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We provide Ising formulations for many NP-complete and NP-hard problems, including
all of Karp’s 21 NP-complete problems. This collects and extends mappings to the Ising
model from partitioning, covering and satisfiability. In each case, the required number of
spins is at most cubic in the size of the problem. This work may be useful in designing
adiabatic quantum optimization algorithms.
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7.1. Hamiltonian Cycles and Paths

Let G = (V,FE), and N = |V|. The graph can either be directed or undirected; our method of solution
will not change. The Hamiltonian path problem is as follows: starting at some node in the graph, can
one travel along an edge, visiting other nodes in the graph, such that one can reach every single node in
the graph without ever returning to the same node twice? The Hamiltonian cycles problem asks that, in
addition, the traveler can return to the starting point from the last node he visits. Hamiltonian cycles is
a generalization of the famous Konigsberg bridge problem [24], and is NP-complete [18].

Without loss of generality, let us label the vertices 1,..., N, and take the edge set (uv) to be directed
— 1.e., the order uwv matters. It is trivial to extend to undirected graphs, by just considering a directed
graph with (vu) added to the edge set whenever (uv) is added to the edge set. Our solution will use N2
bits z,;, where v represents the vertex and ¢ represents its order in a prospective cycle. Our energy will
have three components. The first two things we require are that every vertex can only appear once in a
cycle, and that there must be a j* node in the cycle for each j. Finally, for the nodes in our prospective
ordering, if z, ; and z, ;1 are both 1, then there should be an energy penalty if (uv) ¢ E. Note that
N + 1 should be read as 1, in the expressions below, if we are solving the cycles problem. These are
encoded in the Hamiltonian:

n N 2 n N 2 N
H=AY (1-) z,;] +4) (1 -3 xv,j) +A DY T (56)
v=1 j=1 j=1 v=1

(uv)¢E j=1

A > 0 is a constant. It is clear that a ground state of this system has H = 0 only if we have an ordering
of vertices where each vertex is only included once, and adjacent vertices in the cycle have edges on the
graph — i.e., we have a Hamiltonian cycle.

Traveling Salesman  75=5 > W3 s
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Abstract

We give a quantum algorithm for solving instances of the satisfiability problem, based on adiabatic
evolution. The evolution of the quantum state is governed by a time-dependent Hamiltonian that
interpolates between an initial Hamiltonian, whose ground state is easy to construct, and a final
Hamiltonian, whose ground state encodes the satisfying assignment. To ensure that the system
evolves to the desired final ground state, the evolution time must be big enough. The time required
depends on the minimum energy difference between the two lowest states of the interpolating
Hamiltonian. We are unable to estimate this gap in general. We give some special symmetric
cases of the satisfiability problem where the symmetry allows us to estimate the gap and we show
that, in these cases, our algorithm runs in polynomial time.
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Adiabatic theorem
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128 qubit C, Chimera graph
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Abstract. The model of adiabatic quantum computation is a relatively recent model of quantum com-
putation that has attracted attention in the physics and computer science communities.
We describe an efficient adiabatic simulation of any given quantum circuit. This implies
that the adiabatic computation model and the standard circuit-based quantum compu-
tation model are polynomially equivalent. Our result can be extended to the physically
realistic setting of particles arranged on a two-dimensional grid with nearest neighbor inter-
actions. The equivalence between the models allows one to state the main open problems
in quantum computation using well-studied mathematical objects such as eigenvectors and
spectral gaps of Hamiltonians.
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I. Introduction. The model of quantum computation has been thoroughly in-
vestigated in the last two decades and is by now a well-established one [47]. In this
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Objectives




Blue qubit Green qubit

Yellow qubit Red qubit

Objective : O(qb, A9, 9y qy) = (qb +q9g+qr +qy— 1)z =

-1(9p + 94+ q, + q,)
+2(qp94 + 9p9r + 9bqy + 499 + 999y + 9+9y)



Maping onto the unit cell




Code

/* STEP 1: turn on one of C qubits */
/* Handle weights */
for (i=0; i<C; ++i)

{

weight [DW_QUBIT(row,col,’L’,i)] +=
weight [DW_QUBIT(row,col,’R’,i)] +=

}
/* Handle strengths */
for (i=0; i<C; ++i)
for (j=0; j<C; ++j)
if (i 1= j)
strength [DW_INTRACELL_COUPLER(row,col,i,j)] += 1;




Neighbors and cloning
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Chunks

chunk 1 chunk 2 chunk 3

Divide the US map into
chunks.

Process the first chunk and
get valid colorings for the
first chunk of states.

Use these colorings to bias
the second chunk.

Repeat.

# of colors Needle Haystack
3 0 3% = 2.4x10%°

4 25623183458304 | 4" = 3.2x10%"




Timing Benchmark — Smaller is Better

10000 ~@— CPLEX 1
—o— METSTABU
1000 —a

- AKMAXSAT

-9— D-WAVEIII

100 11000 X

10

Median time to best solution (s)

1 1
0.1 *—o—9
0.01 =
0.001
o 100 200 300 400 50O

Problem size (number of qubits)



I.s‘)

180

296

T

-

- 75th

85th

E
@)
=
©
o)
c
-
©
)
h o
o)
%
2
o)
=
w
<
n
°
c
©
O
=
O

D-Wave

1Y

104

10?

200

S00

400 500 600
Problem size (bits)

700

800

900

1000

D-Wave annealing time (;s)




Machine Learning: Binary Classification

Traditional algorithm
recognized car about 84% of §
the time

* Google/D-Wave Qboost
algorithm implemented to
recognize a car (cars have
big shadows!)

* "“"Quantum Classifier” was
more accurate (94%) and
more efficient

* Ported quantum classifier
back to traditional computer,
more accurate and fewer
CPU cycles (less power)!

p::waue © 2016 D-Wave Systems Inc. All Rights Reserved | 47
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A poor man’'s coherent Ising machine based on
opto-electronic feedback systems for solving
optimization problems

Fabian BShm® !, Guy Verschaffelt® ' & Guy Van der Sande® '

Coherent Ising machines (CIMs) constitute a promising approach to solve computationally

a b
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