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Abstract 
 
 
Quantum Bridge Analytics relates generally to methods and systems for hybrid classical-
quantum computing, and more particularly is devoted to developing tools for bridging classical 
and quantum computing to gain the benefits of their alliance in the present and enable enhanced 
practical application of quantum computing in the future.  
 
This is the first of a two-part tutorial that surveys key elements of Quantum Bridge Analytics and 
its applications, with an emphasis on supplementing models with numerical illustrations. In Part 
1 (the present paper) we focus on the Quadratic Unconstrained Binary Optimization (QUBO) 
model which is presently the most widely applied optimization model in the quantum computing 
area, and which unifies a rich variety of combinatorial optimization problems.  
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Section 1:  Introduction    
 
The field of Combinatorial Optimization (CO) is one of the most important areas in the field of 
optimization, with practical applications found in every industry, including both the private and 
public sectors.  It is also one of the most active research areas pursued by the research 
communities of Operations Research, Computer Science and Analytics as they work to design 
and test new methods for solving real world CO problems.  
 
Generally, these problems are concerned with making wise choices in settings where a large 
number of yes/no decisions must be made and each set of decisions yields a corresponding 
objective function value – like a cost or profit value.  Finding good solutions in these settings is 
extremely difficult.  The traditional approach is for the analyst to develop a solution algorithm 
that is tailored to the mathematical structure of the problem at hand.  While this approach has 
produced good results in certain problem settings, it has the disadvantage that the diversity of 
applications arising in practice requires the creation of a diversity of solution techniques, each 
with limited application outside their original intended use.  
 
In recent years, we have discovered that a mathematical formulation known as QUBO, an 
acronym for a Quadratic Unconstrained Binary Optimization problem, can embrace an 
exceptional variety of important CO problems found in industry, science and government, as 
documented in studies such as Kochenberger, et. al. (2014) and Anthony, et. al. (2017). Through 
special reformulation techniques that are easy to apply, the power of QUBO solvers can be used 
to efficiently solve many important problems once they are put into the QUBO framework.   
 
The QUBO model has emerged as an underpinning of the quantum computing area known as 
quantum annealing and Fujitsu's digital annealing, and has become a subject of study in 
neuromorphic computing. Through these connections, QUBO models lie at the heart of 
experimentation carried out with quantum computers developed by D-Wave Systems and 
neuromorphic computers developed by IBM. The consequences of these new discoveries linking 
QUBO models to quantum computing are being explored in initiatives by organizations such as 
IBM, Google, Amazon, Microsoft, D-Wave and Lockheed Martin in the commercial realm and 
Los Alamos National Laboratory, Oak Ridge National Laboratory, Lawrence Livermore 
National Laboratory and NASA’s Ames Research Center in the public sector. Computational 
experience is being amassed by both the classical and the quantum computing communities that 
highlights not only the potential of the QUBO model but also its effectiveness as an alternative to 
traditional modeling and solution methodologies.  
 
The connection with Quantum Bridge Analytics derives from the gains to be achieved by 
building on these developments to bridge the gap between classical and quantum computational 
methods and technologies. As emphasized in the 2019 Consensus Study Report titled Quantum 
Computing: Progress and Prospects, by the National Academies of Sciences, Engineering and 
Medicine (https://www.nap.edu/catalog/25196/quantum-computing-progress-and-prospects) 
quantum computing will remain in its infancy for perhaps another decade, and in the interim 
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“formulating an R&D program with the aim of developing commercial applications for near-
term quantum computing is critical to the health of the field.” The report further notes that such a 
program will rest on developing “hybrid classical-quantum techniques.” Innovations that 
underlie and enable these hybrid classical-quantum techniques are the focus of Quantum Bridge 
Analytics and draw heavily on the QUBO model for their inspiration.  
 
The significance of the ability of the QUBO model to encompass many models in combinatorial 
optimization is enhanced by the fact that the QUBO model can be shown to be equivalent to the 
Ising model that plays a prominent role in physics, as highlighted in in the paper by Lucas 
(2014). Consequently, the broad range of optimization problems solved effectively by state-of-
the-art QUBO solution methods are joined by an important domain of problems arising in 
physics applications.  
 
The materials provided in the sections that follow illustrate the process of reformulating 
important optimization problems as QUBO models through a series of explicit examples.  
Collectively these examples highlight the application breadth of the QUBO model.  We disclose 
the unexpected advantages of modeling a wide range of problems in a form that differs from the 
linear models classically adopted in the optimization community.  We show how many different 
types of constraining relationships arising in practice can be embodied within the 
“unconstrained” QUBO formulation in a very natural manner using penalty functions, yielding 
exact model representations in contrast to the approximate representations produced by 
customary uses of penalty functions. Each step of generating such models is illustrated in detail 
by simple numerical examples, to highlight the convenience of using QUBO models in numerous 
settings. As part of this, we provide techniques that can be used to recast a variety of problems 
that may not seem at first to fit within an unconstrained binary optimization structure into an 
equivalent QUBO model. We also describe recent innovations for solving QUBO models that 
offer a fertile avenue for integrating classical and quantum computing and for applying these 
models in machine learning.  
 
As pointed out in Kochenberger and Glover (2006), the QUBO model encompasses the 
following important optimization problems: 
 

• Quadratic Assignment Problems  
• Capital Budgeting Problems  
• Multiple Knapsack Problems  
• Task Allocation Problems (distributed computer systems)  
• Maximum Diversity Problems  
• P-Median Problems  
• Asymmetric Assignment Problems  
• Symmetric Assignment Problems  
• Side Constrained Assignment Problems  
• Quadratic Knapsack Problems  
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• Constraint Satisfaction Problems (CSPs) 
• Discrete Tomography Problems  
• Set Partitioning Problems  
• Set Packing Problems  
• Warehouse Location Problems  
• Maximum Clique Problems  
• Maximum Independent Set Problems  
• Maximum Cut Problems  
• Graph Coloring Problems  
• Number Partitioning Problems  
• Linear Ordering Problems  
• Clique Partitioning Problems 
• SAT problems 

 
Details of such applications are elaborated more fully in Kochenberger et al. (2014).  
 
In the following development we describe approaches that make it possible to model these and 
many other types of problems in the QUBO framework and provide information about recent 
developments linking QUBO to machine learning and quantum computing. 
 
Basic QUBO Problem Formulation 
 
We now give a formal definition of the QUBO model whose significance will be made clearer by 
numerical examples that give a sense of the diverse array of practical QUBO applications. 
Definition:  The QUBO model is expressed by the optimization problem: 
 

QUBO:  minimize/maximize 𝑦 = 	𝑥%𝑄𝑥 
 

where x is a vector of binary decision variables and Q is a square matrix of constants. 
 
It is common to assume that the Q matrix is symmetric or in upper triangular form, which can be 
achieved without loss of generality simply as follows: 
 
Symmetric form: For all i and j except i = j, replace	𝑞() by (𝑞() +	𝑞)()/2 . 
 
Upper triangular form: For all i and j with 𝑗 > 𝑖 , replace 	𝑞() by 𝑞() +	𝑞)(. Then replace all 𝑞() 
for 𝑗 < 𝑖 by 0. (If the matrix is already symmetric, this just doubles the 	𝑞() values above the 
main diagonal, and then sets all values below the main diagonal to 0).  
 
In the examples given in the following sections, we will work with the full, symmetric Q matrix 
rather than adopting the “upper triangular form.” 
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Comment on the formal classification of QUBO models and their solution: QUBO models 
belong to a class of problems known to be NP-hard.  The practical meaning of this is that exact 
solvers designed to find “optimal” solutions (like the commercial CPLEX and Gurobi solvers) 
will most likely be unsuccessful except for very small problem instances.  Using such methods, 
realistic sized problems can run for days and even weeks without producing high quality 
solutions. Fortunately, as we disclose in the sections that follow, impressive successes are being 
achieved by using modern metaheuristic methods that are designed to find high quality but not 
necessarily optimal solutions in a modest amount of computer time. These approaches are 
opening valuable possibilities for joining classical and quantum computing. 
 

Section 2: Illustrative Examples and Definitions 
 

Before presenting common practical applications, we first give examples and definitions to lay 
the groundwork to see better how these applications can be cast in QUBO form. 
To begin, consider the optimization problem 
 
          Minimize  

where the variables, 𝑥), are binary.  We can make several observations: 
 

1. The function to be minimized is a quadratic function in binary variables with a linear part 

 and a quadratic part . 

 

2. Since binary variables satisfy  , the linear part can be written as 

 

 

3. Then we can re-write the model in the following matrix form: 

Minimize  

 

4. In turn, this can be written in the matrix notation introduced in Section 1 as 

Minimize  

1 2 3 4 1 2 1 3 2 3 3 45 3 8 6 4 8 2 10y x x x x x x x x x x x x=- - - - + + + +

1 2 3 45 3 8 6x x x x- - - - 1 2 1 3 2 3 3 44 8 2 10x x x x x x x x+ + +

2
j jx x=
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where x is a column vector of binary variables.  Note that the coefficients of the original 
linear terms appear on the main diagonal of the Q matrix. In this case Q is symmetric 
about the main diagonal without needing to modify the coefficients by the approach 
shown in Section 1.     
 

5. Other than the 0/1 restrictions on the decision variables, QUBO is an unconstrained 
model with all problem data being contained in the Q matrix.  These characteristics make 
the QUBO model particularly attractive as a modeling framework for combinatorial 
optimization problems, offering a novel alternative to classically constrained 
representations. 
 

6. The solution to the model in (3) above is:  

Remarks: 
 

• As already noted, the stipulation that Q is symmetric about the main diagonal does not 
limit the generality of the model.  
 

• As previously emphasized, a variety of optimization problems can naturally be 
formulated and solved as an instance of the QUBO model.  In addition, many other 
problems that don’t appear to be related to QUBO problems can be re-formulated as a 
QUBO model.  We illustrate this special feature of the QUBO model in the sections that 
follow. 
 
 

Section 3: Natural QUBO Formulations 
 

As mentioned earlier, several important problems fall naturally into the QUBO class.  To 
illustrate such cases, we provide two examples of important applications whose formulations 
naturally take the form of a QUBO model.   
 
3.1 The Number Partitioning Problem 

The Number Partitioning problem has numerous applications cited in the Bibliography section of 
these notes. A common version of this problem involves partitioning a set of numbers into two 
subsets such that the subset sums are as close to each other as possible. We model this problem 
as a QUBO instance as follows: 
 
Consider a set of numbers 𝑆 = {𝑠6, 𝑠8,… , 𝑠:}.  Let 𝑥) = 1 if 𝑆) is assigned to subset 1;  0 
otherwise. Then the sum for subset 1 is given by 𝑠𝑢𝑚6 = ∑ 𝑠):

)@6 𝑥) and the sum for subset 2 is 
given by 𝑠𝑢𝑚8 = ∑ 𝑠) −:

)@6 ∑ 𝑠):
)@6 𝑥). The difference in the sums is then  

1 4 2 311, 1, 0.y x x x x=- = = = =
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𝑑𝑖𝑓𝑓 = ∑ 𝑠) −:

)@6 2∑ 𝑠):
)@6 𝑥) = 𝑐 − 2∑ 𝑠):

)@6 𝑥). 
 

We approach the goal of minimizing this difference by minimizing 
 

 
where 

 
 

Dropping the additive and multiplicative constants, our QUBO optimization problem becomes: 
 

 
 

where the Q matrix is constructed with 𝑞(( and 𝑞() as defined above.   
 
Numerical Example: Consider the set of eight numbers 

 
 

By the development above, we have 𝑐8	 = 27,556 and the equivalent QUBO problem is 

min𝑦 = 𝑥%𝑄𝑥 with  

 

Solving QUBO gives 𝑥 = (0,0,0,1,1,0,0,1) for which 𝑦 = −6889, yielding perfectly matched 
sums which equal 83.  The development employed here can be expanded to address other forms 
of the number partitioning problem, including problems where the numbers must be partitioned 
into three or more subsets, as discussed in Alidaee, et.al. (2005). 
 
3.2 The Max-Cut Problem 
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The Max Cut problem is one of the most famous problems in combinatorial optimization.  Given 
an undirected graph G(V, E) with a vertex set V and an edge set E, the Max Cut problem seeks to 
partition V  into two sets such that the number of edges between the two sets (considered to be 
severed by the cut), is a large as possible.   
 
We can model this problem by introducing binary variables satisfying 𝑥) = 1  if vertex j is in one 
set and 𝑥) = 0 if it is in the other set. Viewing a cut as severing edges joining two sets, to leave 
endpoints of the edges in different vertex sets, the quantity 𝑥( +	𝑥) − 2𝑥(𝑥) identifies whether 
the edge (𝑖, 𝑗) is in the cut.  That is, if (𝑥( +	𝑥) − 2𝑥(𝑥))  is equal to 1, then exactly one of 𝑥( and 
𝑥)	equals 1, which implies edge  (𝑖, 𝑗) is in the cut.  Otherwise (𝑥( +	𝑥) − 2𝑥(𝑥)) is equal to zero 
and the edge is not in the cut.   
 
Thus, the problem of maximizing the number of edges in the cut can be formulated as 
 

Maximize  

which is an instance of  
 

The linear terms determine the elements on the main diagonal of Q and the quadratic terms 
determine the off-diagonal elements.  See Boros and Hammer (1991, 2002) and Kochenberger 
et.al.(2013) for further discussions of QUBO and the Max Cut problem. 
 
Numerical Example:  To illustrate the Max Cut problem, consider the following undirected 
graph with 5 vertices and 6 edges. 

 

Explicitly taking into account all edges in the graph gives the following formulation: 
 

                

y = xi + x j − 2xix j( )
i, j( )∈E
∑

QUBO :max y = xtQx

Maximize y = (x1 + x2 − 2x1x2)+ (x1 + x3 − 2x1x3)+ (x2 + x4 − 2x2x4)
+ (x3 + x4 − 2x3x4)+ (x3 + x5 − 2x3x5)+ (x4 + x5 − 2x4x5)
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or 

         

This takes the desired form 
 

by writing the symmetric Q matrix as: 
 

 

Solving this QUBO model gives 𝑥 = (0,1,1,0,0).  Hence vertices 2 and 3 are in one set and 
vertices 1, 4, and 5 are in the other, with a maximum cut value of 5.  
 
In the above examples, the problem characteristics led directly to an optimization problem in 
QUBO form. As previously remarked, many other problems require “re-casting” to create the 
desired QUBO form.  We introduce a widely-used form of such re-casting in the next section. 
   

Section 4: Creating QUBO Models Using Known Penalties 
 
The “natural form” of a QUBO model illustrated thus far contains no constraints other than those 
requiring the variables to be binary.  However, by far the largest number of problems of interest 
include additional constraints that must be satisfied as the optimizer searches for good solutions.    
Many of these constrained models can be effectively re-formulated as a QUBO model by 
introducing quadratic penalties into the objective function as an alternative to explicitly imposing 
constraints in the classical sense.  The penalties introduced are chosen so that the influence of the 
original constraints on the solution process can alternatively be achieved by the natural 
functioning of the optimizer as it looks for solutions that avoid incurring the penalties. That is, 
the penalties are formulated so that they equal zero for feasible solutions and equal some positive 
penalty amount for infeasible solutions.  For a minimization problem, these penalties are added 
to create an augmented objective function to be minimized. If the penalty terms can be driven to 
zero, the augmented objective function becomes the original function to be minimized.  
 
For certain types of constraints, quadratic penalties useful for creating QUBO models are known 
in advance and readily available to be used in transforming a given constrained problem into a 
QUBO model.  Examples of such penalties for some commonly encountered constraints are 
given in the table below. Note that in the table, all variables are intended to be binary and the 

max y = 2x1 + 2x2 +3x3 +3x4 + 2x5 − 2x1x2 − 2x1x3 − 2x2x4 − 2x3x4 − 2x3x5 − 2x4x5

QUBO :max y = xtQx

Q=

2 −1 −1 0 0
−1 2 0 −1 0
−1 0 3 −1 −1
0 −1 −1 3 −1
0 0 −1 −1 2

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
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parameter P is a positive, scalar penalty value. This value must be chosen sufficiently large to 
assure the penalty term is indeed equivalent to the classical constraint, but in practice an 
acceptable value for P is usually easy to specify. We discuss this matter more thoroughly later. 
 
 

Classical Constraint Equivalent Penalty  

  

  

  

  

  

  

                                      Table of a few Known constraint/penalty pairs 

To illustrate the main idea, consider a traditionally constrained problem of the form: 
 

𝑀𝑖𝑛	𝑦 = 𝑓(𝑥) 
subject to the constraint 

 
 

Where 𝑥6 and 𝑥8 are binary variables. Note that this constraint allows either or neither x variable 
to be chosen.  It explicitly precludes both from being chosen (i.e., both cannot be set to 1). 
 
From the 1st row in the table above, we see that a quadratic penalty that corresponds to our 
constraint is  

 
 

where P is a positive scalar.  For P chosen sufficiently large, the unconstrained problem 
 

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒	𝑦 = 𝑓(𝑥) + 𝑃𝑥6𝑥8 
  

has the same optimal solution as the original constrained problem. If f(x) is linear or quadratic, 
then this unconstrained model will be in the form of a QUBO model.  In our present example, 
any optimizer trying to minimize 𝑦 will tend to avoid solutions having both 𝑥6 and 𝑥8 equal to 1, 
else a large positive amount will be added to the objective function.  That is, the objective 
function incurs a penalty corresponding to infeasible solutions.  This simple penalty has been 
used effectively by Pardalos and Xue (1999) in the context of the maximum clique and related 
problems. 
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4.1 The Minimum Vertex Cover  (MVC) Problem 
 
In section 3.2 we saw how the QUBO model could be used to represent the famous Max Cut 
problem.  Here we consider another well-known optimization problem on graphs called the 
Minimum Vertex Cover problem.  Given an undirected graph with a vertex set V and an edge set 
E,  a vertex cover is a subset of the vertices (nodes) such that each edge in the graph is incident 
to at least one vertex in the subset. The Minimum Vertex Cover problem seeks to find a cover 
with a minimum number of vertices in the subset. 
 
A standard optimization model for MVC can be formulated as follows.  Let 𝑥) = 1 if vertex j is 
in the cover (i.e., in the subset) and 𝑥) = 0 otherwise.  Then the standard constrained, linear 0/1 
optimization model for this problem is:  
 

Minimize  

                      subject to  

                                                       for all                              

Note the constraints ensure that at least one of the endpoints of each edge will be in the cover 
and the objective function seeks to find the cover using the least number of vertices. Note also 
that we have a constraint for each edge in the graph, meaning that even for modest sized graphs 
we can have many constraints.  Each constraint will alternatively be imposed by adding a penalty 
to the objective function in the equivalent QUBO model.   
 
Referring to our table above, we see that the constraints in the standard MVC model can be 
represented by a penalty of the form 𝑃(1 − 𝑥 − 𝑦 + 𝑥𝑦). Thus, an unconstrained alternative to 
the constrained model for MVC is  
 
                                         Minimize    

where P again represents a positive scalar penalty. In turn, we can write this as minimize 𝑥%𝑄𝑥  
plus a constant term.  Dropping the additive constant, which has no impact on the optimization, 
we have an optimization problem in the form of a QUBO model. 
 
Remark: A common extension of this problem allows a weight 𝑤) to be associated with each 
vertex j.  Following the development above, the QUBO model for the Weighted Vertex Cover 
problem is given by: 
 

j
j V
x

Î
å
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( )
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                                      Minimize    

 
Numerical Example: Consider the graph of section 3.2 again but this time we want to determine 
a minimum vertex cover. 

 

For this graph with n = 6 edges and m = 5 nodes, the model becomes:   

 

which can be written as 

 

Arbitrarily choosing P to be equal to 8 and dropping the additive constant (6P = 48) gives our 
QUBO model  
 
                                                                 

 

with the Q matrix given by 
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Note that we went from a constrained model with 5 variables and 6 constraints to an 
unconstrained QUBO model in the same 5 variables. Solving this QUBO model gives: 𝑥%𝑄𝑥 =
	−45 at 𝑥 = (0,1,1,0,1) for which 𝑦 = 48 − 45 = 3, meaning that a minimum cover is given by 
nodes 2, 3, and 5. It’s easy to check that at this solution, all the penalty functions are equal to 0. 
 
Comment on the Scalar Penalty P: 
 
As we have indicated, the reformulation process for many problems requires the introduction of 
a scalar penalty P for which a numerical value must be given.  These penalties are not unique, 
meaning that many different values can be successfully employed. For a particular problem, a 
workable value is typically set based on domain knowledge and on what needs to be 
accomplished.  Often, we use the same penalty for all constraints but there is nothing wrong with 
having different penalties for different constraints if there is a good reason to differentially treat 
various constraints.  If a constraint must absolutely be satisfied, i.e., a “hard” constraint, then P 
must be large enough to preclude a violation. Some constraints, however, are “soft”, meaning 
that it is desirable to satisfy them but slight violations can be tolerated.  For such cases, a more 
moderate penalty value will suffice.  
 
A penalty value that is too large can impede the solution process as the penalty terms overwhelm 
the original objective function information, making it difficult to distinguish the quality of one 
solution from another.  On the other hand, a penalty value that is too small jeopardizes the search 
for feasible solutions. Generally, there is a ‘Goldilocks region’ of considerable size that contains 
penalty values that work well. A little preliminary thought about the model can yield a ballpark 
estimate of the original objective function value.  Taking P to be some percentage (75% to 
150%) of this estimate is often a good place to start.  In the end, solutions generated can always 
be checked for feasibility, leading to changes in penalties and further rounds of the solution 
process as needed to zero in on an acceptable solution.   
 
4.2 The Set Packing Problem 
 
The Set Packing problem is a well-known optimization problem in binary variables with a 
general (traditional) formulation given by 
 

 

where the 𝑎() are 0/1 coefficients, the 𝑤) are weights and the 𝑥) variables are binary. Using the 
penalties of the form shown in the first and fifth rows of the table given earlier, we can easily 
construct a quadratic penalty corresponding to each of the constraints in the traditional model.  
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Then by subtracting the penalties from the objective function, we have an unconstrained 
representation of the problem in the form of a QUBO model.   
 
Numerical Example: Consider the following small example of a set packing problem: 
 

 
                                                   st  

 
 
Here all the objective function coefficients, the 𝑤) values, are equal to 1. Using the penalties 
mentioned above, the equivalent unconstrained problem is: 
 

 
 
This has our customary QUBO form   
 

                                                               
 
where the Q matrix , with P arbitrarily chosen to be 6, is given by  
 

  

Solving the QUBO model gives 𝑦 = 2 at 𝑥 = (0,1,1,0). Note that at this solution, all four 
penalty terms are equal to zero. 
 
Remark:  Set packing problems with thousands of variables and constraints have been 
efficiently reformulated and solved in Alidaee, et. al. (2008) using the QUBO reformulation 
illustrated in this example. 
 
4.3 The Max 2-Sat Problem 
 
Satisfiability problems, in their various guises, have applications in many different settings. 
Often these problems are represented in terms of clauses, in conjunctive normal form, consisting 
of several true/false literals. The challenge is to determine the literals so that as many clauses as 
possible are satisfied.   
 

1 2 3 4max x x x x+ + +

1 3 4

1 2
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x x x
x x

+ + £
+ £

1 2 3 4 1 3 1 4 3 4 1 2max x x x x Px x Px x Px x Px x+ + + - - - -

QUBO :max xtQx
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−3 1 0 0
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−3 0 −3 1

⎡
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For our optimization approach, we’ll represent the literals as 0/1 values and formulate models 
that can be re-cast into the QUBO framework and solved with QUBO solvers.  To illustrate the 
approach, we consider the category of satisfiability problems known as Max 2-Sat problems.   
For Max 2-Sat, each clause consists of two literals and a clause is satisfied if either or both 
literals are true. There are three possible types of clauses for this problem, each with a traditional 
constraint that must be satisfied if the clause is to be true. In turn, each of these three constraints 
has a known quadratic penalty given in our previous table. 
 
The three clause types along with their traditional constraints and associated penalties are:  
 

1. No negations:  Example  ( ) 

Traditional constraint:  

Quadratic Penalty:  

2. One negation: Example ( ) 

Traditional constraint:  

Quadratic Penalty:  

3. Two negations: Example ( ) 
Traditional constraint:  

 Quadratic Penalty:  

(Note that 𝑥) = 1 or 0 denoting whether literal j is true or false. The notation 𝑥WX , the complement 
of 𝑥), is equal to (1 − 	𝑥)). ) 
 
For each clause type, if the traditional constraint is satisfied, the corresponding penalty is equal 
to zero, while if the traditional constraint is not satisfied, the quadratic penalty is equal to 1.   
Given this one-to-one correspondence, we can approach the problem of maximizing the number 
of clauses satisfied by equivalently minimizing the number of clauses not satisfied.  This 
perspective, as we will see, gives us a QUBO model.  
 
For a given Max 2-Sat instance then, we can add the quadratic penalties associated with the 
problem clauses to get a composite penalty function which we want to minimize.  Since the 
penalties are all quadratic, this penalty function takes the form of a QUBO model, 
min𝑦 = 	𝑥%𝑄𝑥.  Moreover,  if 𝑦 turns out to be equal to zero when minimizing the QUBO 
model, this means we have a solution that satisfies all of the clauses;  if 𝑦 turns out to equal 5, 
that means we have a solution that satisfies all but 5 of the clauses; and so forth. 
This modeling and solution procedure is illustrated by the following example with 4 variables 
and 12 clauses where the penalties are determined by the clause type. 

i jx xÚ
1i jx x+ ³

(1 )i j i jx x x x- - +

i jx xÚ
1i jx x+ ³

( )j i jx x x-

i jx xÚ
1i jx x+ ³

( )i jx x
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Clause #        Clause           Quadratic Penalty  
       1                    

       2                         

       3                         

       4                            

       5                         

       6                             

       7                        

       8                    

       9                         

      10                           

      11                   

      12                          

 
Adding the individual clause penalties together gives our QUBO model 
  

 
or,  

 
 
where the Q matrix is given by 
 

 

 
Solving QUBO gives: 𝑦 = 3 − 2 = 1 at 𝑥6 = 	𝑥8 = 	𝑥Y = 0, 𝑥Z = 1, meaning that all clauses but 
one are satisfied. 
 

1 2x xÚ 1 2 1 2(1 )x x x x- - +

1 2x xÚ 2 1 2( )x x x-

1 2x xÚ 1 1 2( )x x x-

1 2x xÚ 1 2( )x x

1 3x xÚ 1 1 3( )x x x-

1 3x xÚ 1 3( )x x

2 3x xÚ 3 2 3( )x x x-

2 4x xÚ 2 4 2 4(1 )x x x x- - +

2 3x xÚ 2 2 3( )x x x-

2 3x xÚ 2 3( )x x

3 4x xÚ 3 4 3 4(1 )x x x x- - +

3 4x xÚ 3 4( )x x

1 4 2 3 2 4 3 4min 3 2 2y x x x x x x x x= + - - + +

min 3 ty x Qx= +

1 0 0 0
0 0 1/ 2 1/ 2
0 1/ 2 0 1
0 1/ 2 1 2
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Remarks: The QUBO approach illustrated above has been successfully used in Kochenberger, 
et. al. (2005) to solve Max 2-sat problems with hundreds of variables and thousands of clauses. 
An interesting feature of this approach for solving Max 2-sat problems is that the size of the 
resulting QUBO model to be solved is independent of the number of clauses in the problem and 
is determined only by the number of variables at hand.  Thus, a Max 2-Sat problem with 200 
variables and 30,000 clauses can be modeled and solved as a QUBO model with just 200 
variables.  
 

Section 5: Creating QUBO Models: A General Purpose Approach 
 

In this section, we illustrate how to construct an appropriate QUBO model in cases where a 
QUBO formulation doesn’t arise naturally (as we saw in section 3) or where useable penalties 
are not known in advance (as we saw in section 4).   It turns out that for these more general 
cases, we can always “discover” useable penalties by adopting the procedure outlined below.  
 
For this purpose, consider the general 0/1 optimization problem of the form: 
 

 
  

 
This model accommodates both quadratic and linear objective functions since the linear case 
results when C is a diagonal matrix (observing that 𝑥)8 = 	 𝑥) when 𝑥) is a 0-1 variable).  Under 
the assumption that A and b have integer components, problems with inequality constraints can 
always be put in this form by including slack variables and then representing the slack variables 
by a binary expansion. (For example, this would introduce a slack variable s to convert the 
inequality 4𝑥6 + 	5𝑥8 − 𝑥Y	 ≤ 6  into 4𝑥6 + 	5𝑥8 − 𝑥Y	 + 𝑠 = 6   , and since clearly 𝑠	 ≤ 7       
(in case 𝑥Y	 = 1), 𝑠 could be represented by the binary expansion 𝑠6 + 2𝑠8 + 4𝑠Y where 𝑠6, 𝑠8 
and 𝑠Y are additional binary variables. If it is additionally known that at not both	𝑥6 and 𝑥8 can 
be 0, then 𝑠 can be at most 3 and can be represented by the expansion𝑠6 + 2𝑠8. A fuller treatment 
of slack variables is given subsequently.)  These constrained quadratic optimization models are 
converted into equivalent unconstrained QUBO models by converting the constraints 𝐴𝑥 = 𝑏     
(representing slack variables as x variables) into quadratic penalties to be added to the objective 
function, following the same re-casting as we illustrated in section 4.   
 
Specifically, for a positive scalar P, we add a quadratic penalty 𝑃(𝐴𝑥 − 𝑏)%(𝐴𝑥 − 𝑏) to the 
objective function to get 

 

 

min ty x Cx=
,x b x binaryA =

( ) ( )t

t t

ty x Cx P Ax b Ax b
x Cx x Dx c

= + - -

= + +

tx Qx c= +
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where the matrix D and the additive constant c result directly from the matrix multiplication 
indicated.  Dropping the additive constant, the equivalent unconstrained version of the 
constrained problem becomes 
 
                                                                                             

Remarks: 

1. A suitable choice of the penalty scalar P, as we commented earlier, can always be chosen 
so that the optimal solution to QUBO is the optimal solution to the original constrained 
problem. Solutions obtained can always be checked for feasibility to confirm whether or 
not appropriate penalty choices have been made.  
 

2.  For ease of reference, the preceding procedure that transforms the general problem into 
an equivalent QUBO model will be called Transformation # 1. The mechanics of 
Transformation #1 can be employed whenever we need to convert linear constraints of 
the form 𝐴𝑥 = 𝑏 into usable quadratic penalties in our efforts to re-cast a given problem 
with equality constraints into the QUBO form.  Boros and Hammer (2002) give a 
discussion of this approach which is the basis for establishing the generality of QUBO. 
For realistic applications, a program will need to be written implementing Transformation 
# 1 and producing the Q matrix needed for the QUBO model. Any convenient language, 
like C++, Python, Matlab, etc., can be used for this purpose.  For small problems, or for 
preliminary tests preceding large-scale applications, we can usually proceed manually as 
we’ll do in these notes.   
 

3. Note that the additive constant, c, does not impact the optimization and can be ignored 
during the optimization process. Once the QUBO model has been solved, the constant c 
can be used to recover the original objective function value.  Alternatively, the original 
objective function value can always be determined by using the optimal 𝑥) found when 
QUBO is solved. 
 

Transformation #1 is the “go to” approach in cases where appropriate quadratic penalty functions 
are not known in advance. In general, it represents an approach that can be adopted for any 
problem. Due to this generality, Transformation # 1 has proven to be an important modeling tool 
in many problem settings.  
 
Before moving on to applications in this section, we want to single out another constraint/penalty 
pair for special recognition that we worked with before in section 4: 
 

 
 

:min ,tQUBO x Qx x binary

(xi + x j ≤1)→ P(xix j )
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Constraints of this form appear in many important applications.  Due to their importance and 
frequency of use, we refer to this special case as Transformation #2.  We’ll have occasion to use 
this as well as Transformation # 1 later in this section.  
 

5.1 Set Partitioning 

 
The set partitioning problem (SPP) has to do with partitioning a set of items into subsets so that 
each item appears in exactly one subset and the cost of the subsets chosen is minimized.  This 
problem appears in many settings including the airline and other industries and is traditionally 
formulated in binary variables as 
 

 
 

Where 𝑥) denotes whether or not subset j is chosen, 𝑐) is the cost of subset j, and the 𝑎() 
coefficients are 0 or 1 denoting whether or not variable 𝑥) explicitly appears in constraint i.  Note 
that his model has the form of the general model given at the beginning of this section where, in 
this case, the objective function matrix C is a diagonal matrix with all off-diagonal elements 
equal to zero and the diagonal elements are given by the original linear objective function 
coefficients.  Thus, we can re-cast the model into a QUBO model directly by using 
Transformation # 1.  We illustrate this with the following example. 
 
Numerical Example: Consider a set partitioning problem   
 

 

subject to 

 

and x binary. Normally, Transformation # 1 would be embodied in a supporting computer 
routine and employed to re-cast this problem into an equivalent instance of a QUBO model.  For 

1

1
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1 1,...
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this small example, however, we can proceed manually as follows:  The conversion to an 
equivalent QUBO model via Transformation # 1 involves forming quadratic penalties and adding 
them to the original objective function.  In general, the quadratic penalties to be added (for a 
minimization problem) are given by 𝑃∑ (∑ 𝑎()𝑥() − 𝑏(^

)@6 )8(    where the outer summation is 
taken over all constraints in the system 𝐴𝑥 = 𝑏.   
 
For our example we have 
 

 
 

Arbitrarily taking P to be 10, and recalling that 𝑥)8 = 	 𝑥) since our variables are binary, this 
becomes 
 

 
 
Dropping the additive constant 40, we then have our QUBO model 
 

 
where the Q matrix is 
 

 
 

Solving this QUBO formulation gives an optimal solution 𝑥6 = 	𝑥_ = 1 (with all other variables 
equal to 0) to yield 𝑦 = 6.   
 
Remarks: 

1. The QUBO approach to solving set partitioning problems has been successfully applied 
in Lewis, et. al. (2008) to solve large instances with thousands of variables and hundreds 
of constraints. 

51 2 3 4 6
2 2

51 3 6 2 3 6
2 2

53 4 1 2 4 6

min 3 2 3 2
( 1) ( 1)
( 1) ( 1)

y x x x x x x
P x x x P x x x x
P x x x P x x x x

= + + + + +

+ + + - + + + + -

+ + + - + + + + -

2 2 2 2 2 2
1 2 3 4 5 6 1 2 1 3 1 4 1 6

2 3 2 4 2 5 2 6 3 4 3 5 3 6 4 5

4 6 5 6

min 17 18 29 19 17 28 20 20 20 40
20 20 20 40 20 40 40 20
20 20 40

y x x x x x x x x x x x x x x
x x x x x x x x x x x x x x x x
x x x x

= - - - - - - + + + +

+ + + + + + + +

+ + +

min ,tx Qx x binary
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2. The special nature of the set partitioning model allows an alternative to Transformation 

#1 for constructing the QUBO model.  Let 𝑘)denote the number of 1’s in the jth column 
of the constraint matrix A and let 𝑟() denote the number of times variables i and j appear 
in the same constraint. Then the diagonal elements of Q are given by 𝑞(( = 	 𝑐(	 − 𝑃𝑘(  and   
the off – diagonal elements of Q are given by  𝑞() = 𝑞)( = 	𝑃𝑟().  The additive constant is 
given by 𝑚 ∗ 𝑃.  These relationships make it easy to formulate the QUBO model for any 
set partitioning problem without having to go through the explicit algebra of 
Transformation # 1. 

 
3.  The set partitioning problem may be viewed as a form of clustering problem and is 

elaborated further in Section 6. 
 

5.2 Graph Coloring 

 
In many applications, Transformation # 1 and Transformation # 2 can be used in concert to 
produce an equivalent QUBO model, as demonstrated next in the context of graph coloring. 
Vertex coloring problems seek to assign colors to nodes of a graph in such a way that adjacent 
nodes receive different colors.  The K-coloring problem attempts to find such a coloring using 
exactly K colors. A wide range of applications, ranging from frequency assignment problems to 
printed circuit board design problems, can be represented by the K-coloring model. 
 
These problems can be modeled as satisfiability problems as follows:   
 
Let 𝑥() = 1 if node i is assigned color j, and 0 otherwise.   
 
Since each node must be colored, we have the constraints 
 

 
 

where n is the number of nodes in the graph. A feasible coloring, in which adjacent nodes are 
assigned different colors, is assured by imposing the constraints 
 

 
 

for all adjacent nodes (i,j) in the graph.  
 
This problem, then, can be re-cast in the form of a QUBO model by using Transformation # 1 on 
the node assignment constraints and using Transformation # 2 on the adjacency constraints. This 

1
1 1,...,

K
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problem does not have an objective function in its original formulation, meaning our focus is on 
finding a feasible coloring using the K colors allowed.  As a result, any positive value for the 
penalty P will do. (The resulting QUBO model of course has an objective function given by  
𝑥%𝑄𝑥	where Q is determined by the foregoing re-formulation.)   
 
Numerical Example: Consider the problem of finding a feasible coloring of the following graph 
using K= 3 colors. 
 

 

 

 

 

 

Given the discussion above, we see that the goal is to find a solution to the system:  
 

 

 
(for all adjacent nodes i and j) 

 

In this traditional form, the model has 15 variables and 26 constraints.  As suggested above, to 
recast this problem into the QUBO form, we can use Transformation # 1 on the node assignment 
equations and Transformation # 2 on adjacency inequalities.  One way to proceed here is to start 
with a 15-by-15 Q matrix where initially all the elements are equal to zero and then re-define 
appropriate elements based on the penalties obtained from Transformations # 1 and # 2.  To 
clarify the approach, we’ll take these two sources of penalties one at a time. For ease of notation 
and to be consistent with earlier applications, we’ll first re-number the variables using a single 
subscript, from 1 to 15, as follows: 

 

As we develop our QUBO model, we’ll use the variables with a single subscript. 
First, we’ll consider the node assignment equations and the penalties we get from 
Transformation # 1. Taking these equations in turn we have 
 

1 2 3 1 1, 5i i i ix x x = =+ +
1 1, 3ip jp px x £ =+
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 which becomes .    

 which becomes . 

which becomes . 

 which becomes . 

 which becomes . 
 
Taking P to equal 4 and inserting these penalties in the “developing” Q matrix gives the 
following partially completed Q matrix along with an additive constant of 5P.  
 

 

Note the block diagonal structure.  Many problems have patterns that can be exploited in 
developing Q matrices needed for their QUBO representation.  Looking for patterns is often a 
useful de-bugging tool.   
 
To complete our Q matrix, it’s a simple matter of inserting the penalties representing the 
adjacency constraints into the above matrix. For these, we use the penalties of Transformation # 
2, namely 𝑃𝑥(𝑥), for each adjacent pair of nodes and each of the three allowed colors.  We have 
7 adjacent pairs of nodes and three colors, yielding a total of 21 adjacency constraints. Allowing 
for symmetry, we’ll insert 42 penalties into the matrix, augmenting the penalties already in place.  
For example, for the constraint ensuring that nodes 1 and 2 can not both have color #1, the 
penalty is 𝑃𝑥6𝑥Z, implying that we insert the penalty value “2” in row 1 and column 4 of our 
matrix and also in column 1 and row 4.   (Recall that we have relabeled our variables so that the 

2
1 2 3( 1)P x x x+ + - 1 2 3 1 2 1 3 2 3( 2 2 2 )P x x x x x x x x x P- - - + + + +

2
54 6( 1)P x x x+ + - 5 5 54 6 4 4 6 6( 2 2 2 )P x x x x x x x x x P- - - + + + +

2
7 8 9( 1)P x x x+ + - 7 7 78 9 8 9 8 9( 2 2 2 )P x x x x x x x x x P- - - + + + +

2
10 11 12( 1)P x x x+ + - 10 11 12 10 11 10 12 11 12( 2 2 2 )P x x x x x x x x x P- - - + + + +

2
13 14 15( 1)P x x x+ + - 13 14 15 13 14 13 15 14 15( 2 2 2 )P x x x x x x x x x P- - - + + + +
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original variables 𝑥6,6 and 𝑥8,6 are now variables  𝑥6 and 𝑥Z.)  Including the penalties for the 
other adjacency constraints completes the Q matrix as shown below 
 
 

 

The above matrix incorporates all of the constraints of our coloring problem, yielding the 
equivalent QUBO model 
 

 
 

Solving this model yields the feasible coloring: 
𝑥8 = 𝑥Z = 	𝑥c = 	𝑥66 = 	𝑥6_ = 1	with all other variables equal to zero.  
 
Switching back to our original variables, this solution means that nodes 1 and 4 get color #2, 
node 2 gets color # 1, and nodes 3 and 5 get color # 3.  
 
Remark: This approach to graph coloring problems has proven to be very effective for a wide 
variety of coloring instances with hundreds of nodes, as demonstrated in Kochenberger, et. al. 
(2005).  
 
5.3 General 0/1 Programming 
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Many important problems in industry and government can be modeled as 0/1 linear programs 
with a mixture of constraint types. The general problem of this nature can be represented in 
matrix form by 

 
 

where slack variables are introduced as needed to convert inequality constraints into equalities.  
Given a problem in this form, Transformation # 1 can be used to re-cast the problem into the 
QUBO form 
 

 

As discussed earlier, problems with inequality constraints can be handled by introducing slack 
variables, via a binary expansion, to create the system of constraints 𝐴𝑥 = 𝑏.  
 
Numerical Example: Consider the general 0/1 problem 
 

 
 

Since Transformation # 1 requires all constraints to be equations rather than inequalities, we 
convert the 1st and 3rd constraints to equations by including slack variables via a binary 
expansion.  To do this, we first estimate upper bounds on the slack activities as a basis for 
determining how many binary variables will be required to represent the slack variables in the 
binary expansions. Typically, the upper bounds are determined simply by examining the 
constraints and estimating a reasonable value for how large the slack activity could be.   For the 
problem at hand, we can refer to the slack variables for constraints 1 and 3 as 𝑠6 and	𝑠Y  with 
upper bounds 3 and 6 respectively. Our binary expansions are: 
 

 
 
Where 𝑥d, 𝑥e, 𝑥f, 𝑥c and 𝑥6g are new binary variables. Note that these new variables will have 
objective function coefficients equal to zero.  Including these slack variables gives the system  
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𝐴𝑥 = 𝑏 with 𝐴 given by: 
 

A =  

We can now use Transformation # 1 to reformulate our problem as a QUBO instance. Adding 
the penalties to the objective function gives 
 

 
 

Taking P = 10 and re-writing this in the QUBO format gives  
 

 
 

with an additive constant of -900 and a Q matrix 
 

Q =  

Solving max 𝑦 = 	𝑥%𝑄𝑥  gives the non-zero values 
 

 
 

for which 𝑦 = 916. Note that the third constraint is loose.  Adjusting for the additive constant, it 
gives an objective function value of 16. Alternatively, we could have simply evaluated the 
original objective function at the solution 𝑥6 = 	𝑥Z = 	𝑥_ = 	1		to get the objective function value 
of 16. 
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Remarks: Any problem in linear constraints and bounded integer variables can be converted 
through a binary expansion into max 𝑦 = 	𝑥%𝑄𝑥 as illustrated here.  In such applications, 
however, the elements of the Q matrix can, depending on the data, get unacceptably large and 
may require suitable scaling to mitigate this problem. 
 
5.4 Quadratic Assignment 

 
The Quadratic Assignment Problem (QAP) is a renowned problem in combinatorial optimization 
with applications in a wide variety of settings.  It is also one of the more challenging models to 
solve. The problem setting is as follows:  We are given n facilities and n locations along with a 
flow matrix (𝑓()) denoting the flow of material between facilities i and j. A distance matrix (𝑑()) 
specifies the distance between sites i and j.  The optimization problem is to find an assignment of 
facilities to locations to minimize the weighted flow across the system.  Cost information can be 
explicitly introduced to yield a cost minimization model, as is common in some applications. 
The decision variables are 𝑥() = 1  if facility i is assigned to location j; otherwise,	𝑥() = 0.  Then 
the classic QAP model can be stated as: 
 

Minimize  

          Subject to                                            

                                                                      

                                                                    

All QAP problems have 𝑛8 variables, which often yields large models in practical settings. 
This model has the general form presented at the beginning of this section and consequently 
Transformation # 1 can be used to convert any QAP problem into a QUBO instance. 
 
Numerical Example: Consider a small example with n = 3 facilities and 3 locations with flow 
and distance matrices respectively given as follows:  
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It is convenient to re-label the variables using only a single subscript as we did previously in the 
graph coloring problem, thus replacing 
 

 by  

Given the flow and distance matrices our QAP model becomes: 
 

 

                  subject to                                 

  

                                                                  

 

 

 

 
Converting the constraints into quadratic penalty terms and adding them to the objective function 
gives the unconstrained quadratic model 
 

 

Choosing a penalty value of P = 200, this becomes the standard QUBO problem 
 

QUBO:   

 with an additive constant of 1200 and the following 9-by-9 Q matrix: 
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Solving QUBO gives 𝑦 = 	−982  at 𝑥6 = 	𝑥_ = 𝑥c = 1 and all other variables = 0.  Adjusting 
for the additive constant, we get the original objective function value of 1200 -982 =218.  
 
Remark:  A QUBO approach to solving QAP problems, as illustrated above, has been 
successfully applied to problems with more than 30 facilities and locations in Wang, et. al. 
(2016).   
 

5.5 Quadratic Knapsack 

 

Knapsack problems, like the other problems presented earlier in this section, play a prominent 
role in the field of combinatorial optimization, having widespread application in such areas as 
project selection and capital budgeting. In such settings, a set of attractive potential projects is 
identified and the goal is to identify a subset of maximum value (or profit) that satisfies the 
budget limitations.  The classic linear knapsack problem applies when the value of a project 
depends only on the individual projects under consideration.  The quadratic version of this 
problem arises when there is an interaction between pairs of projects affecting the value 
obtained. 
 
For the general case with n projects, the Quadratic Knapsack Problem (QKP) is commonly 
modeled as 
 

 
     subject to the budget constraint 

 
Where 𝑥)	 = 1  if project j is chosen:  else,	𝑥)	 = 0.  The parameters 𝑣() , 𝑎) and 𝑏	represent, 
respectively, the value associated with choosing projects i and j, the resource requirement of 
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project j, and the total resource budget.  Generalizations involving multiple knapsack constraints 
are found in a variety of application settings. 
 
Numerical Example: Consider the QKP model with four projects: 
 

 
 

subject to the knapsack constraint: 
 

 
 

We re-cast this into the form of a QUBO model by first converting the constraint into an 
equation and then using the ideas embedded in Transformation # 1.  Introducing a slack variable 
in the form of the binary expansion 1𝑥_ + 	2𝑥d, we get the equality constraint 
 

 
 

which we can convert to penalties to produce our QUBO model as follows.   
 
Including the penalty term in the objective function gives the unconstrained quadratic model: 
 

 
 
Choosing a penalty P = 10, and cleaning up the algebra gives the QUBO model  
 

QUBO:  max𝑦 = 	𝑥%𝑄𝑥 
 

with an additive constant of -2560 and the Q matrix  
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Solving QUBO gives 𝑦 = 2588 at 𝑥 = (1,0,1,1,0,0).  Adjusting for the additive constant, gives 
the value 28 for the original objective function. 
 
Remark:  The QUBO approach to QKP has proven to be successful on problems with several 
hundred variables as shown in Glover, et. al. (2002). 
 
 
Section 6: Connections to Quantum Computing and Machine Learning 
 

Quantum Computing QUBO Developments: -- As noted in Section 1, one of the most significant 
applications of QUBO emerges from its equivalence to the famous Ising problem in physics. In 
common with the earlier demonstration that a remarkable array of NP-hard problems can 
converted into the QUBO form, Lucas (2014) more recently has observed that such problems can 
be converted into the Ising form, including graph and number partitioning, covering and set 
packing, satisfiability, matching, and constrained spanning tree problems, among others. Pakin 
(2017) presents an algorithm for finding the shortest path through a maze by expressing the 
shortest path as the globally optimal value of an Ising Hamiltonian instead of via a traditional 
backtracking mechanism. Ising problems replace x ∈ {0, 1}n  by x ∈ {−1, 1} n and can be put in 
the QUBO form by defining xj' = (xj + 1)/2 and then redefining xj to be xj'.1  Efforts to solve 
Ising problems are often carried out with annealing approaches, motivated by the perspective in 
physics of applying annealing methods to find a lowest energy state.   
   
More effective methods for QUBO problems, and hence for Ising problems, are obtained using 
modern metaheuristics. Among the best metaheuristic methods for QUBO are those based on 
tabu search and path relinking as described in Glover (1996, 1997), Glover and Laguna (1997) 
and adapted to QUBO in Wang et al. (2012, 2013). 
A bonus from this development has been to create a link between QUBO problems and quantum 
computing.2 A quantum computer based on quantum annealing with an integrated physical 
network structure of qubits known as a Chimera graph has incorporated ideas from Wang et al. 
(2012) in its software and has been implemented on the D-Wave System. The ability to obtain a 
quantum speedup effect for this system applied to QUBO problems has been demonstrated in 
Boixo et al. (2014).  
 
Additional advances incorporating methodology from Wang et al. (2012, 2013) are provided in 
the D-Wave open source software system Qbsolv (2017) and in the supplementary QMASM 
system by Pakin (2018). Qbsolv is a hyrid classical/hardware accelerator tool, which takes as 
input a QUBO that may be larger/denser/higher-precision than the accelerator, and solves 

                                                
1 This adds a constant to (1), which is irrelevant for optimization. 
2 Reference to quantum computing would not be complete without mentioning Google’s recent claim to achieving 
‘quantum supremacy.’ This outcome has no bearing on the computational considerations discussed here. See, for 
example, Preskill (2019). 
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subQUBOs on an accelerator and combines the results for full QUBO solution. It has enabled 
widespread experimentation to map optimization problems to the QUBO form for execution on 
classical and D-wave computers. D-Wave has now upgraded this system by drawing on the MIT 
Kerberos system (Kerberos, 2019) which offers many convenience features for users. The 
Quantum Bridge Analytics perspective, as elaborated below, is providing additional gains. 
 
Recent QUBO quantum computing applications, complementing earlier applications on classical 
computing systems, include those for graph partitioning problems in Mniszewski et al. (2016) 
and Ushijima-Mwesigwa et al. (2017); graph clustering (quantum community detection 
problems) in Negre et al. (2018, 2019); traffic-flow optimization in Neukart et al. (2017); vehicle 
routing problems in Feld et al. (2018), Clark et al. (2019) and Ohzeki et al.(2018); maximum 
clique problems in Chapuis et al. (2018); cybersecurity problems in Munch et al. (2018) and 
Reinhardt et al.(2018); predictive health analytics problems in De Oliveira et al. (2018) and 
Sahner et al. (2018); and financial portfolio management problems in Elsokkary et al. (2017) and 
Kalra et al. (2018). In another recent development, QUBO models are being studied using the 
IBM neuromorphic computer at as reported in Alom et al. (2017) and Aimone et al. (2018). Still 
more recently, Aramon, et al. (2019) have investigated and tested the Fujitsu Digital Annealer 
approach, which is also designed to solve fully connected QUBO problems, implemented on 
application-specific CMOS hardware and solved problems of 1,024 variables.  
 
Multiple quantum computational paradigms are emerging as important research topics, and their 
relative merits have been the source of some controversy. One of the most active debates 
concerns the promise of quantum gate systems, also known as quantum circuit systems, versus 
the promise of adiabatic or quantum annealing systems.  Part of this debate has concerned the 
question of whether adiabatic quantum computing incorporates the critical element of quantum 
entanglement. After some period, the debate was finally resolved by Albash et al. (2015) and 
Lanting et al. (2015), demonstrating that this question can be answered in the affirmative.  
Yet another key consideration involves the role of decoherence. Some of the main issues are 
discussed in Amin et al. (2008) and Albash and Lidar (2015). The challenge is for the gate model 
to handle decoherence effectively. Superconducting qubit techniques have very short-lived 
coherence times and the adiabatic approach does not require them, while the gate model does. 
An important discovery by Yu et al. (2018) shows that the adiabatic and gate systems offer 
effectively the same potential for achieving the gains inherent in quantum computing processes, 
with a mathematical demonstration that the quantum circuit algorithm can be transformed into 
the quantum adiabatic algorithm with the exact same time complexity. This has useful 
implications for the relevance of QUBO models that have been implemented in an adiabatic 
quantum annealing setting, disclosing that analogous advances associated with QUBO models 
may ultimately be realized through quantum circuit systems.  
 
Complementing this analysis, Shaydulin et al. (2018) have conducted a first performance 
comparison of these two leading paradigms, showing that quantum local search approach with 
both frameworks can achieve results comparable to state-of-the-art local search using classical 
computing architectures, with a potential for the quantum approaches to outperform the classical 
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systems as hardware evolves. However, the time frame for realizing such potential has been 
estimated by some analysts to lie 10 or more years in the future (Reedy, 2017; Debenedictis, 
2019). 
 
Regardless of which quantum paradigm proves superior (and when this paradigm will become 
competitive with the best classical computing systems), the studies of Alom et al. (2017) and 
Aimone et al. (2018) in neuromorphic computing reinforce the studies of adiabatic and gate 
based models by indicating the growing significance of the QUBO/Ising model across multiple 
frameworks.  
 
However, to set the stage for solving QUBO problems on quantum computers, these problems 
must be embedded (or compiled) onto quantum computing hardware, which in itself is a very 
hard problem. Date et al. (2019) address this issue by proposing an efficient algorithm for 
embedding QUBO problems that runs fast, uses less qubits than previous approaches and gets an 
objective function value close to the global minimum value. In a computational comparison, they 
find that their embedding algorithm outperforms the embedding algorithm of D-Wave, which is 
the current state of the art.  
  
Vyskocil et al. (2019) observe that the transformation in Section 5.3 for handling general 
inequality constraints of the form ∑ 𝑥(^

(@6 	≤ 𝑘 introduces penalties for numerous cross products, 
which poses difficulties for current quantum annealers such as those by D-Wave Systems. The 
authors give a scalable and modular two-level approach for handling this situation that first 
solves a small preliminary mixed integer optimization problem with 16 binary variables and 16 
constraints, and then uses this to create a transformation that increases the number of QUBO 
variables but keeps the number of cross product terms in check, thereby aiding a quantum 
computer implementation. 
 
Nevertheless, other considerations are relevant for evaluating the performance of different 
computational paradigms for solving QUBO problems, among them the use of reduction and 
preprocessing methods for decomposing large scale QUBO problem instances into smaller ones. 
Hahn et al. (2017) and Pelofske et al. (2019) investigate such preprocessing methods that utilize 
upper and lower bound heuristics in conjunction with graph decomposition, vertex and edge 
extraction and persistency analysis. Additional preprocessing methods are introduced in Glover 
et al. (2018) as described subsequently in the context of machine learning. 
 
Quantum Bridge Analytics: Joining Classical and Quantum Computing Paradigms:-- As 
emphasized in the 2019 Consensus Study Report titled Quantum Computing: Progress and 
Prospects, by the National Academies of Sciences, Engineering and Medicine (2019), quantum 
computing will remain in its infancy for some years to come, and in the interim “formulating an 
R&D program with the aim of developing commercial applications for near-term quantum 
computing is critical to the health of the field.” As noted in this report, such a program will rest 
on developing “hybrid classical-quantum techniques,” which is the focus of Quantum Bridge 
Analytics. With the emergence of Quantum Bridge Analytics (QBA), a field devoted to bridging 
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the gap between classical and quantum computational methods and technologies, the creation of 
effective foundations for such hybrid systems is being actively pursued with the development of 
the Alpha-QUBO solver (2019). This work is paving the way for a wide range of additional 
QUBO and QUBO-related applications in commercial and academic research settings. The 
power of the QBA approach has recently been demonstrated in Glover and Kochenberger (2019), 
with computational tests showing that a relative of Alpha-QUBO, called QUBO 2.0, solves 
QUBO problems between 100 and 500 variables up to three orders of magnitude faster than a 
mainstream quantum computing system using Kerberos, and is additionally capable of solving 
much larger problems involving many thousands of variables. 
 
Another blend of classical and quantum computing, known as the Quantum Approximate 
Optimization Algorithm (QAOA), is a hybrid variational algorithm introduced by Farhi et al. 
(2014) that produces approximate solutions for combinatorial optimization problems. The 
QAOA approach has been recently been applied in Zhou et al. (2018) to MaxCut (MC) 
problems, including a variant in process for Max Independent Set (MIS) problems, and is 
claimed by its authors to have the potential to challenge the leading classical algorithms. In 
theory, QAOA methods can be applied to more types of combinatorial optimization problems 
than embraced by the QUBO model, but at present the MC and MIS problems studied by QAOA 
are a very small segment of the QUBO family and no time frame is offered for gaining the ability 
to tackle additional QUBO problem instances. Significantly, the parameters of the QAOA 
framework must be modified to produce different algorithms to appropriately handle different 
problem types. Whether this may limit the universality of this approach in a practical sense 
remains to be seen. 
 
Wang and Abdullah (2018) acknowledge that the acclaim given to QAOA for exhibiting the 
feature called "quantum supremacy" does not imply that QAOA will be able to outperform 
classical algorithms on important combinatorial optimization problems such as Constraint 
Satisfaction Problems, and current implementations of QAOA are subject to a gate fidelity 
limitation, where the potential advantages of larger values of the parameter p in QAOA 
applications are likely to be countered by a decrease in solution accuracy. 
 
QAOA has inspired many researchers to laud its potential virtues, though the practical 
significance of this potential at present is not well established.   Investigations are currently 
underway in Kochenberger et al. (2019) to examine this issue by computational testing on a 
range of QUBO models that fall within the scope of QAOA implementations presently available, 
to determine the promise of QAOA in relation to classical optimization on these models. 
We now examine realms of QUBO models that are actively being investigated apart from issues 
of alternative computational frameworks for solving them efficiently.  
 
Unsupervised Machine Learning with QUBO: -- One of the most salient forms of unsupervised 
machine learning is represented by clustering. The QUBO set partitioning model provides a very 
natural form of clustering and gives this model a useful link to unsupervised machine learning.  
As observed in Ailon et al.(2008) and Aloise, et al.(2013), the CPP (clique partitioning problem) 
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is popular in the area of machine learning as it offers a general model for correlation clustering 
(CC) and the modularity maximization (MM). Pudenz and Lidar (2013) further show how a 
QUBO based quantum computing model can be used in unsupervised machine learning. A 
related application in O’Malley et al. (2018) investigates nonnegative/binary matrix factorization 
with a D-Wave quantum annealer. 
 
An application of QUBO to unsupervised machine learning in Glover et al. (2018) provides an 
approach that can be employed either together with quantum computing or independently. In a 
complementary development, clustering is used to facilitate the solution of QUBO models in 
Samorani et al. (2018), thereby providing a foundation for studying additional uses of clustering 
in this context.  
 
Supervised Machine Learning with QUBO: -- A proposal to use QUBO in supervised machine 
learning is introduced in Schneidman, et al. (2006). From the physics perspective, the authors 
argue that the equivalent Ising model is useful for any representation of neural function, based on 
the supposition that a statistical model for neural activity should be chosen using the principle of 
maximum entropy.  Consequently, this model has a natural role in statistical neural models of 
supervised machine learning. Hamilton et al. (2018) discussed the potential to use advance 
computing such as neuromorphic processing units and quantum annealers in spin-glass networks, 
Boltzmann machines, convolutional neural networks and constraint satisfaction problems.  
 
Machine Learning to Improve QUBO Solution Processes: -- The development of rules and 
strategies to learn the implications of specific model instances has had a long history. Today this 
type of machine learning permeates the field of mixed integer programming to identify 
relationships such as values (or bounds) that can be assigned to variables, or inequalities that can 
constrain feasible spaces more tightly.  Although not traditionally viewed through the lens of 
machine learning, due in part to being classified under the name of pre-processing, these 
approaches are now widely acknowledged to constitute a viable and important part of the 
machine learning domain.  
 
Efforts to apply machine learning to uncover the implications of QUBO problem structures have 
proceeded more slowly than those devoted to identifying such implications in the mixed integer 
programming field. A landmark paper in the QUBO area is the work of Boros et al. (2008), 
which uses roof duality and a max-flow algorithm to provide useful model inferences. More 
recently, sets of logical tests have been developed in Glover et al. (2018) to learn relationships 
among variables in QUBO applications which achieved a 45% reduction in size for about half of 
the problems tested, and in 10 cases succeeded in fixing all the variables, exactly solving these 
problems. The rules also identified implied relationships between pairs of variables that resulted 
in simple logical inequalities to facilitate solving these problems.  
 
Other types of machine learning approaches also merit a closer look in the future for applications 
with QUBO. Among these are the Programming by Optimization approach of Hoos (2012) and 
the Integrative Population Analysis approach of Glover et al. (1998).  
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Section 7: Concluding Remarks 
 
The benefits of re-casting problems into the QUBO framework, to enable a given binary 
optimization problem to be solved by a specialized QUBO solver, strongly commend this 
approach in the remarkable variety of settings where it can be implemented successfully, as 
illustrated in this tutorial. We conclude by highlighting key ideas relevant to QUBO modeling 
and its applications in both classical and quantum computing.  
 

1. As previously noted, the National Academies of Sciences, Engineering and Medicine 
have released a consensus study report on progress and prospects in quantum computing 
(2019) that discloses the relevance of marrying quantum and classical computing, stating 
that “formulating an R&D program with the aim of developing commercial applications 
for near-term quantum computing is critical to the health of the field. Such a program 
would include … identification of algorithms for which hybrid classical-quantum 
techniques using modest-size quantum subsystems can provide significant speedup.” 
Studies devoted to this challenge are currently underway at the Los Alamos National 
Laboratory to investigate the possibilities for achieving such speedup by integrating 
quantum computing initiatives in conjunction with classical computing approaches such 
as those embedded in the Alpha-QUBO system (2019). 
 

2. Logical analysis to identify relationships between variables in the work of Glover et al. 
(2017) can be implemented in the setting of quantum computing to combat the 
difficulties of applying current quantum computing methods to scale effectively for 
solving large problems. Approximation methods based on such analysis can be used for 
decomposing and partitioning large QUBO problems to solve large problems and provide 
strategies relevant to a broad range of quantum computing applications. 
 

3. In both classical and quantum settings, the transformation to QUBO can sometimes be 
aided considerably by first employing a change of variables.  This is particularly useful in 
settings where the original model is an edge-based graph model, as in clique partitioning 
where the standard models can have millions of variables due to the number of edges in 
the graph.  A useful alternative is to introduce node-based variables, by replacing each 
edge variable with the product of two node variables.  Such a change converts a linear 
model into a quadratic model with many fewer variables, since a graph normally has a 
much smaller number of nodes than edges.  The resulting quadratic model, then, can be 
converted to a QUBO model by the methods illustrated earlier. 
 

4. Problems involving higher order polynomials arise in certain applications and can be re-
cast into a QUBO framework by employing a reduction technique following the ideas of 
Rosenberg (1975), Rodriques-Heck (2018) and Verma et al.(2019).  For example, 
consider a problem with a cubic term 𝑥6𝑥8𝑥Y in binary variables. Replace the product 
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𝑥6𝑥8 by a binary variable, 𝑦6 and add a penalty to the objective function of the form 
𝑃(𝑥6𝑥8 −	2𝑥6𝑦6 − 2𝑥8𝑦6 + 3𝑦6). By this process, when the optimization drives the 
penalty term to 0, which happens only when 𝑦6 =𝑥6𝑥8, we have reduced the cubic term to 
an equivalent quadratic term 𝑦6𝑦Y.  This procedure can be used recursively to convert 
higher order polynomials to quadratic models of the QUBO form.   
 

5. The general procedure of Transformation # 1 has similarities to the Lagrange Multiplier 
approach of classical optimization. The key difference is that our scalar penalties (P) are 
not “dual” variables to be determined by the optimization.  Rather, they are parameters 
set a priori to encourage the search process to avoid candidate solutions that are 
infeasible. Moreover, the Lagrange Multiplier approach is not assured to yield a solution 
that satisfies the problem constraints except in the special case of convex optimization, in 
contrast to the situation with the QUBO model. To determine good values for Lagrange 
multipliers (which in general only yield a lower bound instead of an optimum value for 
the problem objective) recourse must be made to an additional type of optimization called 
subgradient optimization, which QUBO models do not depend on. 
 

6. Solving QUBO models:  Continuing progress in the design and implementation of 
methods for solving QUBO models will have an impact across a wide range of practical 
applications of optimization and machine learning. The bibliography that follows gives 
references to some of the more prominent methods for solving these models. 
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