −1, −1, −1), ,
√
−g = a4(η) , t =

∫
a(η)dη .

Besides, we apply Eq. (3.12) in the Weyl gauge and neglect quantum-wave fluctuations S̃ak

assuming that the homogeneous gluon condensate U(t), introduced in the previous Section,
strongly dominates at considered spacetime scales. Under these conditions, the system of
equations of motion describing conformal time evolution of the gluon condensate U = U(η)
and the scale factor a = a(η) reads
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where ε and p are the energy density and pressure of the cosmological plasma excluding Λ̄
and the homogeneous gluon condensate. An additional coefficient 1/2 appears in front of
the QCD coupling constant (which has been absorbed into the definition of the gluon field)
as compared to the SU(2) condensate case considered earlier in Ref. [33]. The first integral
of Eq. (4.3) is the Einstein (0, 0)-equation and reads
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The energy density ε and the pressure p of the ordinary matter are irrelevant for discussions
of the dynamical properties of the gluon condensate in early Universe and will thus be
omitted in practical calculations.

11

where B(x, y) is the Euler beta function. In the FLRW
Universe, the classical YM condensate behaves as radia-
tion medium such that a(t) / t1/2, pYM = ✏vac/3 charac-
teristic for the classical YM field behaviour.

2. Condensate in the SU(3) YM theory

The polar decomposition can be generalised to the SU(3)
YM theory
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,
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,
�b

2

i
= ifabc

�c

2
, (A10)

using a special minimal su(2) algebra embedding into the
su(3) in terms of three Gell-Mann matrices {�7,��5,�2},
such that the resulting gauge-invariant symmetric field is
linearly composed of components with well-defined trans-
formation properties under spatial rotations. In particu-
lar, it has been shown, how to isolate the unique gauge-
invariant and homogeneous/isotropic (spin-0) compo-
nent. Using this symmetric gauge approach, one straight-
forwardly generalises the gauge invariant SU(2) de-
composition of the gauge field into a unique spatially-
homogeneous isotropic condensate and wave components
to the SU(3) case as follows

Aak =
�
�a,7�k,1 � �a,5�k,2 + �a,2�k,3

�
U(t) + eAak ,(A11)

for a = 1, . . . , 8 and eAak = eAak

�
t,x
�
. In the absence of

gravity, the spatially homogeneous/isotropic gluon con-
densate U(t) > 0 satisfies the classical YM equations

(U̇)2 +
1

4
ḡ2 U4 = const , (A12)

Thus, we notice that the SU(3) result (A12) for the con-
densate is the same as the SU(2) result (A7), up to rescal-
ing of the coupling constant as3 ḡ ! ḡ/2.

Appendix B: One-condensate model: Einstein-YM
equations of motion

By the variational principle, one obtains the EYM system
of operator equations of motion in a non-trivial spacetime
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and the simple rescaling of the coupling constant.

where � ⌘ ⇠⇤QCD in terms of the QCD scale parameter
⇤QCD and an arbitrary scaling constant ⇠, e is the base
of the natural logarithm, and the ground-state energy
density ✏̄ ⌘ ✏QCD

top + ✏CC accounting for the quantum-
topological QCD e↵ect and the observable CC only.
The system of equations of motion describing confor-
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The first integral of Eq. (B2) is the Einstein (0, 0)-
equation and reads
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a. The general asymptotic solutions of the EYM system

Omitting ordinary matter components in the cosmo-
logical plasma, the system of EYM equations (B2), (B3)
in physical time reads
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respectively. Since U(t) has quasi-periodic singularities,
it is more convenient to work in terms of a new continuous
universal function g = g(t) defined as
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such that the equations (B4) can be written explicitly in
terms of continuous functions

6

{

h ä
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where B(x, y) is the Euler beta function. In the FLRW
Universe, the classical YM condensate behaves as radia-
tion medium such that a(t) / t1/2, pYM = ✏vac/3 charac-
teristic for the classical YM field behaviour.

2. Condensate in the SU(3) YM theory

The polar decomposition can be generalised to the SU(3)
YM theory
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using a special minimal su(2) algebra embedding into the
su(3) in terms of three Gell-Mann matrices {�7,��5,�2},
such that the resulting gauge-invariant symmetric field is
linearly composed of components with well-defined trans-
formation properties under spatial rotations. In particu-
lar, it has been shown, how to isolate the unique gauge-
invariant and homogeneous/isotropic (spin-0) compo-
nent. Using this symmetric gauge approach, one straight-
forwardly generalises the gauge invariant SU(2) de-
composition of the gauge field into a unique spatially-
homogeneous isotropic condensate and wave components
to the SU(3) case as follows

Aak =
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�a,7�k,1 � �a,5�k,2 + �a,2�k,3
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U(t) + eAak ,(A11)

for a = 1, . . . , 8 and eAak = eAak
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t,x
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. In the absence of

gravity, the spatially homogeneous/isotropic gluon con-
densate U(t) > 0 satisfies the classical YM equations

(U̇)2 +
1

4
ḡ2 U4 = const , (A12)

Thus, we notice that the SU(3) result (A12) for the con-
densate is the same as the SU(2) result (A7), up to rescal-
ing of the coupling constant as3 ḡ ! ḡ/2.
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By the variational principle, one obtains the EYM system
of operator equations of motion in a non-trivial spacetime
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where � ⌘ ⇠⇤QCD in terms of the QCD scale parameter
⇤QCD and an arbitrary scaling constant ⇠, e is the base
of the natural logarithm, and the ground-state energy
density ✏̄ ⌘ ✏QCD

top + ✏CC accounting for the quantum-
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The first integral of Eq. (B2) is the Einstein (0, 0)-
equation and reads
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a. The general asymptotic solutions of the EYM system

Omitting ordinary matter components in the cosmo-
logical plasma, the system of EYM equations (B2), (B3)
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Einstein-YM equations of motion for the effective YM theory:

where B(x, y) is the Euler beta function. In the FLRW
Universe, the classical YM condensate behaves as radia-
tion medium such that a(t) / t1/2, pYM = ✏vac/3 charac-
teristic for the classical YM field behaviour.

2. Condensate in the SU(3) YM theory

The polar decomposition can be generalised to the SU(3)
YM theory
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,
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,
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, (A10)

using a special minimal su(2) algebra embedding into the
su(3) in terms of three Gell-Mann matrices {�7,��5,�2},
such that the resulting gauge-invariant symmetric field is
linearly composed of components with well-defined trans-
formation properties under spatial rotations. In particu-
lar, it has been shown, how to isolate the unique gauge-
invariant and homogeneous/isotropic (spin-0) compo-
nent. Using this symmetric gauge approach, one straight-
forwardly generalises the gauge invariant SU(2) de-
composition of the gauge field into a unique spatially-
homogeneous isotropic condensate and wave components
to the SU(3) case as follows
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for a = 1, . . . , 8 and eAak = eAak
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t,x
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. In the absence of

gravity, the spatially homogeneous/isotropic gluon con-
densate U(t) > 0 satisfies the classical YM equations

(U̇)2 +
1

4
ḡ2 U4 = const , (A12)

Thus, we notice that the SU(3) result (A12) for the con-
densate is the same as the SU(2) result (A7), up to rescal-
ing of the coupling constant as3 ḡ ! ḡ/2.
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where � ⌘ ⇠⇤QCD in terms of the QCD scale parameter
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where B(x, y) is the Euler beta function. In the FLRW
Universe, the classical YM condensate behaves as radia-
tion medium such that a(t) / t1/2, pYM = ✏vac/3 charac-
teristic for the classical YM field behaviour.
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su(3) in terms of three Gell-Mann matrices {�7,��5,�2},
such that the resulting gauge-invariant symmetric field is
linearly composed of components with well-defined trans-
formation properties under spatial rotations. In particu-
lar, it has been shown, how to isolate the unique gauge-
invariant and homogeneous/isotropic (spin-0) compo-
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4
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Thus, we notice that the SU(3) result (A12) for the con-
densate is the same as the SU(2) result (A7), up to rescal-
ing of the coupling constant as3 ḡ ! ḡ/2.
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where � ⌘ ⇠⇤QCD in terms of the QCD scale parameter
⇤QCD and an arbitrary scaling constant ⇠, e is the base
of the natural logarithm, and the ground-state energy
density ✏̄ ⌘ ✏QCD

top + ✏CC accounting for the quantum-
topological QCD e↵ect and the observable CC only.
The system of equations of motion describing confor-

mal time evolution of the gluon condensate U = U(⌘)
and the scale factor a = a(⌘) reads

6

{
a00

a3
= 4✏̄+ Tµ,U

µ ,

Tµ,U
µ =

3b

16⇡2a4

h
(U 0)2 �

1

4
U4
i
,

@

@⌘

⇣
U 0 ln

6e
��(U 0)2 � 1

4U
4
��

a4�4

⌘

+
1

2
U3 ln

6e
��(U 0)2 � 1

4U
4
��

a4�4
= 0 . (B2)

The first integral of Eq. (B2) is the Einstein (0, 0)-
equation and reads
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a. The general asymptotic solutions of the EYM system

Omitting ordinary matter components in the cosmo-
logical plasma, the system of EYM equations (B2), (B3)
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respectively. Since U(t) has quasi-periodic singularities,
it is more convenient to work in terms of a new continuous
universal function g = g(t) defined as
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such that the equations (B4) can be written explicitly in
terms of continuous functions
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where B(x, y) is the Euler beta function. In the FLRW
Universe, the classical YM condensate behaves as radia-
tion medium such that a(t) / t1/2, pYM = ✏vac/3 charac-
teristic for the classical YM field behaviour.

2. Condensate in the SU(3) YM theory

The polar decomposition can be generalised to the SU(3)
YM theory
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using a special minimal su(2) algebra embedding into the
su(3) in terms of three Gell-Mann matrices {�7,��5,�2},
such that the resulting gauge-invariant symmetric field is
linearly composed of components with well-defined trans-
formation properties under spatial rotations. In particu-
lar, it has been shown, how to isolate the unique gauge-
invariant and homogeneous/isotropic (spin-0) compo-
nent. Using this symmetric gauge approach, one straight-
forwardly generalises the gauge invariant SU(2) de-
composition of the gauge field into a unique spatially-
homogeneous isotropic condensate and wave components
to the SU(3) case as follows
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densate U(t) > 0 satisfies the classical YM equations
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Thus, we notice that the SU(3) result (A12) for the con-
densate is the same as the SU(2) result (A7), up to rescal-
ing of the coupling constant as3 ḡ ! ḡ/2.

Appendix B: One-condensate model: Einstein-YM
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where � ⌘ ⇠⇤QCD in terms of the QCD scale parameter
⇤QCD and an arbitrary scaling constant ⇠, e is the base
of the natural logarithm, and the ground-state energy
density ✏̄ ⌘ ✏QCD

top + ✏CC accounting for the quantum-
topological QCD e↵ect and the observable CC only.
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The resulting equations:
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Classical YM condensate Quantum YM vacuum

Quantum
corrections

“Radiation” medium

Unstable solution!

Asymptotic (attractor) solution

Stable solution!

ρc ≡
3H2

0

κ
∼ 10−47GeV4

κ = 8πG , G = M−2

PL

Λcosm ∼ 0.7ρc

ρM ∼ 0.3ρc

Λcosm ∼ 10−47GeV4

Λcosm ≡ εFLRW − εMink , (0.1)

Rµν −
1

2
gµνR = κ(Λ0gµν + Tmat

µν ) (0.2)

Aa
0 = 0 (0.3)

eaiA
a
k ≡ Aik eai e

a
k = δik eai e

b
i = δab (0.4)

Aik(t, &x) = δikU(t) + Ãik(t, &x) 〈Ãik(t, &x)〉 =

∫
d4xÃik(t, &x) = 0 , (0.5)

εYM ∝ 1/a4

εYM → ±Λ4

YM t → ∞

1

QCD vacuum: 
a ferromagnetic undergoing 
spontaneous magnetisation

(Pagels&Tomboulis)

Gluon condensate on non-stationary (FLRW) background

• In fact, both chromoelectric and chromomagnetic condensates  
are stable on non-stationary (FLRW) background of expanding Universe

group and the SO(3) group of spatial 3-rotations, the
unique (up to a rescaling) SU(2) YM configuration can
be parameterized in terms of a scalar time-dependent
spatially-homogeneous field — see e.g. Refs. [22–26].
Within the symmetric gauge, one obtains a unique and
gauge-invariant decomposition of the gauge field into a
spatially homogeneous isotropic part (the YM conden-
sate) and a non-isotropic/non-homogeneous parts (the
YM waves), namely,

Aak

�
t,x

�
= �akU(t) + eAak

�
t,x

�
,

with h eAik

�
t,x

�
i =

R
d3x eAik

�
t,x

�
= 0 and the YM con-

densate positively definite U(t) > 0. In the QFT for-
mulation, the inhomogeneous YM wave modes eAik are
interpreted as YM quanta (e.g. gluons), while U(t) con-
tributes to the ground state of the theory — for further
technical details, see Appendix B.

We may now focus on the equations of motion, ad-
dressing the time evolution of the homogeneous YM con-
densate in the cosmological environment. For this pur-
pose, we consider the perturbative (one-loop) e↵ective
toy-model, provided that the exact (all-loop) formula-
tion provides very similar results. In full analogy to the
SU(2) condensate case [17], in the QCD case the system
of the dynamical equations of the condensate has the ex-
act solution corresponding to the vanishing logarithm or,
equivalently, satisfies the transcendent equation |Q| = 1,
with

Q ⌘
32
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�4Tµ
µ [U ]

= 6e
h
(U 0)2 �

1

4
U4

i
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�4 ,

which yields the two distinct cases Q = ±1 — for more
details, see e.g. Appendix B.
As was mentioned above, quite naturally, the exact

compensation of the positive- and negative-valued gluon
condensate contributions to the QCD ground state en-
ergy density would be realized, in particular, if both the
electric and magnetic components Q = ±1 co-exist in the
ground state of the Universe. At macroscopic distances
the two contributions cancel, without any fine-tuning of
the model parameters, due to their (time) attractor na-
ture at large physical times. Within this hypothesis, both
QCD subsystems should be generated during the cosmo-
logical QCD phase transition, and asymptotically acquire
the same absolute values of the energy density, with op-
posite signs that trigger cancellation at large t for arbi-
trary values of the normalization parameter ⇠.
To address the characteristic time scales that are re-

quired for this mechanism to take place, let us consider
a deviation from the exact partial solution, which de-
scribes the evolution of U(t), and study numerically the
general solution of the equations of motion — see Ap-
pendix B. We first choose the subset of the initial condi-
tions satisfying Q0 ⌘ Q(t = t0) > 1, and then discuss the
results of the numerical analysis qualitatively. For this
choice of the initial conditions, Fig. 2 (left) illustrates
the physical time evolution of the total energy density
(in dimensionless units) of the homogeneous gluon con-
densate U = U(t), namely T 0

0 (t) ⌘ ✏̄ + T 0,U
0 (t). In Ap-

pendix B we show the explicit expression of T 0,U
0 and ✏̄,

respectively, as functionals of U(t). In Fig. 2 (middle) we
display the corresponding result for the trace of the total
gluon energy-momentum tensor Tµ

µ (t) ⌘ 4✏̄ + Tµ,U
µ (t) in

dimensionless units, and the corresponding solution for
the logarithm of the scale factor is given in Fig. 2 (right).
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FIG. 3. An illustration of the homogeneous QCD condensate amplitude oscillations U = U(t), with quasi-periodic singularities
in the physical time t =

R
ad⌘, is shown for the Q(U) = 1 and the Q(U) = �1 solutions, respectively in the left and right

panels, in units of the characteristic time scale ⇤�1
QCD. These spikes are localized in time-lapse, along the space-like directions,

and must be interpreted as new solitonic solutions, dubbed chronons or �-solutions.

The period of the Tµ
µ (t) oscillations is practically time independent, which can also be proven analytically, while

5

”Time” instantons

3

in our numerical simulations, the typical differences be-
tween the nucleation temperatures for any of the three
transitions in Eq. (3) are above 20 GeV. This means that
no �!H1 transition happens in practice since by the
time the universe cools down below Tn(H2!H1), the H2

bubbles are already completely percolated and no phase
� remains.

Since in our scenario an occurrence of simultaneous
strong first-order transitions is highly unlikely, in what
follows we are focused on well-separated transitions �!
H2 and H2!H1 that occur at very different time scales
such that H2 bubbles percolate before the H2!H1 tran-
sition takes over. In this case, the well known formalism
of Ref. [11, 50, 51] for derivation of the GWs spectrum as
the energy density per logarithmic frequency of the GW
radiation, h2⌦GW, emerging from single-step transitions
can be used.

In the framework of this formalism, the GW signal is
a linear superposition of three components parameteriz-
ing bubble wall collisions, sound waves generated by the
phase transitions as well as magnetohydrodynamics tur-
bulences in the plasma.

For successive well-separated transitions the net GW
energy density is just the mere superposition of the cor-
responding contributions emerging from the single-step
transitions yielding well-separated (in frequency) GWs
signals, or peaks in the GW spectrum. Even though, it
is quite obvious that such a superposition should natu-
rally lead to the multi-peaked signatures in the power
spectrum of GWs, an explicit calculation in a particu-
larly simple extension of the Higgs sector that adopts, at
least, one short-lasting and one long-lasting transitions
is lacking the literature.

Consider the two sequential breaking steps in the right
hand side of Eq. (3) where the first one �!H2 is in fact
generated by thermal loop effects, in the spirit of the
models studied in, e.g. Refs. [25, 35–37, 40].
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ḡ
2
1(J )=

96⇡2

bN ln(|J |/�
4
±)

, (15)

where

�
4
±⌘|J

⇤
|exp

h
⌥

96⇡2

bN |ḡ
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For instance, the [0]!�!H1 pattern, where the first
[0]!� step becomes a first-order transition due to the ef-
fect of cubic contributions in the thermal m/T expansion.
For such transitions, a sample of the corresponding GW
signals are displayed in Fig. 1. Here, we observe two well-
separated peaks but with amplitudes much smaller than
those found in the left panel. This is a consequence of rel-
atively weak first-order phase transitions whose strengths
are of the order vn/Tn⇠0.2�0.5. In particular, the loop-
generated ones, which have a much larger time scale than
those that are already first-order at tree level, have their
frequencies shifted to the left.

group and the SO(3) group of spatial 3-rotations, the
unique (up to a rescaling) SU(2) YM configuration can
be parameterized in terms of a scalar time-dependent
spatially-homogeneous field — see e.g. Refs. [22–26].
Within the symmetric gauge, one obtains a unique and
gauge-invariant decomposition of the gauge field into a
spatially homogeneous isotropic part (the YM conden-
sate) and a non-isotropic/non-homogeneous parts (the
YM waves), namely,
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= 0 and the YM con-

densate positively definite U(t) > 0. In the QFT for-
mulation, the inhomogeneous YM wave modes eAik are
interpreted as YM quanta (e.g. gluons), while U(t) con-
tributes to the ground state of the theory — for further
technical details, see Appendix B.

We may now focus on the equations of motion, ad-
dressing the time evolution of the homogeneous YM con-
densate in the cosmological environment. For this pur-
pose, we consider the perturbative (one-loop) e↵ective
toy-model, provided that the exact (all-loop) formula-
tion provides very similar results. In full analogy to the
SU(2) condensate case [17], in the QCD case the system
of the dynamical equations of the condensate has the ex-
act solution corresponding to the vanishing logarithm or,
equivalently, satisfies the transcendent equation |Q| = 1,
with
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which yields the two distinct cases Q = ±1 — for more
details, see e.g. Appendix B.
As was mentioned above, quite naturally, the exact

compensation of the positive- and negative-valued gluon
condensate contributions to the QCD ground state en-
ergy density would be realized, in particular, if both the
electric and magnetic components Q = ±1 co-exist in the
ground state of the Universe. At macroscopic distances
the two contributions cancel, without any fine-tuning of
the model parameters, due to their (time) attractor na-
ture at large physical times. Within this hypothesis, both
QCD subsystems should be generated during the cosmo-
logical QCD phase transition, and asymptotically acquire
the same absolute values of the energy density, with op-
posite signs that trigger cancellation at large t for arbi-
trary values of the normalization parameter ⇠.
To address the characteristic time scales that are re-

quired for this mechanism to take place, let us consider
a deviation from the exact partial solution, which de-
scribes the evolution of U(t), and study numerically the
general solution of the equations of motion — see Ap-
pendix B. We first choose the subset of the initial condi-
tions satisfying Q0 ⌘ Q(t = t0) > 1, and then discuss the
results of the numerical analysis qualitatively. For this
choice of the initial conditions, Fig. 2 (left) illustrates
the physical time evolution of the total energy density
(in dimensionless units) of the homogeneous gluon con-
densate U = U(t), namely T 0

0 (t) ⌘ ✏̄ + T 0,U
0 (t). In Ap-

pendix B we show the explicit expression of T 0,U
0 and ✏̄,

respectively, as functionals of U(t). In Fig. 2 (middle) we
display the corresponding result for the trace of the total
gluon energy-momentum tensor Tµ

µ (t) ⌘ 4✏̄ + Tµ,U
µ (t) in

dimensionless units, and the corresponding solution for
the logarithm of the scale factor is given in Fig. 2 (right).
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FIG. 3. An illustration of the homogeneous QCD condensate amplitude oscillations U = U(t), with quasi-periodic singularities
in the physical time t =

R
ad⌘, is shown for the Q(U) = 1 and the Q(U) = �1 solutions, respectively in the left and right

panels, in units of the characteristic time scale ⇤�1
QCD. These spikes are localized in time-lapse, along the space-like directions,

and must be interpreted as new solitonic solutions, dubbed chronons or �-solutions.

The period of the Tµ
µ (t) oscillations is practically time independent, which can also be proven analytically, while
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Exact partial solution:

group and the SO(3) group of spatial 3-rotations, the
unique (up to a rescaling) SU(2) YM configuration can
be parameterized in terms of a scalar time-dependent
spatially-homogeneous field — see e.g. Refs. [22–26].
Within the symmetric gauge, one obtains a unique and
gauge-invariant decomposition of the gauge field into a
spatially homogeneous isotropic part (the YM conden-
sate) and a non-isotropic/non-homogeneous parts (the
YM waves), namely,

Aak
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,

with h eAik
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i =

R
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t,x
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= 0 and the YM con-

densate positively definite U(t) > 0. In the QFT for-
mulation, the inhomogeneous YM wave modes eAik are
interpreted as YM quanta (e.g. gluons), while U(t) con-
tributes to the ground state of the theory — for further
technical details, see Appendix B.

We may now focus on the equations of motion, ad-
dressing the time evolution of the homogeneous YM con-
densate in the cosmological environment. For this pur-
pose, we consider the perturbative (one-loop) e↵ective
toy-model, provided that the exact (all-loop) formula-
tion provides very similar results. In full analogy to the
SU(2) condensate case [17], in the QCD case the system
of the dynamical equations of the condensate has the ex-
act solution corresponding to the vanishing logarithm or,
equivalently, satisfies the transcendent equation |Q| = 1,
with
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which yields the two distinct cases Q = ±1 — for more
details, see e.g. Appendix B.
As was mentioned above, quite naturally, the exact

compensation of the positive- and negative-valued gluon
condensate contributions to the QCD ground state en-
ergy density would be realized, in particular, if both the
electric and magnetic components Q = ±1 co-exist in the
ground state of the Universe. At macroscopic distances
the two contributions cancel, without any fine-tuning of
the model parameters, due to their (time) attractor na-
ture at large physical times. Within this hypothesis, both
QCD subsystems should be generated during the cosmo-
logical QCD phase transition, and asymptotically acquire
the same absolute values of the energy density, with op-
posite signs that trigger cancellation at large t for arbi-
trary values of the normalization parameter ⇠.
To address the characteristic time scales that are re-

quired for this mechanism to take place, let us consider
a deviation from the exact partial solution, which de-
scribes the evolution of U(t), and study numerically the
general solution of the equations of motion — see Ap-
pendix B. We first choose the subset of the initial condi-
tions satisfying Q0 ⌘ Q(t = t0) > 1, and then discuss the
results of the numerical analysis qualitatively. For this
choice of the initial conditions, Fig. 2 (left) illustrates
the physical time evolution of the total energy density
(in dimensionless units) of the homogeneous gluon con-
densate U = U(t), namely T 0

0 (t) ⌘ ✏̄ + T 0,U
0 (t). In Ap-

pendix B we show the explicit expression of T 0,U
0 and ✏̄,

respectively, as functionals of U(t). In Fig. 2 (middle) we
display the corresponding result for the trace of the total
gluon energy-momentum tensor Tµ

µ (t) ⌘ 4✏̄ + Tµ,U
µ (t) in

dimensionless units, and the corresponding solution for
the logarithm of the scale factor is given in Fig. 2 (right).
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and must be interpreted as new solitonic solutions, dubbed chronons or �-solutions.

The period of the Tµ
µ (t) oscillations is practically time independent, which can also be proven analytically, while
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“Mirror” symmetry of the ground state
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can be obtained differentiating eq.(1). β(αs) remains obviously finite as
ΛUV → ∞ and in perturbation theory takes the form

β(αs) = −α2
s (β0 + β1αs + β2α

2
s + . . .) . (3)

As is known, the various terms in β0, β1, β2, . . . correspond to one loop,
two loops, three loops . . . contributions; β0 and β1 are universal in the mass
independent schemes.
Note that, for a general RS, Zα, β(αs), β0, β1, . . . depend also on quark
masses through the variables m2

f/µ
2, not explicitly indicated. However, ac-

cording to the decoupling theorem, all quarks with masses much larger than
the energy scale of interest (in particular mf $ µ) can be ignored. On the
contrary, if mf % µ, we can often neglect mf . Then, the discussion can be
greatly simplified if for every µ we divide the quarks in active quarks with
mf = 0 and inactive ones, which we simply ignore. Within this framework
β0, β1, . . . depend on µ only through the number of active quarks nf , which
changes by ±1 any time µ crosses a quark threshold mf . Furthermore the
first two coefficients, β0 and β1, are RS independent, while all the others
depend on the scheme. In the one loop approximation (i.e. keeping only the
first term in (3)) eq.(2) gives

αs(µ
2) =

αs(µ2
0)

1 + β0 αs(µ2
0) ln(µ2/µ2

0)
= αs(µ

2
0)

∞∑

n=0

(
−β0 αs(µ

2
0) ln

µ2

µ2
0

)n

, (4)

which explicitly expresses αs at the µ scale as a function of the same quantity
at the µ0 scale. Eq. (4) clearly shows that a change in the value of µ consists
in a reorganization of the perturbative expansion of any observable or, what
is the same thing, in a resummation of various contributions. Setting

Λ2 = µ2
0 exp

[
−

1

β0

1

αs(µ2
0)

]
, (5)

αs(µ2) can be written in terms of the overall scale Λ, without any reference
to a specific µ0

αs(µ
2) =

1

β0 ln(µ2/Λ2)
. (6)

As concerns the best choice of µ2 in a specific calculation, let us consider the
perturbative expansion of an amplitude or observable G(q, x) of canonical
dimension 0. We assume G written in terms of an overall momentum q and

is invariant under

significant fine tuning between the usual QCD and Mir-
ror QCD vacua parameters which would be a problem for
getting a naturally small CC term. Within this paper
we show that even in the framework of standard QFT
it is possible to recover as a result the cancellation of
SU(2) Yang-Mills (YM) contributions to the vacuum en-
ergy within the same theory. This achievement holds a
certain generality, since SU(2) subgroups of SU(N) YM
theories can always be picked out, being the ones that
must be accounted for the cosmological applications. The
vacua compensation mechanism will be analyzed for ef-
fective YM theories, in both the perturbative and the
non-perturbative cases, and then applied to address the
QCD electric and magnetic condensates. Our approach
is based on the Savvidy vacuum model [10–13], as an ef-
fective method describing the ground state dynamics in
quantum YM field theories at long distances. Interest-
ingly enough, the Savvidy vacuum model has received
a further support from another approach based on the
analysis of the gluon condensation within the framework
of the Functional RG (FRG) [14–16].

As the main result of this work, we find the stabil-
ity conditions of the considered Savvidy vacuum solu-
tions for the gauge-invariant homogeneous gluon con-
densate, and obtain analytic expressions for the density,
the pressure and the scale factor in the non-stationary
Friedmann-Lemâıtre-Robertson-Walker (FLRW) Uni-
verse filled with the gluon condensate, which fluctuates
near the minimum of the e↵ective Lagrangian.

II. EFFECTIVE YM THEORY AND THE
MIRROR SYMMETRY

We may start showing how to recover the e↵ective action
of SU(N) YM theories, following the seminal Refs. [10]
recently followed by Refs. [17–21]. We then generalize
these findings for a non-stationary FLRW background of
expanding Universe.

In order to incorporate the conformal anomaly via the
variational procedure, the gauge coupling gYM should ac-
quire a dependence on the quantum fields, according to
the RG equations. The order parameter of the theory is
denoted with J , a gauge-invariant operator of the least
dimension [12]. In what follows, the running coupling
constant gYM recasts conventionally as ḡ, so to encode
the dependence on J in the e↵ective Lagrangian Le↵ ,
namely,

Le↵ =
J

4ḡ2
, ḡ2 = ḡ2(J ) , J = �

F
a
µ⌫F

µ⌫
a

p
�g

, (1)

where g ⌘ det(gµ⌫), gµ⌫ = a(⌘)2diag(1, �1, �1, �1) is
the FLRW metric, A

a
µ are the SU(N) connections and

F
a
µ⌫ – their field-strength. Through the paper a, b, ...

denote internal indices of SU(N) in the adjoint represen-
tation.

For FLRW metrics J simplifies into

J =
2

p
�g

X

a

(Ea ·Ea �Ba ·Ba) ⌘
2

p
�g

(E2
�B2) ,

which is cast in terms of the electric field Ea and the
magnetic field Ba components. We define the spatial av-
erage quantity hJ i, and distinguish the cases in which:
i) hJ i is higher than zero, meaning that the average
chromo-electric (CE) components hE2

i dominate over the
averaged chromo-magnetic (CM) terms hB2

i; ii) vicev-
ersa, the case of a chromo-magnetically dominated state
hJi < 0 corresponds to a CM condensate.
Through the rest of the paper we will work only with

spatially averaged quantities, thus from now on we re-
move the h. . . i, for simplicity. Our approach must be
thought as a chromo-dynamical mean field theory, in
analogy to many condensed matter models1.
The gauge coupling satisfies the RG equation

2J
dḡ2

dJ
= ḡ2� ,

where � = �(ḡ2) and the running of the coupling constant
ḡ2 is determined by the exact �-function — both the
quantities can be either positive or negative, in general.
By the standard variational procedure, starting from

the e↵ective action (1) we arrive at the all-loop e↵ective
YM equations of motion, supplemented by the RG equa-
tion, which can be represented as follows

�!
D

ab
⌫


F

µ⌫
b

ḡ2
p
�g

✓
1�

�(ḡ2)

2

◆�
= 0 , (2)

�!
D

ab
⌫ ⌘

⇣
�ab

�!
@ ⌫

p
�g

p
�g

� fabc
A

c
⌫

⌘
, (3)

d ln |ḡ2|

d ln |J |/�4
=

�(ḡ2)

2
, (4)

where � is the physical scale of the e↵ective YM theory.
Thus, for the system of equations (2), we find the exact
(partial) ground state solution

�(ḡ2⇤) = 2 , ḡ2⇤ ⌘ ḡ2(J ⇤) , (5)

which we refer to as “non-perturbative vacuum” realized
at J ⇤ > 0, or the CE condensate, in what follows. Is this
the only possible ground state solution in a YM theory?

III. MIRROR SYMMETRY

↵s =
ḡ2

4⇡
, �0 =

11

4⇡
, µ2

⌘

p
|J | (6)

1
For example, the Ginzburg-Landau model describes the evolution

of spatially averaged observables in superconductive materials,

which in turn are crystals with local impurities and anisotropies

— see e.g. Ref. [33].

2

For pure gluodynamics at one-loop:

Choosing the ground state value of the condensate

we observe that the mirror symmetry, indeed, holds provided

       i.e. in the ground state only!

µ2
⌘

p
|J | , µ2

0 ⌘
p

|J ⇤| (7)

The e↵ective YM Lagrangian (1) in a vicinity of the
ground state J ' J

⇤ is Z2⇥Z0
2-symmetric w.r.t. simul-

taneous permutations

Z2 : J
⇤
 ! �J

⇤ , (8)

Z0
2 : ḡ2⇤  ! �ḡ

2
⇤ , �(ḡ2⇤)  ! ��(ḡ

2
⇤) ,

|J
⇤
|

�4
CE

 !
�4
CM

|J ⇤|
, �4

CM < |J
⇤
| < �4

CE , (9)

where the ground-state value of J -invariant satisfies

|J
⇤
| = �2

CE�
2
CM . (10)

Here, �CE and �CM are the physical scales of the CE and
CM condensates, respectively. Note, the RG equation
(4) is symmetric w.r.t. separate Z2 and Z0

2 transforma-
tions. These important symmetry properties have rele-
vant consequences on the stability of the ground-state
YM solutions in Minkowski spacetime. Note, the Z0

2
symmetry e↵ectively “maps” the nonperturbative regime
with |J

⇤
| < �4

CE to a perturbative regime corresponding
to |J

⇤
| > �4

CM, and vice versa. Moreover, due to the
fact that the e↵ective Lagrangian Eq. (1) is invariant un-
der the Z2 ⇥ Z0

2 symmetry, the CE (J ⇤ > 0) and the
CM (J ⇤ < 0) vacua should be associated with two equal
(mirror) minima of the e↵ective Lagrangian.

We emphasize that this symmetry, which reveals it-
self only in the ground state, does not explicitly show
itself in the EoM (2). The CE condensate corresponds
to a classical solution of the Eq. (2), which is satisfied
for �(ḡ2⇤) = 2. On the other hand, the CM vacuum
corresponds to �(ḡ2⇤) = �2, which does not imply the
vanishing of [1� �(ḡ2⇤)/2], as for the CE case, but rather
amounts to a 2 overall factor in Eq. (2). The CM vacuum
is obtained as a more complicated solution of Eq. (2),
which recasts equation

2
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ab
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
F

µ⌫
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ḡ2
p
�g

�
= 0 . (11)

Also considering the energy-momentum tensor associated
to the two minima, the symmetry does not appear explic-
itly.

The energy-momentum tensor of the Savvidy’s theory
has the form

T ⌫
µ =

1

ḡ2

h
1�

�(ḡ2)

2

i⇣Fa
µ�F

⌫�
a

p
�g

�
1

4
�⌫µJ

⌘
� �⌫µ

�(ḡ2)

8ḡ2
J .

(12)
In the case of the CE vacuum, the energy-momentum
tensor simplifies to the trace-form

Tµ
µ = �

�(ḡ2⇤)

8ḡ2⇤
J

⇤ = �
1

4ḡ2⇤
J

⇤ . (13)

For the CM vacuum case, the energy-momentum tensor
appears more complicated:

T ⌫
µ =

2

ḡ2

⇣Fa
µ�F

⌫�
a

p
�g

�
1

4
�⌫µJ

⇤
⌘
� �⌫µ

�(ḡ2⇤)

8ḡ2⇤
J

⇤ . (14)

However, if we consider its trace, we obtain exactly the
same trace-tensor of the CE vacua, but with an opposite
sign:

Tµ
µ =

1

4ḡ2⇤
J

⇤ . (15)

Remarkably, the two mirror minima of the e↵ective La-
grangian have an opposite energy density, which is found
to be

✏vac ⌘
1

4
hTµ

µ ivac = ⌥Le↵(J
⇤) . (16)

Indeed, the J ⇤
$ �J

⇤ transformation corresponds to an
exchange of the electric and the magnetic components,
which flip simultaneously the sign of the �-function and
ḡ2⇤ for a fixed minimal (negative) value of Le↵ .
The Perturbation Theory can be applied to the e↵ec-

tive action in the limit of large mean fields, i.e. |J |!1,
away from the nonperturbative ground state. We now
comment on the one-loop results obtained by Savvidy
for SU(N) YM theories, and then focus on a di↵erent
strategy to account for all-loops corrections, based on
the FRG approach. The latter has been developed in its
cosmological applications in Ref. [15], accounting for the
SU(2) gauge symmetry.
The standard one-loop SU(N) solution reads

�(1) = �
bN

48⇡2
ḡ2(1) , ḡ2(1) =

96⇡2

bN ln(|J |/�4)
, (17)

where b = 11 is the one-loop �-function coe�cient for
pure SU(N) gauge theory. For the one-loop e↵ective ac-
tion,

L
(1)
e↵ =

bN

384⇡2
J ln

⇣
|J |

�4

⌘
, (18)

one recovers the well-known results obtained by Savvidy
in Ref. [10].
The conventional one-loop result for the trace anomaly

in SU(N) YM gluodynamics is considered in the pertur-
bative regime, |J ⇤

| > �4. In this way the sign of the
corresponding energy density, i.e. ✏(1) from Eq. (15) co-

incides with the sign of L(1)
e↵ (J ), and thus with the sign

of J . The well-known topological QCD vacuum density
(referred to as a solution of the equation of motion (10))
is negative, which implies that it is dominated by the
CM vacuum component corresponding to J

⇤ < 0 (and
hence � ⌘ �CM in this case). As was elaborated above,
the mirror CE solution J

⇤ > 0 can be found by means
of Z0

2 transformation (with � ⌘ �CE) provided that the
ground state is Z0

2-symmetric.
How well the one-loop approximation reproduces the

all-loops vacuum state, given by the non-perturbative
ground-state solutions in Eq. (5)? We can answer this
question focusing on the case of SU(2), which is also
relevant for cosmology, in the framework of FRG [14–
16]. The one-loop and the all-loops solutions approach
the zero of the e↵ective action at exactly the same val-
ues of J = 0 and J = �4. The solutions also exhibit

3

µ2
⌘

p
|J | , µ2

0 ⌘
p

|J ⇤| (7)

The e↵ective YM Lagrangian (1) in a vicinity of the
ground state J ' J

⇤ is Z2⇥Z0
2-symmetric w.r.t. simul-

taneous permutations

Z2 : J
⇤
 ! �J

⇤ , (8)

Z0
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ḡ2⇤ for a fixed minimal (negative) value of Le↵ .
The Perturbation Theory can be applied to the e↵ec-

tive action in the limit of large mean fields, i.e. |J | ! 1,
away from the nonperturbative ground state. We now
comment on the one-loop results obtained by Savvidy
for SU(N) YM theories, and then focus on a di↵erent
strategy to account for all-loops corrections, based on
the FRG approach. The latter has been developed in its
cosmological applications in Ref. [15], accounting for the
SU(2) gauge symmetry.
The standard one-loop SU(N) solution reads

�(1) = �
bN

48⇡2
ḡ2(1) , ḡ2(1) =

96⇡2

bN ln(|J |/�4)
, (17)

where b = 11 is the one-loop �-function coe�cient for
pure SU(N) gauge theory. For the one-loop e↵ective ac-
tion,

L
(1)
e↵ =

bN

384⇡2
J ln

⇣
|J |

�4

⌘
, (18)

one recovers the well-known results obtained by Savvidy
in Ref. [10].
The conventional one-loop result for the trace anomaly

in SU(N) YM gluodynamics is considered in the pertur-
bative regime, |J ⇤

| > �4. In this way the sign of the
corresponding energy density, i.e. ✏(1) from Eq. (15) co-

incides with the sign of L(1)
e↵ (J ), and thus with the sign

of J . The well-known topological QCD vacuum density
(referred to as a solution of the equation of motion (10))
is negative, which implies that it is dominated by the
CM vacuum component corresponding to J

⇤ < 0 (and
hence � ⌘ �CM in this case). As was elaborated above,
the mirror CE solution J

⇤ > 0 can be found by means
of Z0

2 transformation (with � ⌘ �CE) provided that the
ground state is Z0

2-symmetric.
How well the one-loop approximation reproduces the

all-loops vacuum state, given by the non-perturbative
ground-state solutions in Eq. (5)? We can answer this
question focusing on the case of SU(2), which is also
relevant for cosmology, in the framework of FRG [14–
16]. The one-loop and the all-loops solutions approach
the zero of the e↵ective action at exactly the same val-
ues of J = 0 and J = �4. The solutions also exhibit
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2
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Here, �CE and �CM are the physical scales of the CE and
CM condensates, respectively. Note, the RG equation
(4) is symmetric w.r.t. separate Z2 and Z0

2 transforma-
tions. These important symmetry properties have rele-
vant consequences on the stability of the ground-state
YM solutions in Minkowski spacetime. Note, the Z0

2
symmetry e↵ectively “maps” the nonperturbative regime
with |J
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CE to a perturbative regime corresponding
to |J
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CM, and vice versa. Moreover, due to the
fact that the e↵ective Lagrangian Eq. (1) is invariant un-
der the Z2 ⇥ Z0

2 symmetry, the CE (J ⇤ > 0) and the
CM (J ⇤ < 0) vacua should be associated with two equal
(mirror) minima of the e↵ective Lagrangian.

We emphasize that this symmetry, which reveals it-
self only in the ground state, does not explicitly show
itself in the EoM (2). The CE condensate corresponds
to a classical solution of the Eq. (2), which is satisfied
for �(ḡ2⇤) = 2. On the other hand, the CM vacuum
corresponds to �(ḡ2⇤) = �2, which does not imply the
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Also considering the energy-momentum tensor associated
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�(ḡ2⇤)

8ḡ2⇤
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The Perturbation Theory can be applied to the e↵ec-
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away from the nonperturbative ground state. We now
comment on the one-loop results obtained by Savvidy
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one recovers the well-known results obtained by Savvidy
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The conventional one-loop result for the trace anomaly

in SU(N) YM gluodynamics is considered in the pertur-
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| > �4. In this way the sign of the
corresponding energy density, i.e. ✏(1) from Eq. (15) co-

incides with the sign of L(1)
e↵ (J ), and thus with the sign

of J . The well-known topological QCD vacuum density
(referred to as a solution of the equation of motion (10))
is negative, which implies that it is dominated by the
CM vacuum component corresponding to J

⇤ < 0 (and
hence � ⌘ �CM in this case). As was elaborated above,
the mirror CE solution J

⇤ > 0 can be found by means
of Z0

2 transformation (with � ⌘ �CE) provided that the
ground state is Z0

2-symmetric.
How well the one-loop approximation reproduces the

all-loops vacuum state, given by the non-perturbative
ground-state solutions in Eq. (5)? We can answer this
question focusing on the case of SU(2), which is also
relevant for cosmology, in the framework of FRG [14–
16]. The one-loop and the all-loops solutions approach
the zero of the e↵ective action at exactly the same val-
ues of J = 0 and J = �4. The solutions also exhibit
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2
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for �(ḡ2⇤) = 2. On the other hand, the CM vacuum
corresponds to �(ḡ2⇤) = �2, which does not imply the
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�(ḡ2)

2

i⇣Fa
µ�F

⌫�
a

p
�g

�
1

4
�⌫µJ

⌘
� �⌫µ

�(ḡ2)
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4ḡ2⇤
J

⇤ . (16)

Remarkably, the two mirror minima of the e↵ective La-
grangian have an opposite energy density, which is found
to be

✏vac ⌘
1

4
hTµ

µ ivac = ⌥Le↵(J
⇤) . (17)

Indeed, the J ⇤
$ �J

⇤ transformation corresponds to an
exchange of the electric and the magnetic components,
which flip simultaneously the sign of the �-function and
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one recovers the well-known results obtained by Savvidy
in Ref. [10].
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in SU(N) YM gluodynamics is considered in the pertur-
bative regime, |J ⇤

| > �4. In this way the sign of the
corresponding energy density, i.e. ✏(1) from Eq. (17) co-

incides with the sign of L(1)
e↵ (J ), and thus with the sign

of J . The well-known topological QCD vacuum density
(referred to as a solution of the equation of motion (12))
is negative, which implies that it is dominated by the
CM vacuum component corresponding to J

⇤ < 0 (and
hence � ⌘ �CM in this case). As was elaborated above,
the mirror CE solution J

⇤ > 0 can be found by means
of Z0

2 transformation (with � ⌘ �CE) provided that the
ground state is Z0

2-symmetric.
How well the one-loop approximation reproduces the

all-loops vacuum state, given by the non-perturbative
ground-state solutions in Eq. (5)? We can answer this
question focusing on the case of SU(2), which is also
relevant for cosmology, in the framework of FRG [14–
16]. The one-loop and the all-loops solutions approach
the zero of the e↵ective action at exactly the same val-
ues of J = 0 and J = �4. The solutions also exhibit
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significant fine tuning between the usual QCD and Mir-
ror QCD vacua parameters which would be a problem for
getting a naturally small CC term. Within this paper
we show that even in the framework of standard QFT
it is possible to recover as a result the cancellation of
SU(2) Yang-Mills (YM) contributions to the vacuum en-
ergy within the same theory. This achievement holds a
certain generality, since SU(2) subgroups of SU(N) YM
theories can always be picked out, being the ones that
must be accounted for the cosmological applications. The
vacua compensation mechanism will be analyzed for ef-
fective YM theories, in both the perturbative and the
non-perturbative cases, and then applied to address the
QCD electric and magnetic condensates. Our approach
is based on the Savvidy vacuum model [10–13], as an ef-
fective method describing the ground state dynamics in
quantum YM field theories at long distances. Interest-
ingly enough, the Savvidy vacuum model has received
a further support from another approach based on the
analysis of the gluon condensation within the framework
of the Functional RG (FRG) [14–16].

As the main result of this work, we find the stabil-
ity conditions of the considered Savvidy vacuum solu-
tions for the gauge-invariant homogeneous gluon con-
densate, and obtain analytic expressions for the density,
the pressure and the scale factor in the non-stationary
Friedmann-Lemâıtre-Robertson-Walker (FLRW) Uni-
verse filled with the gluon condensate, which fluctuates
near the minimum of the e↵ective Lagrangian.

II. EFFECTIVE YM THEORY AND THE
MIRROR SYMMETRY

We may start showing how to recover the e↵ective action
of SU(N) YM theories, following the seminal Refs. [10]
recently followed by Refs. [17–21]. We then generalize
these findings for a non-stationary FLRW background of
expanding Universe.

In order to incorporate the conformal anomaly via the
variational procedure, the gauge coupling gYM should ac-
quire a dependence on the quantum fields, according to
the RG equations. The order parameter of the theory is
denoted with J , a gauge-invariant operator of the least
dimension [12]. In what follows, the running coupling
constant gYM recasts conventionally as ḡ, so to encode
the dependence on J in the e↵ective Lagrangian Le↵ ,
namely,

Le↵ =
J

4ḡ2
, ḡ2 = ḡ2(J ) , J = �

F
a
µ⌫F
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p
�g

, (1)

where g ⌘ det(gµ⌫), gµ⌫ = a(⌘)2diag(1, �1, �1, �1) is
the FLRW metric, A

a
µ are the SU(N) connections and

F
a
µ⌫ – their field-strength. Through the paper a, b, ...

denote internal indices of SU(N) in the adjoint represen-
tation.

For FLRW metrics J simplifies into

J =
2
p
�g

X

a

(Ea ·Ea �Ba ·Ba) ⌘
2
p
�g

(E2
�B2) ,

which is cast in terms of the electric field Ea and the
magnetic field Ba components. We define the spatial av-
erage quantity hJ i, and distinguish the cases in which:
i) hJ i is higher than zero, meaning that the average
chromo-electric (CE) components hE2

i dominate over the
averaged chromo-magnetic (CM) terms hB2

i; ii) vicev-
ersa, the case of a chromo-magnetically dominated state
hJi < 0 corresponds to a CM condensate.
Through the rest of the paper we will work only with

spatially averaged quantities, thus from now on we re-
move the h. . . i, for simplicity. Our approach must be
thought as a chromo-dynamical mean field theory, in
analogy to many condensed matter models1.
The gauge coupling satisfies the RG equation

2J
dḡ2

dJ
= ḡ2� ,

where � = �(ḡ2) and the running of the coupling constant
ḡ2 is determined by the exact �-function — both the
quantities can be either positive or negative, in general.
By the standard variational procedure, starting from

the e↵ective action (1) we arrive at the all-loop e↵ective
YM equations of motion, supplemented by the RG equa-
tion, which can be represented as follows
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d ln |ḡ2|

d ln |J |/�4
=

�(ḡ2)

2
. (4)

where � is the physical scale of the e↵ective YM theory.
Thus, for the system of equations (2), we find the exact
(partial) ground state solution

�(ḡ2⇤) = 2 , ḡ2⇤ ⌘ ḡ2(J ⇤) , (5)

which we refer to as “non-perturbative vacuum” realised
at J ⇤ > 0, or the CE condensate, in what follows. Is this
the only possible ground state solution in a YM theory?

III. MIRROR SYMMETRY

It is worth noticing that the e↵ective YM Lagrangian (1)
is Z2 ⇥ Z0

2-symmetric w.r.t. simultaneous permutations

Z2 : J  ! �J , (6)

1
For example, the Ginzburg-Landau model describes the evolution

of spatially averaged observables in superconductive materials,

which in turn are crystals with local impurities and anisotropies

— see e.g. Ref. [33].
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In a vicinity of the ground state, the effective Lagrangian

The e↵ective YM Lagrangian (1) in a vicinity of the
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Here, �CE and �CM are the physical scales of the CE and
CM condensates, respectively. Note, the RG equation
(4) is symmetric w.r.t. separate Z2 and Z0

2 transforma-
tions. These important symmetry properties have rele-
vant consequences on the stability of the ground-state
YM solutions in Minkowski spacetime. Note, the Z0

2
symmetry e↵ectively “maps” the nonperturbative regime
with |J

⇤
| < �4

CE to a perturbative regime corresponding
to |J

⇤
| > �4

CM, and vice versa. Moreover, due to the
fact that the e↵ective Lagrangian Eq. (1) is invariant un-
der the Z2 ⇥ Z0

2 symmetry, the CE (J ⇤ > 0) and the
CM (J ⇤ < 0) vacua should be associated with two equal
(mirror) minima of the e↵ective Lagrangian.

We emphasize that this symmetry, which reveals it-
self only in the ground state, does not explicitly show
itself in the EoM (2). The CE condensate corresponds
to a classical solution of the Eq. (2), which is satisfied
for �(ḡ2⇤) = 2. On the other hand, the CM vacuum
corresponds to �(ḡ2⇤) = �2, which does not imply the
vanishing of [1� �(ḡ2⇤)/2], as for the CE case, but rather
amounts to a 2 overall factor in Eq. (2). The CM vacuum
is obtained as a more complicated solution of Eq. (2),
which recasts equation
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Also considering the energy-momentum tensor associated
to the two minima, the symmetry does not appear explic-
itly.
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In the case of the CE vacuum, the energy-momentum
tensor simplifies to the trace-form
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However, if we consider its trace, we obtain exactly the
same trace-tensor of the CE vacua, but with an opposite
sign:
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exchange of the electric and the magnetic components,
which flip simultaneously the sign of the �-function and
ḡ2⇤ for a fixed minimal (negative) value of Le↵ .
The Perturbation Theory can be applied to the e↵ec-
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away from the nonperturbative ground state. We now
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one recovers the well-known results obtained by Savvidy
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of J . The well-known topological QCD vacuum density
(referred to as a solution of the equation of motion (10))
is negative, which implies that it is dominated by the
CM vacuum component corresponding to J

⇤ < 0 (and
hence � ⌘ �CM in this case). As was elaborated above,
the mirror CE solution J

⇤ > 0 can be found by means
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2 transformation (with � ⌘ �CE) provided that the
ground state is Z0

2-symmetric.
How well the one-loop approximation reproduces the

all-loops vacuum state, given by the non-perturbative
ground-state solutions in Eq. (5)? We can answer this
question focusing on the case of SU(2), which is also
relevant for cosmology, in the framework of FRG [14–
16]. The one-loop and the all-loops solutions approach
the zero of the e↵ective action at exactly the same val-
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2 transforma-
tions. These important symmetry properties have rele-
vant consequences on the stability of the ground-state
YM solutions in Minkowski spacetime. Note, the Z0

2
symmetry e↵ectively “maps” the nonperturbative regime
with |J

⇤
| < �4

CE to a perturbative regime corresponding
to |J

⇤
| > �4

CM, and vice versa. Moreover, due to the
fact that the e↵ective Lagrangian Eq. (1) is invariant un-
der the Z2 ⇥ Z0

2 symmetry, the CE (J ⇤ > 0) and the
CM (J ⇤ < 0) vacua should be associated with two equal
(mirror) minima of the e↵ective Lagrangian.

We emphasize that this symmetry, which reveals it-
self only in the ground state, does not explicitly show
itself in the EoM (2). The CE condensate corresponds
to a classical solution of the Eq. (2), which is satisfied
for �(ḡ2⇤) = 2. On the other hand, the CM vacuum
corresponds to �(ḡ2⇤) = �2, which does not imply the
vanishing of [1� �(ḡ2⇤)/2], as for the CE case, but rather
amounts to a 2 overall factor in Eq. (2). The CM vacuum
is obtained as a more complicated solution of Eq. (2),
which recasts equation

2
�!
D

ab
⌫


F

µ⌫
b

ḡ2
p
�g

�
= 0 . (10)

Also considering the energy-momentum tensor associated
to the two minima, the symmetry does not appear explic-
itly.

The energy-momentum tensor of the Savvidy’s theory
has the form

T ⌫
µ =

1

ḡ2

h
1�

�(ḡ2)

2

i⇣Fa
µ�F

⌫�
a

p
�g

�
1

4
�⌫µJ

⌘
� �⌫µ

�(ḡ2)

8ḡ2
J .

(11)
In the case of the CE vacuum, the energy-momentum
tensor simplifies to the trace-form

Tµ
µ = �

�(ḡ2⇤)

8ḡ2⇤
J

⇤ = �
1

4ḡ2⇤
J

⇤ . (12)

For the CM vacuum case, the energy-momentum tensor
appears more complicated:

T ⌫
µ =

2

ḡ2

⇣Fa
µ�F

⌫�
a

p
�g

�
1

4
�⌫µJ

⇤
⌘
� �⌫µ

�(ḡ2⇤)

8ḡ2⇤
J

⇤ . (13)

However, if we consider its trace, we obtain exactly the
same trace-tensor of the CE vacua, but with an opposite
sign:

Tµ
µ =

1

4ḡ2⇤
J

⇤ . (14)

Remarkably, the two mirror minima of the e↵ective La-
grangian have an opposite energy density, which is found
to be

✏vac ⌘
1

4
hTµ

µ ivac = ⌥Le↵(J
⇤) . (15)

Indeed, the J ⇤
$ �J

⇤ transformation corresponds to an
exchange of the electric and the magnetic components,
which flip simultaneously the sign of the �-function and
ḡ2⇤ for a fixed minimal (negative) value of Le↵ .
The Perturbation Theory can be applied to the e↵ec-

tive action in the limit of large mean fields, i.e. |J | ! 1,
away from the nonperturbative ground state. We now
comment on the one-loop results obtained by Savvidy
for SU(N) YM theories, and then focus on a di↵erent
strategy to account for all-loops corrections, based on
the FRG approach. The latter has been developed in its
cosmological applications in Ref. [15], accounting for the
SU(2) gauge symmetry.
The standard one-loop SU(N) solution reads

�(1) = �
bN

48⇡2
ḡ2(1) , ḡ2(1) =

96⇡2

bN ln(|J |/�4)
, (16)

where b = 11 is the one-loop �-function coe�cient for
pure SU(N) gauge theory. For the one-loop e↵ective ac-
tion,

L
(1)
e↵ =

bN

384⇡2
J ln

⇣
|J |

�4

⌘
, (17)

one recovers the well-known results obtained by Savvidy
in Ref. [10].
The conventional one-loop result for the trace anomaly

in SU(N) YM gluodynamics is considered in the pertur-
bative regime, |J ⇤

| > �4. In this way the sign of the
corresponding energy density, i.e. ✏(1) from Eq. (15) co-

incides with the sign of L(1)
e↵ (J ), and thus with the sign

of J . The well-known topological QCD vacuum density
(referred to as a solution of the equation of motion (10))
is negative, which implies that it is dominated by the
CM vacuum component corresponding to J

⇤ < 0 (and
hence � ⌘ �CM in this case). As was elaborated above,
the mirror CE solution J

⇤ > 0 can be found by means
of Z0

2 transformation (with � ⌘ �CE) provided that the
ground state is Z0

2-symmetric.
How well the one-loop approximation reproduces the

all-loops vacuum state, given by the non-perturbative
ground-state solutions in Eq. (5)? We can answer this
question focusing on the case of SU(2), which is also
relevant for cosmology, in the framework of FRG [14–
16]. The one-loop and the all-loops solutions approach
the zero of the e↵ective action at exactly the same val-
ues of J = 0 and J = �4. The solutions also exhibit

3

significant fine tuning between the usual QCD and Mir-
ror QCD vacua parameters which would be a problem for
getting a naturally small CC term. Within this paper
we show that even in the framework of standard QFT
it is possible to recover as a result the cancellation of
SU(2) Yang-Mills (YM) contributions to the vacuum en-
ergy within the same theory. This achievement holds a
certain generality, since SU(2) subgroups of SU(N) YM
theories can always be picked out, being the ones that
must be accounted for the cosmological applications. The
vacua compensation mechanism will be analyzed for ef-
fective YM theories, in both the perturbative and the
non-perturbative cases, and then applied to address the
QCD electric and magnetic condensates. Our approach
is based on the Savvidy vacuum model [10–13], as an ef-
fective method describing the ground state dynamics in
quantum YM field theories at long distances. Interest-
ingly enough, the Savvidy vacuum model has received
a further support from another approach based on the
analysis of the gluon condensation within the framework
of the Functional RG (FRG) [14–16].

As the main result of this work, we find the stabil-
ity conditions of the considered Savvidy vacuum solu-
tions for the gauge-invariant homogeneous gluon con-
densate, and obtain analytic expressions for the density,
the pressure and the scale factor in the non-stationary
Friedmann-Lemâıtre-Robertson-Walker (FLRW) Uni-
verse filled with the gluon condensate, which fluctuates
near the minimum of the e↵ective Lagrangian.

II. EFFECTIVE YM THEORY AND THE
MIRROR SYMMETRY

We may start showing how to recover the e↵ective action
of SU(N) YM theories, following the seminal Refs. [10]
recently followed by Refs. [17–21]. We then generalize
these findings for a non-stationary FLRW background of
expanding Universe.

In order to incorporate the conformal anomaly via the
variational procedure, the gauge coupling gYM should ac-
quire a dependence on the quantum fields, according to
the RG equations. The order parameter of the theory is
denoted with J , a gauge-invariant operator of the least
dimension [12]. In what follows, the running coupling
constant gYM recasts conventionally as ḡ, so to encode
the dependence on J in the e↵ective Lagrangian Le↵ ,
namely,

Le↵ =
J

4ḡ2
, ḡ2 = ḡ2(J ) , J = �

F
a
µ⌫F

µ⌫
a

p
�g

, (1)

where g ⌘ det(gµ⌫), gµ⌫ = a(⌘)2diag(1, �1, �1, �1) is
the FLRW metric, A

a
µ are the SU(N) connections and

F
a
µ⌫ – their field-strength. Through the paper a, b, ...

denote internal indices of SU(N) in the adjoint represen-
tation.

For FLRW metrics J simplifies into

J =
2
p
�g

X

a

(Ea ·Ea �Ba ·Ba) ⌘
2
p
�g

(E2
�B2) ,

which is cast in terms of the electric field Ea and the
magnetic field Ba components. We define the spatial av-
erage quantity hJ i, and distinguish the cases in which:
i) hJ i is higher than zero, meaning that the average
chromo-electric (CE) components hE2

i dominate over the
averaged chromo-magnetic (CM) terms hB2

i; ii) vicev-
ersa, the case of a chromo-magnetically dominated state
hJi < 0 corresponds to a CM condensate.
Through the rest of the paper we will work only with

spatially averaged quantities, thus from now on we re-
move the h. . . i, for simplicity. Our approach must be
thought as a chromo-dynamical mean field theory, in
analogy to many condensed matter models1.
The gauge coupling satisfies the RG equation

2J
dḡ2

dJ
= ḡ2� ,

where � = �(ḡ2) and the running of the coupling constant
ḡ2 is determined by the exact �-function — both the
quantities can be either positive or negative, in general.
By the standard variational procedure, starting from

the e↵ective action (1) we arrive at the all-loop e↵ective
YM equations of motion, supplemented by the RG equa-
tion, which can be represented as follows

�!
D

ab
⌫


F

µ⌫
b

ḡ2
p
�g

✓
1�

�(ḡ2)

2

◆�
= 0 , (2)

�!
D

ab
⌫ ⌘

⇣
�ab
�!
@ ⌫
p
�g

p
�g

� fabc
A

c
⌫

⌘
, (3)

d ln |ḡ2|

d ln |J |/µ4
0

=
�(ḡ2)

2
, (4)

where µ0 is a scale parameter. Thus, for the system of
equations (2), we find the exact (partial) ground-state
solution

�(ḡ2⇤) = 2 , ḡ2⇤ ⌘ ḡ2(J ⇤) , J
⇤ > 0 , (5)

which we refer to the CE condensate, in what follows.
Is this the only possible ground state solution in a YM
theory?

III. MIRROR SYMMETRY

The e↵ective YM Lagrangian (1) in a vicinity of the
ground state J ' J

⇤ is Z2 ⇥ Z0
2-symmetric w.r.t. si-

multaneous permutations

Z2 : J
⇤
 ! �J

⇤ , (6)

1
For example, the Ginzburg-Landau model describes the evolution

of spatially averaged observables in superconductive materials,

which in turn are crystals with local impurities and anisotropies

— see e.g. Ref. [33].

2

3

in our numerical simulations, the typical differences be-
tween the nucleation temperatures for any of the three
transitions in Eq. (3) are above 20 GeV. This means that
no �!H1 transition happens in practice since by the
time the universe cools down below Tn(H2!H1), the H2

bubbles are already completely percolated and no phase
� remains.

Since in our scenario an occurrence of simultaneous
strong first-order transitions is highly unlikely, in what
follows we are focused on well-separated transitions �!
H2 and H2!H1 that occur at very different time scales
such that H2 bubbles percolate before the H2!H1 tran-
sition takes over. In this case, the well known formalism
of Ref. [11, 50, 51] for derivation of the GWs spectrum as
the energy density per logarithmic frequency of the GW
radiation, h2⌦GW, emerging from single-step transitions
can be used.

In the framework of this formalism, the GW signal is
a linear superposition of three components parameteriz-
ing bubble wall collisions, sound waves generated by the
phase transitions as well as magnetohydrodynamics tur-
bulences in the plasma.

For successive well-separated transitions the net GW
energy density is just the mere superposition of the cor-
responding contributions emerging from the single-step
transitions yielding well-separated (in frequency) GWs
signals, or peaks in the GW spectrum. Even though, it
is quite obvious that such a superposition should natu-
rally lead to the multi-peaked signatures in the power
spectrum of GWs, an explicit calculation in a particu-
larly simple extension of the Higgs sector that adopts, at
least, one short-lasting and one long-lasting transitions
is lacking the literature.

Consider the two sequential breaking steps in the right
hand side of Eq. (3) where the first one �!H2 is in fact
generated by thermal loop effects, in the spirit of the
models studied in, e.g. Refs. [25, 35–37, 40].

✏vac⇠10
�2GeV4

⇠108GeV4 (5)

Z2: J
⇤
 !�J

⇤
, ḡ

2(J ⇤) !�ḡ2(J ⇤), �(ḡ2⇤) !��(ḡ
2
⇤),

Le↵=
J

4ḡ2(J )
, J=�Fa

µ⌫F
µ⌫
a , (6)

µ
4
0⌘|J

⇤
|,ḡ

2=ḡ
2(|J |) (7)

T
⌫
µ=

1

ḡ2

h
1�

�(ḡ2)

2

i⇣
F

a
µ�F

⌫�
a �

1

4
�
⌫
µJ

⌘
��

⌫
µ
�(ḡ2)

8ḡ2
J . (8)

T
µ
µ=�

�(ḡ2)

2ḡ2
J . (9)

T
µ
µ,vac=�

1

ḡ2⇤
J

⇤
. (10)

For instance, the [0]!�!H1 pattern, where the first
[0]!� step becomes a first-order transition due to the ef-
fect of cubic contributions in the thermal m/T expansion.
For such transitions, a sample of the corresponding GW
signals are displayed in Fig. 1. Here, we observe two well-
separated peaks but with amplitudes much smaller than
those found in the left panel. This is a consequence of rel-
atively weak first-order phase transitions whose strengths
are of the order vn/Tn⇠0.2�0.5. In particular, the loop-
generated ones, which have a much larger time scale than
those that are already first-order at tree level, have their
frequencies shifted to the left.

Note, the peak-amplitude is mostly determined by the
time scale of the transition and by the release of la-
tent heat. Therefore, the very fast tree-level transitions
result in much smaller peak-amplitudes than the loop-
induced ones unless the released latent heat in the latter
is large enough to compensate this effect, as shown in
the right panel of Fig. ??. This second example indicates
that the observation of such a pattern would provide us
with a rather detailed information about dynamics of the
EWPT. However, in the considered toy-model, such sig-
nals with well-separated peaks in the GW spectrum are
not expected to be detectable in the currently planned
observatories, and a new generation of interferometers
covering smaller amplitudes and a wider range of fre-
quencies is needed. One can hope to have two detectable
peaks within reach of near-future GW measurements in

the following two cases: (i) for a larger energy budget
with an enhanced release of the latent heat, and (ii) in
more complicated multi-scalar models (e.g. with mixing)
where the loop-induced transitions, followed by another
strong first-order transition, emerge within the detection
limits (e.g. Ref. [26]).
Exotic cosmological objects. The bubble percolation
process typically occurs in the range of �T < 10 GeV.
This means that if the nucleation temperatures of the
corresponding transition steps are not too different (sep-
arated by a few GeV at most), which is likely to occur
e.g. when symmetries in the tree-level potential enforces
them to be identical as in e.g. Ref. [48], then various ex-
otic cosmological objects can emerge.

In particular, different transition sequences e.g. �!H1

and �!H2 could be realized during the same cosmolog-
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Heterogenous quantum ground state: two-scale vacuum

The running coupling at one-loop

with two energy scales

CE vacuum:

µ2
⌘

p
|J | , µ2

0 ⌘
p

|J ⇤| (7)

↵s(µ
2
0)  ! �↵s(µ

2
0) (8)

The e↵ective YM Lagrangian (1) in a vicinity of the
ground state J ' J

⇤ is Z2⇥Z0
2-symmetric w.r.t. simul-

taneous permutations

Z2 : J
⇤
 ! �J

⇤ , (9)

Z0
2 : ḡ2⇤  ! �ḡ

2
⇤ , �(ḡ2⇤)  ! ��(ḡ

2
⇤) ,

|J
⇤
|

�4
CE

 !
�4
CM

|J ⇤|
, �4

CM < |J
⇤
| < �4

CE ,(10)

where the ground-state value of J -invariant satisfies

|J
⇤
| = �2

CE�
2
CM . (11)

Here, �CE and �CM are the physical scales of the CE and
CM condensates, respectively. Note, the RG equation
(4) is symmetric w.r.t. separate Z2 and Z0

2 transforma-
tions. These important symmetry properties have rele-
vant consequences on the stability of the ground-state
YM solutions in Minkowski spacetime. Note, the Z0

2
symmetry e↵ectively “maps” the nonperturbative regime
with |J

⇤
| < �4

CE to a perturbative regime corresponding
to |J

⇤
| > �4

CM, and vice versa. Moreover, due to the
fact that the e↵ective Lagrangian Eq. (1) is invariant un-
der the Z2 ⇥ Z0

2 symmetry, the CE (J ⇤ > 0) and the
CM (J ⇤ < 0) vacua should be associated with two equal
(mirror) minima of the e↵ective Lagrangian.

We emphasize that this symmetry, which reveals it-
self only in the ground state, does not explicitly show
itself in the EoM (2). The CE condensate corresponds
to a classical solution of the Eq. (2), which is satisfied
for �(ḡ2⇤) = 2. On the other hand, the CM vacuum
corresponds to �(ḡ2⇤) = �2, which does not imply the
vanishing of [1� �(ḡ2⇤)/2], as for the CE case, but rather
amounts to a 2 overall factor in Eq. (2). The CM vacuum
is obtained as a more complicated solution of Eq. (2),
which recasts equation

2
�!
D

ab
⌫


F

µ⌫
b

ḡ2
p
�g

�
= 0 . (12)

Also considering the energy-momentum tensor associated
to the two minima, the symmetry does not appear explic-
itly.

The energy-momentum tensor of the Savvidy’s theory
has the form

T ⌫
µ =

1

ḡ2

h
1�

�(ḡ2)

2

i⇣Fa
µ�F

⌫�
a

p
�g

�
1

4
�⌫µJ

⌘
� �⌫µ

�(ḡ2)

8ḡ2
J .

(13)
In the case of the CE vacuum, the energy-momentum
tensor simplifies to the trace-form

Tµ
µ = �

�(ḡ2⇤)

8ḡ2⇤
J

⇤ = �
1

4ḡ2⇤
J

⇤ . (14)

For the CM vacuum case, the energy-momentum tensor
appears more complicated:

T ⌫
µ =

2

ḡ2

⇣Fa
µ�F

⌫�
a

p
�g

�
1

4
�⌫µJ

⇤
⌘
� �⌫µ

�(ḡ2⇤)

8ḡ2⇤
J

⇤ . (15)

However, if we consider its trace, we obtain exactly the
same trace-tensor of the CE vacua, but with an opposite
sign:

Tµ
µ =

1

4ḡ2⇤
J

⇤ . (16)

Remarkably, the two mirror minima of the e↵ective La-
grangian have an opposite energy density, which is found
to be

✏vac ⌘
1

4
hTµ

µ ivac = ⌥Le↵(J
⇤) . (17)

Indeed, the J ⇤
$ �J

⇤ transformation corresponds to an
exchange of the electric and the magnetic components,
which flip simultaneously the sign of the �-function and
ḡ2⇤ for a fixed minimal (negative) value of Le↵ .
The Perturbation Theory can be applied to the e↵ec-

tive action in the limit of large mean fields, i.e. |J | ! 1,
away from the nonperturbative ground state. We now
comment on the one-loop results obtained by Savvidy
for SU(N) YM theories, and then focus on a di↵erent
strategy to account for all-loops corrections, based on
the FRG approach. The latter has been developed in its
cosmological applications in Ref. [15], accounting for the
SU(2) gauge symmetry.
The standard one-loop SU(N) solution reads

�(1) = �
bN

48⇡2
ḡ2(1) , ḡ2(1) =

96⇡2

bN ln(|J |/�4)
, (18)

where b = 11 is the one-loop �-function coe�cient for
pure SU(N) gauge theory. For the one-loop e↵ective ac-
tion,

L
(1)
e↵ =

bN

384⇡2
J ln

⇣
|J |

�4

⌘
, (19)

one recovers the well-known results obtained by Savvidy
in Ref. [10].
The conventional one-loop result for the trace anomaly

in SU(N) YM gluodynamics is considered in the pertur-
bative regime, |J ⇤

| > �4. In this way the sign of the
corresponding energy density, i.e. ✏(1) from Eq. (17) co-

incides with the sign of L(1)
e↵ (J ), and thus with the sign

of J . The well-known topological QCD vacuum density
(referred to as a solution of the equation of motion (12))
is negative, which implies that it is dominated by the
CM vacuum component corresponding to J

⇤ < 0 (and
hence � ⌘ �CM in this case). As was elaborated above,
the mirror CE solution J

⇤ > 0 can be found by means
of Z0

2 transformation (with � ⌘ �CE) provided that the
ground state is Z0

2-symmetric.
How well the one-loop approximation reproduces the

all-loops vacuum state, given by the non-perturbative
ground-state solutions in Eq. (5)? We can answer this
question focusing on the case of SU(2), which is also
relevant for cosmology, in the framework of FRG [14–
16]. The one-loop and the all-loops solutions approach
the zero of the e↵ective action at exactly the same val-
ues of J = 0 and J = �4. The solutions also exhibit

3
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The e↵ective YM Lagrangian (1) in a vicinity of the
ground state J ' J
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where the ground-state value of J -invariant satisfies
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⇤
| = �2

CE�
2
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Here, �CE and �CM are the physical scales of the CE and
CM condensates, respectively. Note, the RG equation
(4) is symmetric w.r.t. separate Z2 and Z0

2 transforma-
tions. These important symmetry properties have rele-
vant consequences on the stability of the ground-state
YM solutions in Minkowski spacetime. Note, the Z0

2
symmetry e↵ectively “maps” the nonperturbative regime
with |J

⇤
| < �4

CE to a perturbative regime corresponding
to |J

⇤
| > �4

CM, and vice versa. Moreover, due to the
fact that the e↵ective Lagrangian Eq. (1) is invariant un-
der the Z2 ⇥ Z0

2 symmetry, the CE (J ⇤ > 0) and the
CM (J ⇤ < 0) vacua should be associated with two equal
(mirror) minima of the e↵ective Lagrangian.

We emphasize that this symmetry, which reveals it-
self only in the ground state, does not explicitly show
itself in the EoM (2). The CE condensate corresponds
to a classical solution of the Eq. (2), which is satisfied
for �(ḡ2⇤) = 2. On the other hand, the CM vacuum
corresponds to �(ḡ2⇤) = �2, which does not imply the
vanishing of [1� �(ḡ2⇤)/2], as for the CE case, but rather
amounts to a 2 overall factor in Eq. (2). The CM vacuum
is obtained as a more complicated solution of Eq. (2),
which recasts equation
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Also considering the energy-momentum tensor associated
to the two minima, the symmetry does not appear explic-
itly.

The energy-momentum tensor of the Savvidy’s theory
has the form
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In the case of the CE vacuum, the energy-momentum
tensor simplifies to the trace-form

Tµ
µ = �

�(ḡ2⇤)

8ḡ2⇤
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⇤ = �
1

4ḡ2⇤
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For the CM vacuum case, the energy-momentum tensor
appears more complicated:
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However, if we consider its trace, we obtain exactly the
same trace-tensor of the CE vacua, but with an opposite
sign:

Tµ
µ =

1

4ḡ2⇤
J

⇤ . (16)

Remarkably, the two mirror minima of the e↵ective La-
grangian have an opposite energy density, which is found
to be

✏vac ⌘
1

4
hTµ

µ ivac = ⌥Le↵(J
⇤) . (17)

Indeed, the J ⇤
$ �J

⇤ transformation corresponds to an
exchange of the electric and the magnetic components,
which flip simultaneously the sign of the �-function and
ḡ2⇤ for a fixed minimal (negative) value of Le↵ .
The Perturbation Theory can be applied to the e↵ec-

tive action in the limit of large mean fields, i.e. |J | ! 1,
away from the nonperturbative ground state. We now
comment on the one-loop results obtained by Savvidy
for SU(N) YM theories, and then focus on a di↵erent
strategy to account for all-loops corrections, based on
the FRG approach. The latter has been developed in its
cosmological applications in Ref. [15], accounting for the
SU(2) gauge symmetry.
The standard one-loop SU(N) solution reads
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where b = 11 is the one-loop �-function coe�cient for
pure SU(N) gauge theory. For the one-loop e↵ective ac-
tion,

L
(1)
e↵ =

bN

384⇡2
J ln

⇣
|J |

�4

⌘
, (19)

one recovers the well-known results obtained by Savvidy
in Ref. [10].
The conventional one-loop result for the trace anomaly

in SU(N) YM gluodynamics is considered in the pertur-
bative regime, |J ⇤

| > �4. In this way the sign of the
corresponding energy density, i.e. ✏(1) from Eq. (17) co-

incides with the sign of L(1)
e↵ (J ), and thus with the sign

of J . The well-known topological QCD vacuum density
(referred to as a solution of the equation of motion (12))
is negative, which implies that it is dominated by the
CM vacuum component corresponding to J

⇤ < 0 (and
hence � ⌘ �CM in this case). As was elaborated above,
the mirror CE solution J

⇤ > 0 can be found by means
of Z0

2 transformation (with � ⌘ �CE) provided that the
ground state is Z0

2-symmetric.
How well the one-loop approximation reproduces the

all-loops vacuum state, given by the non-perturbative
ground-state solutions in Eq. (5)? We can answer this
question focusing on the case of SU(2), which is also
relevant for cosmology, in the framework of FRG [14–
16]. The one-loop and the all-loops solutions approach
the zero of the e↵ective action at exactly the same val-
ues of J = 0 and J = �4. The solutions also exhibit
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e.o.m. is automatically
satisfied!

Reduces to the standard YM e.o.m. 
discussed in e.g. in instanton theory 

Trace anomaly: Trace anomaly:

3

in our numerical simulations, the typical differences be-
tween the nucleation temperatures for any of the three
transitions in Eq. (3) are above 20 GeV. This means that
no �!H1 transition happens in practice since by the
time the universe cools down below Tn(H2!H1), the H2

bubbles are already completely percolated and no phase
� remains.

Since in our scenario an occurrence of simultaneous
strong first-order transitions is highly unlikely, in what
follows we are focused on well-separated transitions �!
H2 and H2!H1 that occur at very different time scales
such that H2 bubbles percolate before the H2!H1 tran-
sition takes over. In this case, the well known formalism
of Ref. [11, 50, 51] for derivation of the GWs spectrum as
the energy density per logarithmic frequency of the GW
radiation, h2⌦GW, emerging from single-step transitions
can be used.

In the framework of this formalism, the GW signal is
a linear superposition of three components parameteriz-
ing bubble wall collisions, sound waves generated by the
phase transitions as well as magnetohydrodynamics tur-
bulences in the plasma.

For successive well-separated transitions the net GW
energy density is just the mere superposition of the cor-
responding contributions emerging from the single-step
transitions yielding well-separated (in frequency) GWs
signals, or peaks in the GW spectrum. Even though, it
is quite obvious that such a superposition should natu-
rally lead to the multi-peaked signatures in the power
spectrum of GWs, an explicit calculation in a particu-
larly simple extension of the Higgs sector that adopts, at
least, one short-lasting and one long-lasting transitions
is lacking the literature.

Consider the two sequential breaking steps in the right
hand side of Eq. (3) where the first one �!H2 is in fact
generated by thermal loop effects, in the spirit of the
models studied in, e.g. Refs. [25, 35–37, 40].
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For instance, the [0]!�!H1 pattern, where the first
[0]!� step becomes a first-order transition due to the ef-
fect of cubic contributions in the thermal m/T expansion.
For such transitions, a sample of the corresponding GW
signals are displayed in Fig. 1. Here, we observe two well-
separated peaks but with amplitudes much smaller than
those found in the left panel. This is a consequence of rel-
atively weak first-order phase transitions whose strengths
are of the order vn/Tn⇠0.2�0.5. In particular, the loop-
generated ones, which have a much larger time scale than
those that are already first-order at tree level, have their
frequencies shifted to the left.

Note, the peak-amplitude is mostly determined by the
time scale of the transition and by the release of la-
tent heat. Therefore, the very fast tree-level transitions
result in much smaller peak-amplitudes than the loop-
induced ones unless the released latent heat in the latter
is large enough to compensate this effect, as shown in
the right panel of Fig. ??. This second example indicates
that the observation of such a pattern would provide us
with a rather detailed information about dynamics of the
EWPT. However, in the considered toy-model, such sig-
nals with well-separated peaks in the GW spectrum are
not expected to be detectable in the currently planned

observatories, and a new generation of interferometers
covering smaller amplitudes and a wider range of fre-
quencies is needed. One can hope to have two detectable
peaks within reach of near-future GW measurements in
the following two cases: (i) for a larger energy budget
with an enhanced release of the latent heat, and (ii) in
more complicated multi-scalar models (e.g. with mixing)
where the loop-induced transitions, followed by another
strong first-order transition, emerge within the detection
limits (e.g. Ref. [26]).

Exotic cosmological objects. The bubble percolation
process typically occurs in the range of �T < 10 GeV.
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in our numerical simulations, the typical differences be-
tween the nucleation temperatures for any of the three
transitions in Eq. (3) are above 20 GeV. This means that
no �!H1 transition happens in practice since by the
time the universe cools down below Tn(H2!H1), the H2

bubbles are already completely percolated and no phase
� remains.

Since in our scenario an occurrence of simultaneous
strong first-order transitions is highly unlikely, in what
follows we are focused on well-separated transitions �!
H2 and H2!H1 that occur at very different time scales
such that H2 bubbles percolate before the H2!H1 tran-
sition takes over. In this case, the well known formalism
of Ref. [11, 50, 51] for derivation of the GWs spectrum as
the energy density per logarithmic frequency of the GW
radiation, h2⌦GW, emerging from single-step transitions
can be used.

In the framework of this formalism, the GW signal is
a linear superposition of three components parameteriz-
ing bubble wall collisions, sound waves generated by the
phase transitions as well as magnetohydrodynamics tur-
bulences in the plasma.

For successive well-separated transitions the net GW
energy density is just the mere superposition of the cor-
responding contributions emerging from the single-step
transitions yielding well-separated (in frequency) GWs
signals, or peaks in the GW spectrum. Even though, it
is quite obvious that such a superposition should natu-
rally lead to the multi-peaked signatures in the power
spectrum of GWs, an explicit calculation in a particu-
larly simple extension of the Higgs sector that adopts, at
least, one short-lasting and one long-lasting transitions
is lacking the literature.

Consider the two sequential breaking steps in the right
hand side of Eq. (3) where the first one �!H2 is in fact
generated by thermal loop effects, in the spirit of the
models studied in, e.g. Refs. [25, 35–37, 40].
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ḡ2⇤
J

⇤
. (10)

T
µ
µ,CM=+

1
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For instance, the [0]!�!H1 pattern, where the first
[0]!� step becomes a first-order transition due to the ef-
fect of cubic contributions in the thermal m/T expansion.
For such transitions, a sample of the corresponding GW
signals are displayed in Fig. 1. Here, we observe two well-
separated peaks but with amplitudes much smaller than
those found in the left panel. This is a consequence of rel-
atively weak first-order phase transitions whose strengths
are of the order vn/Tn⇠0.2�0.5. In particular, the loop-
generated ones, which have a much larger time scale than
those that are already first-order at tree level, have their
frequencies shifted to the left.

Note, the peak-amplitude is mostly determined by the
time scale of the transition and by the release of la-
tent heat. Therefore, the very fast tree-level transitions
result in much smaller peak-amplitudes than the loop-
induced ones unless the released latent heat in the latter
is large enough to compensate this effect, as shown in
the right panel of Fig. ??. This second example indicates
that the observation of such a pattern would provide us
with a rather detailed information about dynamics of the
EWPT. However, in the considered toy-model, such sig-
nals with well-separated peaks in the GW spectrum are
not expected to be detectable in the currently planned

observatories, and a new generation of interferometers
covering smaller amplitudes and a wider range of fre-
quencies is needed. One can hope to have two detectable
peaks within reach of near-future GW measurements in
the following two cases: (i) for a larger energy budget
with an enhanced release of the latent heat, and (ii) in
more complicated multi-scalar models (e.g. with mixing)
where the loop-induced transitions, followed by another
strong first-order transition, emerge within the detection
limits (e.g. Ref. [26]).

Exotic cosmological objects. The bubble percolation
process typically occurs in the range of �T < 10 GeV.

3

in our numerical simulations, the typical differences be-
tween the nucleation temperatures for any of the three
transitions in Eq. (3) are above 20 GeV. This means that
no �!H1 transition happens in practice since by the
time the universe cools down below Tn(H2!H1), the H2

bubbles are already completely percolated and no phase
� remains.

Since in our scenario an occurrence of simultaneous
strong first-order transitions is highly unlikely, in what
follows we are focused on well-separated transitions �!
H2 and H2!H1 that occur at very different time scales
such that H2 bubbles percolate before the H2!H1 tran-
sition takes over. In this case, the well known formalism
of Ref. [11, 50, 51] for derivation of the GWs spectrum as
the energy density per logarithmic frequency of the GW
radiation, h2⌦GW, emerging from single-step transitions
can be used.

In the framework of this formalism, the GW signal is
a linear superposition of three components parameteriz-
ing bubble wall collisions, sound waves generated by the
phase transitions as well as magnetohydrodynamics tur-
bulences in the plasma.

For successive well-separated transitions the net GW
energy density is just the mere superposition of the cor-
responding contributions emerging from the single-step
transitions yielding well-separated (in frequency) GWs
signals, or peaks in the GW spectrum. Even though, it
is quite obvious that such a superposition should natu-
rally lead to the multi-peaked signatures in the power
spectrum of GWs, an explicit calculation in a particu-
larly simple extension of the Higgs sector that adopts, at
least, one short-lasting and one long-lasting transitions
is lacking the literature.

Consider the two sequential breaking steps in the right
hand side of Eq. (3) where the first one �!H2 is in fact
generated by thermal loop effects, in the spirit of the
models studied in, e.g. Refs. [25, 35–37, 40].
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8ḡ2
J . (8)

T
µ
µ=�

�(ḡ2)
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'ḡ

2
⇤ (14)

For instance, the [0]!�!H1 pattern, where the first
[0]!� step becomes a first-order transition due to the ef-
fect of cubic contributions in the thermal m/T expansion.
For such transitions, a sample of the corresponding GW
signals are displayed in Fig. 1. Here, we observe two well-
separated peaks but with amplitudes much smaller than
those found in the left panel. This is a consequence of rel-
atively weak first-order phase transitions whose strengths
are of the order vn/Tn⇠0.2�0.5. In particular, the loop-
generated ones, which have a much larger time scale than
those that are already first-order at tree level, have their
frequencies shifted to the left.

Note, the peak-amplitude is mostly determined by the
time scale of the transition and by the release of la-
tent heat. Therefore, the very fast tree-level transitions
result in much smaller peak-amplitudes than the loop-
induced ones unless the released latent heat in the latter
is large enough to compensate this effect, as shown in
the right panel of Fig. ??. This second example indicates
that the observation of such a pattern would provide us
with a rather detailed information about dynamics of the
EWPT. However, in the considered toy-model, such sig-
nals with well-separated peaks in the GW spectrum are
not expected to be detectable in the currently planned

observatories, and a new generation of interferometers
covering smaller amplitudes and a wider range of fre-
quencies is needed. One can hope to have two detectable
peaks within reach of near-future GW measurements in
the following two cases: (i) for a larger energy budget
with an enhanced release of the latent heat, and (ii) in
more complicated multi-scalar models (e.g. with mixing)
where the loop-induced transitions, followed by another
strong first-order transition, emerge within the detection
limits (e.g. Ref. [26]).

Exotic cosmological objects. The bubble percolation
process typically occurs in the range of �T < 10 GeV.

3

in our numerical simulations, the typical differences be-
tween the nucleation temperatures for any of the three
transitions in Eq. (3) are above 20 GeV. This means that
no �!H1 transition happens in practice since by the
time the universe cools down below Tn(H2!H1), the H2

bubbles are already completely percolated and no phase
� remains.

Since in our scenario an occurrence of simultaneous
strong first-order transitions is highly unlikely, in what
follows we are focused on well-separated transitions �!
H2 and H2!H1 that occur at very different time scales
such that H2 bubbles percolate before the H2!H1 tran-
sition takes over. In this case, the well known formalism
of Ref. [11, 50, 51] for derivation of the GWs spectrum as
the energy density per logarithmic frequency of the GW
radiation, h2⌦GW, emerging from single-step transitions
can be used.

In the framework of this formalism, the GW signal is
a linear superposition of three components parameteriz-
ing bubble wall collisions, sound waves generated by the
phase transitions as well as magnetohydrodynamics tur-
bulences in the plasma.

For successive well-separated transitions the net GW
energy density is just the mere superposition of the cor-
responding contributions emerging from the single-step
transitions yielding well-separated (in frequency) GWs
signals, or peaks in the GW spectrum. Even though, it
is quite obvious that such a superposition should natu-
rally lead to the multi-peaked signatures in the power
spectrum of GWs, an explicit calculation in a particu-
larly simple extension of the Higgs sector that adopts, at
least, one short-lasting and one long-lasting transitions
is lacking the literature.

Consider the two sequential breaking steps in the right
hand side of Eq. (3) where the first one �!H2 is in fact
generated by thermal loop effects, in the spirit of the
models studied in, e.g. Refs. [25, 35–37, 40].
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�(ḡ2)

2
�1

i⇣
F

a
µ�F

⌫�
a +

1

4
�
⌫
µJ

⌘
��

⌫
µ
�(ḡ2)
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For instance, the [0]!�!H1 pattern, where the first
[0]!� step becomes a first-order transition due to the ef-
fect of cubic contributions in the thermal m/T expansion.
For such transitions, a sample of the corresponding GW
signals are displayed in Fig. 1. Here, we observe two well-
separated peaks but with amplitudes much smaller than
those found in the left panel. This is a consequence of rel-
atively weak first-order phase transitions whose strengths
are of the order vn/Tn⇠0.2�0.5. In particular, the loop-
generated ones, which have a much larger time scale than
those that are already first-order at tree level, have their
frequencies shifted to the left.

Note, the peak-amplitude is mostly determined by the
time scale of the transition and by the release of la-
tent heat. Therefore, the very fast tree-level transitions
result in much smaller peak-amplitudes than the loop-
induced ones unless the released latent heat in the latter

is large enough to compensate this effect, as shown in
the right panel of Fig. ??. This second example indicates
that the observation of such a pattern would provide us
with a rather detailed information about dynamics of the
EWPT. However, in the considered toy-model, such sig-
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in our numerical simulations, the typical differences be-
tween the nucleation temperatures for any of the three
transitions in Eq. (3) are above 20 GeV. This means that
no �!H1 transition happens in practice since by the
time the universe cools down below Tn(H2!H1), the H2

bubbles are already completely percolated and no phase
� remains.

Since in our scenario an occurrence of simultaneous
strong first-order transitions is highly unlikely, in what
follows we are focused on well-separated transitions �!
H2 and H2!H1 that occur at very different time scales
such that H2 bubbles percolate before the H2!H1 tran-
sition takes over. In this case, the well known formalism
of Ref. [11, 50, 51] for derivation of the GWs spectrum as
the energy density per logarithmic frequency of the GW
radiation, h2⌦GW, emerging from single-step transitions
can be used.

In the framework of this formalism, the GW signal is
a linear superposition of three components parameteriz-
ing bubble wall collisions, sound waves generated by the
phase transitions as well as magnetohydrodynamics tur-
bulences in the plasma.

For successive well-separated transitions the net GW
energy density is just the mere superposition of the cor-
responding contributions emerging from the single-step
transitions yielding well-separated (in frequency) GWs
signals, or peaks in the GW spectrum. Even though, it
is quite obvious that such a superposition should natu-
rally lead to the multi-peaked signatures in the power
spectrum of GWs, an explicit calculation in a particu-
larly simple extension of the Higgs sector that adopts, at
least, one short-lasting and one long-lasting transitions
is lacking the literature.

Consider the two sequential breaking steps in the right
hand side of Eq. (3) where the first one �!H2 is in fact
generated by thermal loop effects, in the spirit of the
models studied in, e.g. Refs. [25, 35–37, 40].
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For instance, the [0]!�!H1 pattern, where the first
[0]!� step becomes a first-order transition due to the ef-
fect of cubic contributions in the thermal m/T expansion.
For such transitions, a sample of the corresponding GW
signals are displayed in Fig. 1. Here, we observe two well-
separated peaks but with amplitudes much smaller than
those found in the left panel. This is a consequence of rel-
atively weak first-order phase transitions whose strengths
are of the order vn/Tn⇠0.2�0.5. In particular, the loop-
generated ones, which have a much larger time scale than
those that are already first-order at tree level, have their
frequencies shifted to the left.

Note, the peak-amplitude is mostly determined by the
time scale of the transition and by the release of la-
tent heat. Therefore, the very fast tree-level transitions
result in much smaller peak-amplitudes than the loop-
induced ones unless the released latent heat in the latter

is large enough to compensate this effect, as shown in
the right panel of Fig. ??. This second example indicates
that the observation of such a pattern would provide us
with a rather detailed information about dynamics of the
EWPT. However, in the considered toy-model, such sig-

3

in our numerical simulations, the typical differences be-
tween the nucleation temperatures for any of the three
transitions in Eq. (3) are above 20 GeV. This means that
no �!H1 transition happens in practice since by the
time the universe cools down below Tn(H2!H1), the H2

bubbles are already completely percolated and no phase
� remains.

Since in our scenario an occurrence of simultaneous
strong first-order transitions is highly unlikely, in what
follows we are focused on well-separated transitions �!
H2 and H2!H1 that occur at very different time scales
such that H2 bubbles percolate before the H2!H1 tran-
sition takes over. In this case, the well known formalism
of Ref. [11, 50, 51] for derivation of the GWs spectrum as
the energy density per logarithmic frequency of the GW
radiation, h2⌦GW, emerging from single-step transitions
can be used.

In the framework of this formalism, the GW signal is
a linear superposition of three components parameteriz-
ing bubble wall collisions, sound waves generated by the
phase transitions as well as magnetohydrodynamics tur-
bulences in the plasma.

For successive well-separated transitions the net GW
energy density is just the mere superposition of the cor-
responding contributions emerging from the single-step
transitions yielding well-separated (in frequency) GWs
signals, or peaks in the GW spectrum. Even though, it
is quite obvious that such a superposition should natu-
rally lead to the multi-peaked signatures in the power
spectrum of GWs, an explicit calculation in a particu-
larly simple extension of the Higgs sector that adopts, at
least, one short-lasting and one long-lasting transitions
is lacking the literature.

Consider the two sequential breaking steps in the right
hand side of Eq. (3) where the first one �!H2 is in fact
generated by thermal loop effects, in the spirit of the
models studied in, e.g. Refs. [25, 35–37, 40].
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For instance, the [0]!�!H1 pattern, where the first
[0]!� step becomes a first-order transition due to the ef-
fect of cubic contributions in the thermal m/T expansion.
For such transitions, a sample of the corresponding GW
signals are displayed in Fig. 1. Here, we observe two well-
separated peaks but with amplitudes much smaller than
those found in the left panel. This is a consequence of rel-
atively weak first-order phase transitions whose strengths
are of the order vn/Tn⇠0.2�0.5. In particular, the loop-
generated ones, which have a much larger time scale than
those that are already first-order at tree level, have their
frequencies shifted to the left.

Note, the peak-amplitude is mostly determined by the
time scale of the transition and by the release of la-
tent heat. Therefore, the very fast tree-level transitions
result in much smaller peak-amplitudes than the loop-
induced ones unless the released latent heat in the latter

is large enough to compensate this effect, as shown in
the right panel of Fig. ??. This second example indicates
that the observation of such a pattern would provide us
with a rather detailed information about dynamics of the
EWPT. However, in the considered toy-model, such sig-
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in our numerical simulations, the typical differences be-
tween the nucleation temperatures for any of the three
transitions in Eq. (3) are above 20 GeV. This means that
no �!H1 transition happens in practice since by the
time the universe cools down below Tn(H2!H1), the H2

bubbles are already completely percolated and no phase
� remains.

Since in our scenario an occurrence of simultaneous
strong first-order transitions is highly unlikely, in what
follows we are focused on well-separated transitions �!
H2 and H2!H1 that occur at very different time scales
such that H2 bubbles percolate before the H2!H1 tran-
sition takes over. In this case, the well known formalism
of Ref. [11, 50, 51] for derivation of the GWs spectrum as
the energy density per logarithmic frequency of the GW
radiation, h2⌦GW, emerging from single-step transitions
can be used.

In the framework of this formalism, the GW signal is
a linear superposition of three components parameteriz-
ing bubble wall collisions, sound waves generated by the
phase transitions as well as magnetohydrodynamics tur-
bulences in the plasma.

For successive well-separated transitions the net GW
energy density is just the mere superposition of the cor-
responding contributions emerging from the single-step
transitions yielding well-separated (in frequency) GWs
signals, or peaks in the GW spectrum. Even though, it
is quite obvious that such a superposition should natu-
rally lead to the multi-peaked signatures in the power
spectrum of GWs, an explicit calculation in a particu-
larly simple extension of the Higgs sector that adopts, at
least, one short-lasting and one long-lasting transitions
is lacking the literature.

Consider the two sequential breaking steps in the right
hand side of Eq. (3) where the first one �!H2 is in fact
generated by thermal loop effects, in the spirit of the
models studied in, e.g. Refs. [25, 35–37, 40].
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2
1(J

⇤)|

i
. (16)

L
(1)
e↵ =

bN

384⇡2
J ln

⇣
|J |

�
4
±

⌘
, (17)

|J
⇤
|=�

2
+�

2
� (18)

For instance, the [0]!�!H1 pattern, where the first
[0]!� step becomes a first-order transition due to the ef-
fect of cubic contributions in the thermal m/T expansion.
For such transitions, a sample of the corresponding GW
signals are displayed in Fig. 1. Here, we observe two well-
separated peaks but with amplitudes much smaller than
those found in the left panel. This is a consequence of rel-
atively weak first-order phase transitions whose strengths
are of the order vn/Tn⇠0.2�0.5. In particular, the loop-
generated ones, which have a much larger time scale than
those that are already first-order at tree level, have their
frequencies shifted to the left.

Note, the peak-amplitude is mostly determined by the time scale of the transition and by the release of la-
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while the RG equation (4) is symmetric w.r.t. separate
Z2 and Z0

2 transformations. These important properties
have relevant consequences on the stability of the ground-
state YM solutions in Minkowski spacetime. Note, the Z0

2
symmetry e↵ectively “maps” the nonperturbative regime
with |J | < �4 to a perturbative regime corresponding to
|J | > �4, and vice versa. Moreover, due to the fact
that the e↵ective Lagrangian Eq. (1) is invariant under
the Z2 ⇥ Z0

2 symmetry, the CE (J ⇤ > 0) and the CM
(J ⇤ < 0) vacua should be associated with two equal
(mirror) minima of the e↵ective Lagrangian such that
the turning point among the two “mirror vacua” corre-
sponds to |J | = �4. Remarkably, the two mirror minima
of the e↵ective Lagrangian have an opposite energy den-
sity which is found as

✏ ⌘
1

4
hTµ

µ ivac = �
�(ḡ2⇤)

2
Le↵(J

⇤) . (8)

Indeed, the J⇤ $ �J⇤ transformation corresponds to an
exchange of the electric and the magnetic components,
simultaneously flipping the sign of the �-function and ḡ2⇤
for a fixed minimal (negative) value of Le↵ .
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FIG. 1. The dimensionless ratio Le↵/�
4 (achieved in terms

of �, the dimensionfull scale of reference for the e↵ective YM
theory) is shown, within the e↵ective SU(2) theory (" = 0.01,
see Appendix A 1), as a function of J /�4 for the one-loop
and all-loops (FRG) cases corresponding to a single branch of
the RG equation. For this particular branch, the minimum is
reached for 0 < J⇤ < �4 in the non-perturbative domain and,
thus, corresponds to the CE condensate.

The Perturbation Theory can be applied to the e↵ec-
tive action in the limit of large mean fields, i.e. |J |!1,
away from the nonperturbative ground state. We now
comment on the one-loop results obtained by Savvidy
for SU(N) YM theories, and then focus on a di↵erent
strategy to account for all-loops corrections, based on
the FRG approach. The latter has been developed in its
cosmological applications in Ref. [15], accounting for the
SU(2) gauge symmetry.

The standard one-loop SU(N) solution reads
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bN

48⇡2
ḡ2(1) , ḡ2(1) =

96⇡2
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where b = 11 is the one-loop �-function coe�cient for
pure SU(N) gauge theory. For the one-loop e↵ective ac-
tion,
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one recovers the well-known results obtained by Savvidy
in Ref. [10].
The conventional one-loop result for the trace anomaly

in SU(N) YM gluodynamics is considered in the pertur-
bative regime, |J | > �4. In this way the sign of the
corresponding energy density, i.e. ✏(1) from Eq. (8) coin-

cides with the sign of L(1)
e↵ (J ), and thus with the sign of

J . The well-known topological QCD vacuum density is
negative, i.e. J < 0, which implies that it is dominated
by the CM vacuum component.
In Fig. 1 we show the dimensionless ratio Le↵/�4, for

the e↵ective SU(2) theory with a single minimum in the
nonperturbative domain |J⇤|/�4 < 1 corresponding to
the CE condensate (J⇤ > 0). As noticed above, thanks
to the Z2⇥Z0

2 symmetry of the e↵ective Lagrangian and
the RG equation, there are in fact two stable vacuum
configurations. Thus, for the CE vacuum in Fig. 1 there
is a corresponding mirror CM vacuum (J⇤ < 0) which
would also be a stable solution in the perturbative regime
|J⇤|/�4 > 1 with the same value of Le↵(J ⇤) < 0. Note,
the latter CM solution is obtained here by a Z0

2 trans-
formation of the nonperturbative CE minimum shown in
Fig. 1. It is therefore neatly identified with the conven-
tional topological QCD vacuum density.
How well the one-loop approximation reproduces the

all-loops vacuum state, given by the non-perturbative
ground-state solutions in Eq. (5)? We can answer this
question focusing on the case of SU(2), which is also rele-
vant for cosmology, in the framework of FRG [14–16]. As
is seen in Fig. 1, it appears that the one-loop and the all-
loops curves approach the zero of the e↵ective action at
exactly the same values of J = 0 and J = �4. The curves
also exhibit extrema that, although do not coincide, are
very close to each other: at one loop, |J ⇤

|/�4 = 1
e '

0.3679 , and L
⇤
e↵/�

4 =±b/(192⇡2e)' ±2.135 · 10�3; at
all loops |J ⇤

|/�4
' 0.3693 , and L

⇤
e↵/�

4 = ±2.163 · 10�3.
Remarkably, the ground-state solutions for one-loop and
all-loops cases di↵er only at a per-mille level.
It is worth emphasizing that is not reductive to focus

on SU(2) YM theory. For any SU(N) gauge group, the
cosmological instantiation will be provided by the SU(2)
subgroups, for which an isomorphism between indices of
the adjoint representation and spatial indices may be re-
covered. On the other hand, the calculation of the super-
trace would be technically very di�cult to be achieved.
Because of the lack of any physical advantage, we can
skip this point without any loss of generality and physi-
cal insight.
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significant fine tuning between the usual QCD and Mir-
ror QCD vacua parameters which would be a problem for
getting a naturally small CC term. Within this paper
we show that even in the framework of standard QFT
it is possible to recover as a result the cancellation of
SU(2) Yang-Mills (YM) contributions to the vacuum en-
ergy within the same theory. This achievement holds a
certain generality, since SU(2) subgroups of SU(N) YM
theories can always be picked out, being the ones that
must be accounted for the cosmological applications. The
vacua compensation mechanism will be analyzed for ef-
fective YM theories, in both the perturbative and the
non-perturbative cases, and then applied to address the
QCD electric and magnetic condensates. Our approach
is based on the Savvidy vacuum model [10–13], as an ef-
fective method describing the ground state dynamics in
quantum YM field theories at long distances. Interest-
ingly enough, the Savvidy vacuum model has received
a further support from another approach based on the
analysis of the gluon condensation within the framework
of the Functional RG (FRG) [14–16].

As the main result of this work, we find the stabil-
ity conditions of the considered Savvidy vacuum solu-
tions for the gauge-invariant homogeneous gluon con-
densate, and obtain analytic expressions for the density,
the pressure and the scale factor in the non-stationary
Friedmann-Lemâıtre-Robertson-Walker (FLRW) Uni-
verse filled with the gluon condensate, which fluctuates
near the minimum of the e↵ective Lagrangian.

II. EFFECTIVE YM THEORY AND THE
MIRROR SYMMETRY

We may start showing how to recover the e↵ective action
of SU(N) YM theories, following the seminal Refs. [10]
recently followed by Refs. [17–21]. We then generalize
these findings for a non-stationary FLRW background of
expanding Universe.

In order to incorporate the conformal anomaly via the
variational procedure, the gauge coupling gYM should ac-
quire a dependence on the quantum fields, according to
the RG equations. The order parameter of the theory is
denoted with J , a gauge-invariant operator of the least
dimension [12]. In what follows, the running coupling
constant gYM recasts conventionally as ḡ, so to encode
the dependence on J in the e↵ective Lagrangian Le↵ ,
namely,
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J

4ḡ2
, ḡ2 = ḡ2(J ) , J = �
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, (1)

where g ⌘ det(gµ⌫), gµ⌫ = a(⌘)2diag(1, �1, �1, �1) is
the FLRW metric, A

a
µ are the SU(N) connections and

F
a
µ⌫ – their field-strength. Through the paper a, b, ...

denote internal indices of SU(N) in the adjoint represen-
tation.

For FLRW metrics J simplifies into
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2
p
�g

X

a

(Ea ·Ea �Ba ·Ba) ⌘
2
p
�g

(E2
�B2) ,

which is cast in terms of the electric field Ea and the
magnetic field Ba components. We define the spatial av-
erage quantity hJ i, and distinguish the cases in which:
i) hJ i is higher than zero, meaning that the average
chromo-electric (CE) components hE2

i dominate over the
averaged chromo-magnetic (CM) terms hB2

i; ii) vicev-
ersa, the case of a chromo-magnetically dominated state
hJi < 0 corresponds to a CM condensate.
Through the rest of the paper we will work only with

spatially averaged quantities, thus from now on we re-
move the h. . . i, for simplicity. Our approach must be
thought as a chromo-dynamical mean field theory, in
analogy to many condensed matter models1.
The gauge coupling satisfies the RG equation

2J
dḡ2

dJ
= ḡ2� ,

where � = �(ḡ2) and the running of the coupling constant
ḡ2 is determined by the exact �-function — both the
quantities can be either positive or negative, in general.
By the standard variational procedure, starting from

the e↵ective action (1) we arrive at the all-loop e↵ective
YM equations of motion, supplemented by the RG equa-
tion, which can be represented as follows

�!
D

ab
⌫


F

µ⌫
b

ḡ2
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where � is the physical scale of the e↵ective YM theory.
Thus, for the system of equations (2), we find the exact
(partial) ground state solution

�(ḡ2⇤) = 2 , ḡ2⇤ ⌘ ḡ2(J ⇤) , (5)

which we refer to as “non-perturbative vacuum” realised
at J ⇤ > 0, or the CE condensate, in what follows. Is this
the only possible ground state solution in a YM theory?

III. MIRROR SYMMETRY

It is worth noticing that the e↵ective YM Lagrangian (1)
is Z2 ⇥ Z0

2-symmetric w.r.t. simultaneous permutations

Z2 : J  ! �J , (6)

1
For example, the Ginzburg-Landau model describes the evolution

of spatially averaged observables in superconductive materials,

which in turn are crystals with local impurities and anisotropies

— see e.g. Ref. [33].

2

Cosmological CE attractor

3

in our numerical simulations, the typical differences be-
tween the nucleation temperatures for any of the three
transitions in Eq. (3) are above 20 GeV. This means that
no �!H1 transition happens in practice since by the
time the universe cools down below Tn(H2!H1), the H2

bubbles are already completely percolated and no phase
� remains.

Since in our scenario an occurrence of simultaneous
strong first-order transitions is highly unlikely, in what
follows we are focused on well-separated transitions �!
H2 and H2!H1 that occur at very different time scales
such that H2 bubbles percolate before the H2!H1 tran-
sition takes over. In this case, the well known formalism
of Ref. [11, 50, 51] for derivation of the GWs spectrum as
the energy density per logarithmic frequency of the GW
radiation, h2⌦GW, emerging from single-step transitions
can be used.

In the framework of this formalism, the GW signal is
a linear superposition of three components parameteriz-
ing bubble wall collisions, sound waves generated by the
phase transitions as well as magnetohydrodynamics tur-
bulences in the plasma.

For successive well-separated transitions the net GW
energy density is just the mere superposition of the cor-
responding contributions emerging from the single-step
transitions yielding well-separated (in frequency) GWs
signals, or peaks in the GW spectrum. Even though, it
is quite obvious that such a superposition should natu-
rally lead to the multi-peaked signatures in the power
spectrum of GWs, an explicit calculation in a particu-
larly simple extension of the Higgs sector that adopts, at
least, one short-lasting and one long-lasting transitions
is lacking the literature.

Consider the two sequential breaking steps in the right
hand side of Eq. (3) where the first one �!H2 is in fact
generated by thermal loop effects, in the spirit of the
models studied in, e.g. Refs. [25, 35–37, 40].
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For instance, the [0]!�!H1 pattern, where the first
[0]!� step becomes a first-order transition due to the ef-
fect of cubic contributions in the thermal m/T expansion.
For such transitions, a sample of the corresponding GW
signals are displayed in Fig. 1. Here, we observe two well-
separated peaks but with amplitudes much smaller than
those found in the left panel. This is a consequence of rel-
atively weak first-order phase transitions whose strengths
are of the order vn/Tn⇠0.2�0.5. In particular, the loop-
generated ones, which have a much larger time scale than
those that are already first-order at tree level, have their
frequencies shifted to the left.

Note, the peak-amplitude is mostly determined by the time scale of the transition and by the release of la-
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in our numerical simulations, the typical differences be-
tween the nucleation temperatures for any of the three
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ḡ2⇤
J

⇤
. (11)

�!
D

ab
⌫


F

µ⌫
b

ḡ2
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For instance, the [0]!�!H1 pattern, where the first
[0]!� step becomes a first-order transition due to the ef-
fect of cubic contributions in the thermal m/T expansion.
For such transitions, a sample of the corresponding GW
signals are displayed in Fig. 1. Here, we observe two well-
separated peaks but with amplitudes much smaller than
those found in the left panel. This is a consequence of rel-
atively weak first-order phase transitions whose strengths
are of the order vn/Tn⇠0.2�0.5. In particular, the loop-
generated ones, which have a much larger time scale than
those that are already first-order at tree level, have their
frequencies shifted to the left.

Note, the peak-amplitude is mostly determined by the time scale of the transition and by the release of la-
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�(ḡ2⇤)

2ḡ2⇤
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8ḡ2⇤
J

⇤ . (11)

However, if we consider its trace, we obtain exactly the
same trace-tensor of the CE vacua, but with an opposite
sign:

Tµ
µ =

1
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such that one recovers the well-known results obtained by
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in our numerical simulations, the typical differences be-
tween the nucleation temperatures for any of the three
transitions in Eq. (3) are above 20 GeV. This means that
no �!H1 transition happens in practice since by the
time the universe cools down below Tn(H2!H1), the H2

bubbles are already completely percolated and no phase
� remains.

Since in our scenario an occurrence of simultaneous
strong first-order transitions is highly unlikely, in what
follows we are focused on well-separated transitions �!
H2 and H2!H1 that occur at very different time scales
such that H2 bubbles percolate before the H2!H1 tran-
sition takes over. In this case, the well known formalism
of Ref. [11, 50, 51] for derivation of the GWs spectrum as
the energy density per logarithmic frequency of the GW
radiation, h2⌦GW, emerging from single-step transitions
can be used.

In the framework of this formalism, the GW signal is
a linear superposition of three components parameteriz-
ing bubble wall collisions, sound waves generated by the
phase transitions as well as magnetohydrodynamics tur-
bulences in the plasma.

For successive well-separated transitions the net GW
energy density is just the mere superposition of the cor-
responding contributions emerging from the single-step
transitions yielding well-separated (in frequency) GWs
signals, or peaks in the GW spectrum. Even though, it
is quite obvious that such a superposition should natu-
rally lead to the multi-peaked signatures in the power
spectrum of GWs, an explicit calculation in a particu-
larly simple extension of the Higgs sector that adopts, at
least, one short-lasting and one long-lasting transitions
is lacking the literature.

Consider the two sequential breaking steps in the right
hand side of Eq. (3) where the first one �!H2 is in fact
generated by thermal loop effects, in the spirit of the
models studied in, e.g. Refs. [25, 35–37, 40].
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For instance, the [0]!�!H1 pattern, where the first
[0]!� step becomes a first-order transition due to the ef-
fect of cubic contributions in the thermal m/T expansion.
For such transitions, a sample of the corresponding GW
signals are displayed in Fig. 1. Here, we observe two well-
separated peaks but with amplitudes much smaller than
those found in the left panel. This is a consequence of rel-
atively weak first-order phase transitions whose strengths
are of the order vn/Tn⇠0.2�0.5. In particular, the loop-
generated ones, which have a much larger time scale than
those that are already first-order at tree level, have their
frequencies shifted to the left.

Note, the peak-amplitude is mostly determined by the time scale of the transition and by the release of la-

3

in our numerical simulations, the typical differences be-
tween the nucleation temperatures for any of the three
transitions in Eq. (3) are above 20 GeV. This means that
no �!H1 transition happens in practice since by the
time the universe cools down below Tn(H2!H1), the H2

bubbles are already completely percolated and no phase
� remains.

Since in our scenario an occurrence of simultaneous
strong first-order transitions is highly unlikely, in what
follows we are focused on well-separated transitions �!
H2 and H2!H1 that occur at very different time scales
such that H2 bubbles percolate before the H2!H1 tran-
sition takes over. In this case, the well known formalism
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is quite obvious that such a superposition should natu-
rally lead to the multi-peaked signatures in the power
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For instance, the [0]!�!H1 pattern, where the first
[0]!� step becomes a first-order transition due to the ef-
fect of cubic contributions in the thermal m/T expansion.
For such transitions, a sample of the corresponding GW
signals are displayed in Fig. 1. Here, we observe two well-
separated peaks but with amplitudes much smaller than
those found in the left panel. This is a consequence of rel-
atively weak first-order phase transitions whose strengths
are of the order vn/Tn⇠0.2�0.5. In particular, the loop-
generated ones, which have a much larger time scale than
those that are already first-order at tree level, have their
frequencies shifted to the left.

Note, the peak-amplitude is mostly determined by the time scale of the transition and by the release of la-
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�(ḡ2)

8ḡ2
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8ḡ2⇤
J

⇤ = �
1

4ḡ2⇤
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However, if we consider its trace, we obtain exactly the
same trace-tensor of the CE vacua, but with an opposite
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4ḡ2⇤
J

⇤ . (16)
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grangian have an opposite energy density, which is found
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one recovers the well-known results obtained by Savvidy
in Ref. [10].
The conventional one-loop result for the trace anomaly
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CM vacuum component corresponding to J

⇤ < 0 (and
hence � ⌘ �CM in this case). As was elaborated above,
the mirror CE solution J

⇤ > 0 can be found by means
of Z0

2 transformation (with � ⌘ �CE) provided that the
ground state is Z0

2-symmetric.
How well the one-loop approximation reproduces the

all-loops vacuum state, given by the non-perturbative
ground-state solutions in Eq. (5)? We can answer this
question focusing on the case of SU(2), which is also
relevant for cosmology, in the framework of FRG [14–
16]. The one-loop and the all-loops solutions approach
the zero of the e↵ective action at exactly the same val-
ues of J = 0 and J = �4. The solutions also exhibit

3

extrema that, although do not coincide, are very close
to each other: at one loop, |J

⇤
|/�4 = 1

e ' 0.3679 ,
and L

⇤
e↵/�

4 =±b/(192⇡2e)' ±2.135 · 10�3; at all loops
|J

⇤
|/�4

' 0.3693 , and L
⇤
e↵/�

4 = ±2.163 · 10�3. Remark-
ably, the ground-state solutions for one-loop and all-loops
cases di↵er only at a per-mille level.

It is worth emphasizing that is not reductive to focus
on SU(2) YM theory. For any SU(N) gauge group, the
cosmological instantiation will be provided by the SU(2)
subgroups, for which an isomorphism between indices of
the adjoint representation and spatial indices may be re-
covered. On the other hand, the calculation of the super-
trace would be technically very di�cult to be achieved.
Because of the lack of any physical advantage, we can
skip this point without any loss of generality and physi-
cal insight.

As the bottomline of this consideration, for the two

mirror vacua found from Eq. (5), the net energy density
gets both CM (perturbative) and CE (nonperturbative)
vacua contributions with an equal modulus but an oppo-
site sign which therefore cancel out

✏CE
vac

��
J ⇤>0

+ ✏CM
vac

��
J ⇤<0

⌘ 0 , (20)

if and only if both vacua do co-exist in the ground state
of the Universe. We notice that this statement is valid
both in one-loop and all-loops cases. From such a simple
argument the vacuum energy-density cancellation may
be envisaged. In the case of strongly-coupled SU(3) glu-
odynamics, such a cancellation is expected to happen be-
yond the confinement length-scale which would automat-
ically yield vanishing mean-fields of gluons at large dis-
tances (when averaged over macroscopic volumes). The
co-existence of the vacua in the quantum ground state
thus implies their mutual screening, yielding a vanishing
CC term in consistency with cosmological observations.

FIG. 1. The total energy density T 0
0 (t) of the homogeneous gluon condensate (left), the trace of the total QCD energy-

momentum tensor Tµ
µ (t) (middle) and the logarithm of the scale factor a(t) (right), are illustrated as functions of the physical

time t =
R
ad⌘ and in units of the characteristic time scale ⇤�1

QCD. The total energy density and the trace values for Q0 ⌘
Q(t0) = 1 are indicated by horizontal lines in the left and middle panels, respectively. Here, the initial conditions are chosen
as U0 = 0, U̇0 = (⇠⇤QCD)

2/
p
3e, Q0 > 1, ⇠ ' 4, and the gravitational constant is set to { = 10�7MeV�2, for simplicity of the

numerical analysis. Both quantities T 0
0 (t) and Tµ

µ (t) are plotted in dimensionless units, and thus are rescaled by ⇤4
QCD. The

amplitude of the quasi-periodic oscillations of Q = Q(t) decreases at large t � ⇤�1
QCD, and asymptotically approaches unity,

corresponding to the partial (de-Sitter) solution of the equations of motion.

IV. HOMOGENEOUS YM CONDENSATES

A gauge-invariant description of spatially homogeneous
isotropic YM condensates, which depend only on time,
can be obtained, assuming the gauge condition Aa

0 = 0.
Due to the local isomorphism of the isotopic SU(2) gauge
group and the SO(3) group of spatial 3-rotations, the
unique (up to a rescaling) SU(2) YM configuration can
be parameterized in terms of a scalar time-dependent
spatially-homogeneous field — see e.g. Refs. [22–26].
Within the symmetric gauge, one obtains a unique and
gauge-invariant decomposition of the gauge field into a
spatially homogeneous isotropic part (the YM conden-
sate) and a non-isotropic/non-homogeneous parts (the
YM waves), namely,

Aak

�
t,x

�
= �akU(t) + eAak

�
t,x

�
,

with h eAik

�
t,x

�
i =

R
d3x eAik

�
t,x

�
= 0 and the YM con-

densate positively definite U(t) > 0. In the QFT for-
mulation, the inhomogeneous YM wave modes eAik are
interpreted as YM quanta (e.g. gluons), while U(t) con-
tributes to the ground state of the theory — for further
technical details, see Appendix B.

We may now focus on the equations of motion, ad-
dressing the time evolution of the homogeneous YM con-
densate in the cosmological environment. For this pur-
pose, we consider the perturbative (one-loop) e↵ective
toy-model, provided that the exact (all-loop) formula-
tion provides very similar results. In full analogy to the
SU(2) condensate case [17], in the QCD case the system
of the dynamical equations of the condensate has the ex-
act solution corresponding to the vanishing logarithm or,
equivalently, satisfies the transcendent equation |Q| = 1,

4
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as soon as the cosmological attractor is achieved!
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unique (up to a rescaling) SU(2) YM configuration can
be parameterized in terms of a scalar time-dependent
spatially-homogeneous field — see e.g. Refs. [22–26].
Within the symmetric gauge, one obtains a unique and
gauge-invariant decomposition of the gauge field into a
spatially homogeneous isotropic part (the YM conden-
sate) and a non-isotropic/non-homogeneous parts (the
YM waves), namely,
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R
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densate positively definite U(t) > 0. In the QFT for-
mulation, the inhomogeneous YM wave modes eAik are
interpreted as YM quanta (e.g. gluons), while U(t) con-
tributes to the ground state of the theory — for further
technical details, see Appendix B.

We may now focus on the equations of motion, ad-
dressing the time evolution of the homogeneous YM con-
densate in the cosmological environment. For this pur-
pose, we consider the perturbative (one-loop) e↵ective
toy-model, provided that the exact (all-loop) formula-
tion provides very similar results. In full analogy to the
SU(2) condensate case [17], in the QCD case the system
of the dynamical equations of the condensate has the ex-
act solution corresponding to the vanishing logarithm or,
equivalently, satisfies the transcendent equation |Q| = 1,
with

Q ⌘
32

11
⇡2e(⇠⇤QCD)

�4Tµ
µ [U ]

= 6e
h
(U 0)2 �

1

4
U4

i
a�4(⇠⇤QCD)

�4 ,

which yields the two distinct cases Q = ±1 — for more
details, see e.g. Appendix B.
As was mentioned above, quite naturally, the exact

compensation of the positive- and negative-valued gluon
condensate contributions to the QCD ground state en-
ergy density would be realized, in particular, if both the
electric and magnetic components Q = ±1 co-exist in the
ground state of the Universe. At macroscopic distances
the two contributions cancel, without any fine-tuning of
the model parameters, due to their (time) attractor na-
ture at large physical times. Within this hypothesis, both
QCD subsystems should be generated during the cosmo-
logical QCD phase transition, and asymptotically acquire
the same absolute values of the energy density, with op-
posite signs that trigger cancellation at large t for arbi-
trary values of the normalization parameter ⇠.
To address the characteristic time scales that are re-

quired for this mechanism to take place, let us consider
a deviation from the exact partial solution, which de-
scribes the evolution of U(t), and study numerically the
general solution of the equations of motion — see Ap-
pendix B. We first choose the subset of the initial condi-
tions satisfying Q0 ⌘ Q(t = t0) > 1, and then discuss the
results of the numerical analysis qualitatively. For this
choice of the initial conditions, Fig. 2 (left) illustrates
the physical time evolution of the total energy density
(in dimensionless units) of the homogeneous gluon con-
densate U = U(t), namely T 0

0 (t) ⌘ ✏̄ + T 0,U
0 (t). In Ap-

pendix B we show the explicit expression of T 0,U
0 and ✏̄,

respectively, as functionals of U(t). In Fig. 2 (middle) we
display the corresponding result for the trace of the total
gluon energy-momentum tensor Tµ

µ (t) ⌘ 4✏̄ + Tµ,U
µ (t) in

dimensionless units, and the corresponding solution for
the logarithm of the scale factor is given in Fig. 2 (right).
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FIG. 3. An illustration of the homogeneous QCD condensate amplitude oscillations U = U(t), with quasi-periodic singularities
in the physical time t =

R
ad⌘, is shown for the Q(U) = 1 and the Q(U) = �1 solutions, respectively in the left and right

panels, in units of the characteristic time scale ⇤�1
QCD. These spikes are localized in time-lapse, along the space-like directions,

and must be interpreted as new solitonic solutions, dubbed chronons or �-solutions.

The period of the Tµ
µ (t) oscillations is practically time independent, which can also be proven analytically, while

5

FIG. 5. The classical background solutions for the gauge fields
have two (time) attractors for Q = ±1, corresponding to a
positive and negative vacuum energy respectively.

� �
⌫
µ
1

4
F

a
��F

��
a

i
, (60)

One notices that for the analytic solutions satisfying
|Q| = 1, the traceless parts of the quantum and clas-
sical contributions to the energy-momentum tensor ex-
actly compensate each other leaving the total energy-
momentum tensor diagonal, i.e. T ⌫

µ / �
⌫
µ.

The compensation discussed above grossly reduces or
eliminates the topological QCD vacuum e↵ect on the
macroscopic late-time universe expansion. Indeed, un-
der condition (58) the macroscopic evolution of the uni-
verse reduces to the standard Friedmann one driven only
by matter fields and a small uncompensated observable
term ✏CC n T

0,U⇤
0 (which may or may not be related

to the QCD vacuum) while the evolution of the gluon
condensate happens at characteristic microscopic scales

corresponding to the QCD confinement scale ⇤QCD, i.e.

3

{
(a0)2

a4
= ✏+ ✏CC ,

(U 0)2 �
1

4
U

4 = a
4 (⇠⇤QCD)4

6e
, ⇠ ' 4 . (61)

So such a relatively slow macroscopic evolution of the
universe a = a(⌘) and rapid fluctuations of the gluon
condensate U = U(⌘) at the characteristic QCD time
scale get practically separated and are independent from
each other.
In the present universe with a ⌘ a0 = 1, the exact

(implicit) partial solutions for the homogeneous gluon
condensate read

Q = ±1 ,

Z eU

eU0

duq
1
4u

4 ± 1
= e⌘ ,

eU = U
(6e)1/4

4⇤QCD
, e⌘ = ⌘

4⇤QCD

(6e)1/4
, (62)

corresponding to (57) and (59) solutions illustrated in
Fig. 4, in left and right panels, respectively. Thus, the
cosmological evolution of the gluon field in its ground
state can be interpreted as a regular sequence of quan-
tum tunneling transitions through the “time barriers”
represented by the regular singularities in the quantum
vacuum solution of the e↵ective YM theory. In this sense,
the homogeneous gluon condensate in Minkowski space-
time is analogous to the topological condensate in the
instanton theory of the QCD vacuum in Euclidean space-
time interpreted in terms of spatially-inhomogeneous
gluon field fluctuations induced by quantum tunneling of
the field through topological (spatial) barriers between
di↵erent classical vacua.

FIG. 6. The total energy density T 0
0 (t) of the homogeneous gluon condensate given by Eq. (63) (left), the trace of the total

QCD energy-momentum tensor Tµ
µ (t) given by Eq. (64) (middle) and the logarithm of the scale factor a(t) (right) as functions

of physical time t =
R
ad⌘ in units of the characteristic time scale ⇤�1

QCD. The total energy density and trace values for Q0 = 1
are indicated by horizontal lines in left and middle panels, respectively. Here, the initial conditions are chosen as U0 = 0,
U̇0 = (⇠⇤QCD)

2/
p
3e, Q0 > 1, ✏̄ 6= 0, ⇠ ' 4, and the gravitational constant is taken { = 10�7MeV�2, for simplicity of

the numerical analysis. Both quantities T 0
0 (t) and Tµ

µ (t) are plotted in dimensionless units and thus are rescaled by ⇤4
QCD.

The amplitude of quasiperiodic oscillations of Q = Q(t) decrease at large t � ⇤�1
QCD and asymptotically approaches unity

corresponding to the partial (de-Sitter) solution of the EYM equations.

It is worth noticing that the well-known ’t Hooft- Polyakov monopole [59, 60] is analogous to the classi-
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Figure 14. The homogeneous QCD condensate amplitude oscillations. The homogeneous component
U(t) displays quasi-periodic singularities in the physical time t =

R
a dh, plotted here in units of the

characteristic time L�1
QCD. To the left, the chromoelectric vacuum solution of Eq. (110) with Q = 1 is

shown and to the right, the chromomagnetic dito with Q = �1 is displayed. x = 4.0 has been used
along with initial conditions U = 0 and U0 = 0. These results are compatible with [65] up to the scaling
of the figure on the right hand side.

the large negative contribution must be compensated for, in any first-order approximation, to a
remarkable precision, resulting in the observed cosmological constant value to an accuracy of a few
tens of decimal digits.

The conformal dynamics of the ground state (the condensate) U = U(h) and of the scale factor
a = a(h) are described by the following equations of motion as derived from Eqs. (106) and (107):

6
k

a00

a3 = 4ē + Tµ,U
µ , Tµ,U

µ =
3b

16p2a4


(U0)2

�
1
4

U4
�

, (108)

∂

∂h

✓
U0 ln

6e|(U0)2 � 1
4 U4|

a4l4

◆
+

1
2

U3 ln
6e|(U0)2 � 1

4 U4|

a4l4 = 0. (109)

It should be noted that a particular exact solution to Eq. (109) can be obtained if the logarithm
evaluates to zero at all times: that is if |Q| = 1 for

Q ⌘ 6e

(U0)2

�
1
4

U4
�

a�4(xLQCD)
�4. (110)

This may be solved for the two cases Q = ±1 and the solutions are shown in Fig. 14. The
homogeneous background U = U(t) is shown to display quasi-periodic singularities in the physical
time in both cases. It should be stressed that the exact compensation of the CE and CM gluon
condensate contributions to the QCD ground state energy density, as discussed earlier, is realised
in particular if the two components Q = ±1 co-exist in the Universe. The cancellation happens over
macroscopic distances as the average of the background vanishes in this limit and importantly this
occurs without any fine tuning. Crucially, such situation will arise due to the time-attractor nature of
the contributions from the two minima; a property that is demonstrated in the following.

The conformal integral of Eq. (108) is

3
k

(a0)2

a4 = ē + T0,U
0 , (111)

T0,U
0 =

3b
64p2a4

(
(U0)2 +

1
4

U4
�

ln
6e|(U0)2 � 1

4 U4|

a4l4 + (U0)2
�

1
4

U4

)
,
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Figure 15. Solutions for the total energy density T0
0(t) (left), the trace of the total QCD EMT Tµ

µ(t)
(middle) and the scale factor a(t) (right). The asymptotic values for which Q ! 1 are indicated by
horizontal lines in the left and middle panels, respectively. The initial conditions has been chosen as
U0 = 0, U̇0 = (xLQCD)

2/
p

3e, Q0 > 1, x = 4.0 LQCD = 332 MeV and k = 10�7 MeV�2. The energy
density and the trace are plotted in dimensionless units, rescaled by L4

QCD and for illustrative
purposes eCC was set to ⇠ 0.5 % of ē. These results compatible with the qualitative picture in [65].

The total energy density, T0
0(t), and the trace of the EMT, Tµ

µ(t), both explicitly defined in
Eq. (112), can be found by insertion of the solution above into Eq. (117) together with a manipulation
of Eq. (115). The result is

T0
0(t)

eCC
=

2

64
1 +

q
eCC
e0

+
⇣

1 �
q

eCC
e0

⌘
exp

nq
keCC

3

⇣
�3(t � t0) +

R t
t0

g(t)dt
⌘o

1 +
q

eCC
e0

�

⇣
1 �

q
eCC
e0

⌘
exp

nq
keCC

3

⇣
�3(t � t0) +

R t
t0

g(t)dt
⌘o

3

75

2

, (120)

Tµ
µ(t)

eCC
= 4 +

4
�

g(t) + 1
� ⇣

1 � eCC
e0

⌘
exp

nq
keCC

3

⇣
�3(t � t0) +

R t
t0

g(t)dt
⌘o

h
1 +

q
eCC
e0

�

⇣
1 �

q
eCC
e0

⌘
exp

nq
keCC

3

⇣
�3(t � t0) +

R t
t0

g(t)dt
⌘oi2 . (121)

It shall be pointed out here that the above solutions for the scale factor, the energy density, and
the trace of the EMT do not rely on any approximations but are the general solutions to Eq. (112).
These cosmological observables may therefore be studied on the full range from t0 to t, provided that
g(t) is known.

For practical analyses, the auxiliary function g may be studied in the vicinity of the exact,
large-time cancellation point where Q(t) ⇠ 1. This is done by expanding the YM energy density
around the asymptotic value of the exact solution where T0,U⇤

0 = C/4 such that

T0,U
0 (t) ' C/4 + de(t), de ⌧ C. (122)

with h̃(t) = 1
2
�

g(t)� 3
�

and A = keCC
3 . The introduction of m(t) ⌘ ḟ , results in a first order equation that may be solved. It

is explicitly
ṁ � h̃(t)m2(t) + Ah̃(t) = 0.

The scale factor is therefore found in terms of the integral of the solution for m(t) as

a(t) = a⇤ exp
Z t

t0
dt m(t)

�
.
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and its relaxation time is the same as for T 0,U
0 (t) given

in Eq. (C5). Consequently, these basic features of the
general solution of the EYM equations for the YM con-
densate (as the periods of oscillations and the relaxation
times of the condensate), its energy density and the pres-
sure can be described qualitatively, without a reference
either to the numerical calculations or to a particular
choice of model parameters.
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• The emergence of spikes localised in time at a characteristic QCD time lapse 
and extended in 3-space dimensions reveals the presence of an order state 
of space-like soliton/domain wall solutions (chronons) 

• A time-ordered classical solution spontaneously breaking time translational invariance 
down to a discrete time shift symmetry 
is known as the “time crystal” first discovered by Wilczek in the context of superconductors 
and superfluids in 

• The kink (anti-kink) profile localised in time corresponds to a space-like domain wall 
 
 

• As the T-invariance is broken, a massless moduli field                        localised on the  
domain wall world sheet                arises and corresponds to a Nambu-Goldstone boson
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Figure 14. The homogeneous QCD condensate amplitude oscillations. The homogeneous component
U(t) displays quasi-periodic singularities in the physical time t =

R
a dh, plotted here in units of the

characteristic time L�1
QCD. To the left, the chromoelectric vacuum solution of Eq. (110) with Q = 1 is

shown and to the right, the chromomagnetic dito with Q = �1 is displayed. x = 4.0 has been used
along with initial conditions U = 0 and U0 = 0. These results are compatible with [65] up to the scaling
of the figure on the right hand side.

the large negative contribution must be compensated for, in any first-order approximation, to a
remarkable precision, resulting in the observed cosmological constant value to an accuracy of a few
tens of decimal digits.

The conformal dynamics of the ground state (the condensate) U = U(h) and of the scale factor
a = a(h) are described by the following equations of motion as derived from Eqs. (106) and (107):

6
k

a00

a3 = 4ē + Tµ,U
µ , Tµ,U

µ =
3b

16p2a4


(U0)2

�
1
4

U4
�

, (108)

∂

∂h

✓
U0 ln

6e|(U0)2 � 1
4 U4|

a4l4

◆
+

1
2

U3 ln
6e|(U0)2 � 1

4 U4|

a4l4 = 0. (109)

It should be noted that a particular exact solution to Eq. (109) can be obtained if the logarithm
evaluates to zero at all times: that is if |Q| = 1 for

Q ⌘ 6e

(U0)2

�
1
4

U4
�

a�4(xLQCD)
�4. (110)

This may be solved for the two cases Q = ±1 and the solutions are shown in Fig. 14. The
homogeneous background U = U(t) is shown to display quasi-periodic singularities in the physical
time in both cases. It should be stressed that the exact compensation of the CE and CM gluon
condensate contributions to the QCD ground state energy density, as discussed earlier, is realised
in particular if the two components Q = ±1 co-exist in the Universe. The cancellation happens over
macroscopic distances as the average of the background vanishes in this limit and importantly this
occurs without any fine tuning. Crucially, such situation will arise due to the time-attractor nature of
the contributions from the two minima; a property that is demonstrated in the following.

The conformal integral of Eq. (108) is

3
k

(a0)2

a4 = ē + T0,U
0 , (111)
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a4l4 + (U0)2
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1
4

U4

)
,

2

a discrete time shift symmetry Tn : t ! t + n⇤�1
QCD, n

denoting a natural number. The concept of time crys-
tal has been first proposed by Wilczek in Refs. [20, 22]
within the context of superconductors and superfluids
physics1. For a review of time crystals, see e.g. Ref. [21].
The experimental discovery of time crystals was achieved
in Refs. [23]. The spontaneous symmetry breaking of T -
invariance from the localization of chronons is associated
to the appearance of Nambu-Goldstone bosons, as time-
like moduli excitations over the classical background.

During the relaxation stage, a new characteristic fea-
ture in the produced GW signal. While the energy-
density part of the energy momentum tensor does not
exhibit so violent transitions, the condensate pressure
provides the main contribution to the energy-momentum
tensor trace variation. These pressure kinks inject ki-
netic energy into the primordial plasma, inducing tur-
bulence and sound/shock waves in the plasma very e�-
ciently. In analogy with the case of bubble propagating
in the plasma, the gravitational radiation is emitted from
magnetohydrodynamical (MHD) turbulence and sound
waves. From our numerical simulations, which we com-
pare with semi-analytical estimates, we show that such
gravitational background signal can be tested in future
radio observatories form pulsar timing e↵ects. The spec-
trum that is predicted not only lies within the SKA sen-
sitivity, but it further displays very peculiar features of
the shape form that cannot be reproduced in any other
known mechanism. In other words, time crystallization
of QCD during the relaxation phase can be tested in next
future, which implies a radical reconsideration of our pic-
ture of QCD confinement itself from the prospective of
dynamical cosmological evolution.

II. SPACE-LIKE DOMAIN WALLS FROM
T-BREAKING

A standard static domain-wall can be easily obtained
from a scalar field theory that is Z2 invariant. With a
simple sombrero-like Higgs potential, Z2 can be sponta-
neously broken when the scalar field rolls down to one of
the two possible minima �vac = ±v. These internal field
configurations can be localized in the space direction z
as kink profiles. The kink profile interpolates the two
minima, namely �(z = �1) = �v and �(z = 1) = v. A
domain-wall configuration, as a xy-plane orthogonal to
the z-direction, is achieved through the kink profile tran-
sition region, and its characteristic thick in z-direction is
directly related to the kink shape. For a ��4 theory with
sombrero potential, one can find a simple analytic kink

solution, specified by �(z) = v tanh
h
�vp
2
(z�z0)

i
, with z0

the kink center.

1 The original implementation of this idea was criticized in
Refs. [18, 19].

As well known, for standard domain-walls the trans-
lational invariance is spontaneously broken, being the
barrier localized in a z0 point. This corresponds to
the appearance of a Nambu-Goldstone modulus boson
z0(t, x, y), localized on the surface of the domain wall, as
a low energy-excitation of its surface in the z-direction.
Intriguingly and exotically, one may consider a kink

profile that, despite of been localized in a space direc-
tion, it is localized in time. A new domain wall ex-
tended in three spatial dimension but localized in a time
lapse, which we dub chronons, may correspond to this
solution. By just replacing the z-coordinate with the
time variable, one can consider a kink solution, such

as �(t) = v tanh
h
�vp
2
(t � t0)

i
, centered in a time in-

stant t = t0 and interpolating the two vacuum states
in the asymptotic time limits �(t = �1) = �v and
�(t = 1) = v. This solution is associated to a sponta-
neous symmetry breaking of the time invariance and to
the appearance of a Nambu-Goldstone boson localized on
the xyz surface t0(x, y, z).
In the case of the gluon condensate field equation cou-

pled to gravity, in a FLRW cosmological background one
can decompose the gluonic field in a classical background
field U(t) plus a non-homogeneous part — see the Ap-
pendix for more technical details. Let us consider the
limit of a static FLRW space time (a = cost). A branch
of solutions for the U field satisfies the equation

U 02 � 1

4
U4 = const , (1)

where U 0 is the field derivative with respect to the Carte-
sian coordinate time, which we denote here with x0 ⌘ ⌘.
A branch of solutions of these equations, obtained by
U2 ! U2 �U2

0 energy density vacuum shift, corresponds
to kink (antikink) profiles

U(⌘) ' vp
2
tanh[

vp
2
(⌘ � ⌘0)] . (2)

where v ' ⇤QCD. A space-like domain wall corresponds
to a kink profile of this type. Time-translation is spon-
taneously broken, and a ⌘0(x, y, z) moduli field arises,
with U acquiring the dependence U(⌘� ⌘0(x, y, z)). The
coordinate x, y, z are the domain-walls worldsheet coor-
dinates. The e↵ective corresponding action reads as

S =

Z
d4x

1

2

h⇣ @�

@⌘0

@⌘0
@xa

⌘2
� V (U)

i

= const +
TW

2

Z
d3x

⇣@⌘0(xa)

@xa

⌘2
. (3)

This shows that the moduli field is massless, according
to the Nambu-Goldstone theorem.
When the gravitational dynamics is taken into ac-

count, and the scale factor time-dependence is consid-
ered, a more complicated time pattern for the space-
like domain walls arises — see the Appendix for all the
technical details. In this latter case, time-translation is
not only broken down to a Z2 symmetry involving the

Time-crystal ground state and production of gravitational waves
from QCD phase transition

Andrea Addazi,1, ⇤ Antonino Marcianò,1, † and Roman Pasechnik2, 3, 4, ‡
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We propose a novel mechanism for the production of gravitational waves in the early Universe that
originates from the relaxation processes induced by the QCD phase transition. While the energy
density of the quark-gluon mean-field is monotonously decaying in real time, its pressure undergoes
a series of violent oscillations at the characteristic QCD time scales that generates a primordial
multi-peaked gravitational waves signal in the radio frequencies’ domain. The signal as an echo of
the QCD phase transition, and is accessible by the FAST and SKA telescopes.

I. INTRODUCTION

The intriguing possibility that prompt phase transitions
in the early Universe might have imprinted signatures in
the background of gravitational radiation will be testable
through the next generation of gravitational interfer-
ometers. The idea was firstly suggested in Refs. [1–5].
New developments on the primordial gravitational waves
(GW) production in the early Universe we achieved in
Refs. [6, 7]. At the same time, recent studies on nuclear
strong interaction provided several evidences for asymp-
totic freedom phenomena, including quarks confinement
in baryons and mesons. E↵ects of confinement are re-
lated to the dimensional scale transmutation as much as
first order phase transition (FOPT) phenomena, which
are characterized by the dynamically generated energy
scale ⇤QCD ' 200MeV [8]. This suggested the possibility
that the Quantum Chromodynamics (QCD) phase tran-
sition may generate a GW signal in the hot Early Uni-
verse, at a temperature of T ' ⇤QCD ' 200MeV. That
a FOPT related to strong interactions may emit GWs
was initially, although qualitatively, proposed by Witten
[1], and then quantitatively re-elaborated in Ref.[9, 10].
The GW signal associated to the QCD phase transition
(QCDPT) cannot be detected in GW terrestrial interfer-
ometers, such as LIGO/VIRGO [11] and KAGRA [12],
cannot be either measured in future space experiments,
such as LISA [13], U-DECIGO [14], BBO [15], TAIJI [16]
and TianQin [17] projects. The GWs frequency range of
a QCDPT is around 10�8 ÷ 10�9 Hz, which is 5-6th dig-
its lower than the one provided by space experiments,
and 9-10th digit far from LIGO/VIRGO/KAGRA [10].
Furthermore, QCDPT does not leave any smoking-gun
imprinting in the Cosmic Microwave Background, which
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is sensitive to very low frequency modes (5th-6th digits
less [10]).

Nonetheless, a nHz phase transition such as a QCDPT
can be detected, with high precision, from radio astro-
nomical observation of pulsar timing: the GW back-
grounds propagating through pulsar systems alter the
radio signal, leaving an imprinting that is principle ob-
servable. This opens a pathway towards the exciting
possibility of testing fundamental particle physics with
current and future radio astronomy experiments, includ-
ing FAST [24], and SKA [25]. Within previous QCDPT
analyses, the role of possible relaxation phenomena and
gravitational back-reactions were completely neglected.
But after the QCDPT, prompt and violent relaxation ef-
fects around the QCD vacuum energy state are expected,
which retains a broad analogy with the reheating mech-
anism in inflationary models.

In this letter, we study in detail the possible e↵ects
of the gluon condensate relaxation phenomena. We ana-
lyze the non-linear field equations for the gluonic conden-
sate, coupled to the Einstein equation, in a Friedmann-
Lemâıtre-Robertson-Walker (FLRW) cosmological back-
ground. During the relaxation phase, a surprising non-
equilibrium phenomenon arises: the gluonic condensate
field violently oscillates during the relaxation phase, in-
ducing fast oscillations of the energy-momentum tensor
trace for a transient time of ⌧ ' 10 ÷ 20⇤�1

QCD. The os-
cillating solution is a classical non-perturbative solution
of the Yang-Mills field equations coupled to the Einstein
field equations. The emergence of spikes, localized in a
characteristic QCD time lapse �t ' ⇤�1

QCD, and extended
in the space dimensions, reveals the presence of a ordered
pattern of space-like soliton/domain-walls solutions. We
dub these new solutions chronons. After a cosmologi-
cal time t > 20⇤�1

QCD, the spikes’ periodicity disappears,
and the energy density approaches the QCD vacuum en-
ergy minimum. The time-ordered classical solution that
we found is a time crystal, i.e. a periodic classical so-
lution spontaneously breaking time invariance down to
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a discrete time shift symmetry Tn : t ! t + n⇤�1
QCD, n

denoting a natural number. The concept of time crys-
tal has been first proposed by Wilczek in Refs. [20, 22]
within the context of superconductors and superfluids
physics1. For a review of time crystals, see e.g. Ref. [21].
The experimental discovery of time crystals was achieved
in Refs. [23]. The spontaneous symmetry breaking of T -
invariance from the localization of chronons is associated
to the appearance of Nambu-Goldstone bosons, as time-
like moduli excitations over the classical background.

During the relaxation stage, a new characteristic fea-
ture in the produced GW signal. While the energy-
density part of the energy momentum tensor does not
exhibit so violent transitions, the condensate pressure
provides the main contribution to the energy-momentum
tensor trace variation. These pressure kinks inject ki-
netic energy into the primordial plasma, inducing tur-
bulence and sound/shock waves in the plasma very e�-
ciently. In analogy with the case of bubble propagating
in the plasma, the gravitational radiation is emitted from
magnetohydrodynamical (MHD) turbulence and sound
waves. From our numerical simulations, which we com-
pare with semi-analytical estimates, we show that such
gravitational background signal can be tested in future
radio observatories form pulsar timing e↵ects. The spec-
trum that is predicted not only lies within the SKA sen-
sitivity, but it further displays very peculiar features of
the shape form that cannot be reproduced in any other
known mechanism. In other words, time crystallization
of QCD during the relaxation phase can be tested in next
future, which implies a radical reconsideration of our pic-
ture of QCD confinement itself from the prospective of
dynamical cosmological evolution.

II. SPACE-LIKE DOMAIN WALLS FROM
T-BREAKING

A standard static domain-wall can be easily obtained
from a scalar field theory that is Z2 invariant. With a
simple sombrero-like Higgs potential, Z2 can be sponta-
neously broken when the scalar field rolls down to one of
the two possible minima �vac = ±v. These internal field
configurations can be localized in the space direction z
as kink profiles. The kink profile interpolates the two
minima, namely �(z = �1) = �v and �(z = 1) = v. A
domain-wall configuration, as a xy-plane orthogonal to
the z-direction, is achieved through the kink profile tran-
sition region, and its characteristic thick in z-direction is
directly related to the kink shape. For a ��4 theory with
sombrero potential, one can find a simple analytic kink

solution, specified by �(z) = v tanh
h
�vp
2
(z�z0)

i
, with z0

the kink center.

1 The original implementation of this idea was criticized in
Refs. [18, 19].

As well known, for standard domain-walls the trans-
lational invariance is spontaneously broken, being the
barrier localized in a z0 point. This corresponds to
the appearance of a Nambu-Goldstone modulus boson
z0(t, x, y), localized on the surface of the domain wall, as
a low energy-excitation of its surface in the z-direction.
Intriguingly and exotically, one may consider a kink

profile that, despite of been localized in a space direc-
tion, it is localized in time. A new domain wall ex-
tended in three spatial dimension but localized in a time
lapse, which we dub chronons, may correspond to this
solution. By just replacing the z-coordinate with the
time variable, one can consider a kink solution, such

as �(t) = v tanh
h
�vp
2
(t � t0)

i
, centered in a time in-

stant t = t0 and interpolating the two vacuum states
in the asymptotic time limits �(t = �1) = �v and
�(t = 1) = v. This solution is associated to a sponta-
neous symmetry breaking of the time invariance and to
the appearance of a Nambu-Goldstone boson localized on
the xyz surface t0(x, y, z).
In the case of the gluon condensate field equation cou-

pled to gravity, in a FLRW cosmological background one
can decompose the gluonic field in a classical background
field U(t) plus a non-homogeneous part — see the Ap-
pendix for more technical details. Let us consider the
limit of a static FLRW space time (a = cost). A branch
of solutions for the U field satisfies the equation

U 02 � 1

4
U4 = const , (1)

where U 0 is the field derivative with respect to the Carte-
sian coordinate time, which we denote here with x0 ⌘ ⌘.
A branch of solutions of these equations, obtained by
U2 ! U2 �U2

0 energy density vacuum shift, corresponds
to kink (antikink) profiles

U(⌘) ' vp
2
tanh[

vp
2
(⌘ � ⌘0)] . (2)

where v ' ⇤QCD. A space-like domain wall corresponds
to a kink profile of this type. Time-translation is spon-
taneously broken, and a ⌘0(x, y, z) moduli field arises,
with U acquiring the dependence U(⌘� ⌘0(x, y, z)). The
coordinate x, y, z are the domain-walls worldsheet coor-
dinates. The e↵ective corresponding action reads as

S =

Z
d4x

1
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� V (U)

i

= const +
TW
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. (3)

This shows that the moduli field is massless, according
to the Nambu-Goldstone theorem.
When the gravitational dynamics is taken into ac-

count, and the scale factor time-dependence is consid-
ered, a more complicated time pattern for the space-
like domain walls arises — see the Appendix for all the
technical details. In this latter case, time-translation is
not only broken down to a Z2 symmetry involving the
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a discrete time shift symmetry Tn : t ! t + n⇤�1
QCD, n

denoting a natural number. The concept of time crys-
tal has been first proposed by Wilczek in Refs. [20, 22]
within the context of superconductors and superfluids
physics1. For a review of time crystals, see e.g. Ref. [21].
The experimental discovery of time crystals was achieved
in Refs. [23]. The spontaneous symmetry breaking of T -
invariance from the localization of chronons is associated
to the appearance of Nambu-Goldstone bosons, as time-
like moduli excitations over the classical background.

During the relaxation stage, a new characteristic fea-
ture in the produced GW signal. While the energy-
density part of the energy momentum tensor does not
exhibit so violent transitions, the condensate pressure
provides the main contribution to the energy-momentum
tensor trace variation. These pressure kinks inject ki-
netic energy into the primordial plasma, inducing tur-
bulence and sound/shock waves in the plasma very e�-
ciently. In analogy with the case of bubble propagating
in the plasma, the gravitational radiation is emitted from
magnetohydrodynamical (MHD) turbulence and sound
waves. From our numerical simulations, which we com-
pare with semi-analytical estimates, we show that such
gravitational background signal can be tested in future
radio observatories form pulsar timing e↵ects. The spec-
trum that is predicted not only lies within the SKA sen-
sitivity, but it further displays very peculiar features of
the shape form that cannot be reproduced in any other
known mechanism. In other words, time crystallization
of QCD during the relaxation phase can be tested in next
future, which implies a radical reconsideration of our pic-
ture of QCD confinement itself from the prospective of
dynamical cosmological evolution.

II. SPACE-LIKE DOMAIN WALLS FROM
T-BREAKING

A standard static domain-wall can be easily obtained
from a scalar field theory that is Z2 invariant. With a
simple sombrero-like Higgs potential, Z2 can be sponta-
neously broken when the scalar field rolls down to one of
the two possible minima �vac = ±v. These internal field
configurations can be localized in the space direction z
as kink profiles. The kink profile interpolates the two
minima, namely �(z = �1) = �v and �(z = 1) = v. A
domain-wall configuration, as a xy-plane orthogonal to
the z-direction, is achieved through the kink profile tran-
sition region, and its characteristic thick in z-direction is
directly related to the kink shape. For a ��4 theory with
sombrero potential, one can find a simple analytic kink

solution, specified by �(z) = v tanh
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As well known, for standard domain-walls the trans-
lational invariance is spontaneously broken, being the
barrier localized in a z0 point. This corresponds to
the appearance of a Nambu-Goldstone modulus boson
z0(t, x, y), localized on the surface of the domain wall, as
a low energy-excitation of its surface in the z-direction.
Intriguingly and exotically, one may consider a kink

profile that, despite of been localized in a space direc-
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in the asymptotic time limits �(t = �1) = �v and
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In the case of the gluon condensate field equation cou-
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pendix for more technical details. Let us consider the
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This shows that the moduli field is massless, according
to the Nambu-Goldstone theorem.
When the gravitational dynamics is taken into ac-

count, and the scale factor time-dependence is consid-
ered, a more complicated time pattern for the space-
like domain walls arises — see the Appendix for all the
technical details. In this latter case, time-translation is
not only broken down to a Z2 symmetry involving the
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The experimental discovery of time crystals was achieved
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waves. From our numerical simulations, which we com-
pare with semi-analytical estimates, we show that such
gravitational background signal can be tested in future
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trum that is predicted not only lies within the SKA sen-
sitivity, but it further displays very peculiar features of
the shape form that cannot be reproduced in any other
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of QCD during the relaxation phase can be tested in next
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This shows that the moduli field is massless, according
to the Nambu-Goldstone theorem.
When the gravitational dynamics is taken into ac-
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Exact conformal invariance
at macroscopic scales

Exact mirror symmetry
of the YM ground state

Breaking of Mirror symmetry and Cosmological Constant

Mirror symmetry and conformal invariance 
breakdown at cosmological scales

Quantum Gravity in the quasi classical
approximation

Ya. Zeldovich (1967): A. Sakharov (1967): 

extra terms describing an effect of graviton exchanges between identical 

particles (bosons occupying the same quantum state) should appear in the 

right hand side of Einstein equations (averaged over quantum ensemble)
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Concluding remarks
• Local loss of continuous time-translational invariance leads to  

“time crystal”-type configurations in the QCD vacuum 

• Nielsen-Olsen proof of instability of CE condensate on a rigid Minkowski  
in NOT in contradiction with our picture: we consider YM evolution  
on a dynamical (FLRW) spacetime while equilibrium is achieved only  
asymptotically.  

• A possible decay of CE condensate into an anisotropic vacuum after  
a cosmological relaxation time would be exponentially suppressed and  
is practically never realised 

• Even starting from an initial non-zero energy-density, the evolution of localised 3-space  
“pockets” of the CE and CM condensates trigger a mutual screening, flowing towards 
a zero-energy density attractor and accompanying by a formation of the domain walls  
corresponding to an asymptotic restoration of the Z2 (Mirror) symmetry and effectively  
protecting the “false” CE vacua pockets from further decay 

• The vacua cancellation mechanism seems to naturally marry the existing confinement 
pictures related to a formation of a network of t’Hooft monopoles or chromovortices. 
In this approach, the scalar kink profile may correspond the J-invariant whose change 
may be related to the presence of monopole or vortex solutions localise inside 
the space-time domain walls. This implies the existence of space-time solitonic  
objects of a new type.


