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TBA and tree expansion 3

Z(L,R) = Tr
⇥
e�RH

⇤
(1)

where the trace is taken in the full Hilbert space. Assuming that R ⌧ L, our goal is to evaluate the leading
term of the free energy

F (R) = lim
L!1

1

L
logZL(R). (2)

We restrict ourselves to the simplest case of a theory with diagonal S-matrix S(u, v) and one single type
of quasiparticle excitation, but the argument is general. Here u is the rapidity variable, which parametrises
the momentum p = p(u) of a quasiparticle in a convenient way. For a theory with diagonal scattering, the
quantisation condition on a cylinder with circumference R is given by the Bethe equations which read, in
the n-particle sector,

�j = 2⇡nj with nj integer, j = 1, . . . ,M . (3)

Here �j is the total scattering phase for the j-th particle, or magnon,

�j(u1, . . . , uM ) ⌘ pjL+
1

i

MX

k( 6=j)

logS(uj , uk). (4)

The states in finite volume are labeled by discrete quantum numbers (3) and the identity operator in the
M -particle sector of the Hilbert space can be decomposed as a sum of products of normalised states

In =
X

n1<...<nM

|n1, . . . , nM ihn1, . . . , nn|. (5)

If we denote by EM (n1, . . . , nM ) the eigenvalue of the Hamiltonian for the state |I1, . . . , IN i, the partition
function is given by the series

Z(L,R) =
1X

M=0

X

n1<n2<···<nM

e�RE(n1,...,nM ). (6)

Our goal is to replace in the thermodynamical limit L ! 1 the discrete sums by multiple integrals. For
that we have first to get rid of the ordering of the quantum numbers. We can insert a factor which kills
the configurations with coinciding quantum numbers, after which the sum can be taken over non-restricted
integers,

Z(L,R) =
1X

M=0

1

M !

X

n1,...,nM

Y

j<k

(1� �jk) e
�RE(n1,...,nM ). (7)

Expanding the product of Kronecker symbols, one obtains the cumulant expansion

Z(L,R) = 1 +
1

2!

X

n1,n2

e�RE(n1,n2) �
1

2

X

n

e�RE(n,n) + . . . (8)

which can be exponentiated. The general term consists of a sum of m groups of identical mode numbers
containing r1, . . . , rm elements with ri = 1, 2, . . . . and apart of the combinatorial factor, the weight will
be

e�RE(n1,r1; ... ;nm,rm) (9)

where by E(n1, r1; . . . ; nm, rm) we understand the energy corresponding to the solution of the Bethe
equations (4) with m groups of coinciding mode numbers and rapidities, r1 + · · ·+ rm = M . The energy
of a Bethe state is the sum of the energies of the quasi-particles,
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Thermodynamic Bethe Ansatz 
(TBA)  [Yang&Yang, 1969]  

— thermodynamics of 1-dim. 
integrable systems at finite 
temperature. 


Since [Al. Zamolodchikov (1990) 
TBA became the main tool 
to compute finite size 
effects in 1+1 dim. 
relativistic field theories


More recently TBA related methods are used in 
computation of correlation functions, e.g. 
hexagonalization method in N=4 SYM.


Need to learn how to evaluate efficiently the sum over 
the virtual particles in different problems. 


Is it possible to replace the original TBA arguments 
by a more refined QFT/statistical formulation? 

Cut the cylinder and glue it 
back by inserting a complete 
set of virtual states (wrapping 
particles) 
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In this talk we construct from scratch an effective QFT 
generating the exact cluster expansion for TBA

— For simplicity we take an integrable theory with one single neutral particle.

— In view of applications to N=4 SYM the scattering matrix is not supposed 

    to be of difference type and no relativistic symmetry is assumed, only a 

    mirror transformation.

Woynarovich, 2004: gaussian fluctuations around 
the saddle point of the Y-Y potential.  


Pozsgay, 2010: showed that there is another O(1) 
contribution from the measure. 


Kato&Wadati, 2004: exact cluster expansion.

I.K., Serban, Vu 2018  graph expansion for the free 
energy with periodic and open b.c.  

Balog’94, Saleur 1999

The question was posed decades ago and the answer is in principle yes

although the effective QFT has not been yet formulated
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E → ip̃, p → iẼ

— no Lorentz invariance assumed, only a mirror 
transformation exchanging space and time 

physical particles

m
irr

or
 p

ar
tic

le
s

space

tim
e

Physical 
theory

Mirror 
theory

= =
Euclidean 1+1 dimensional integrable field 
theory with factorized scattering

p = p(u), E = E(u)Rapidity variable:

S(u, v) S(v, u) = 1

S(u, u) = − 1

Two-particle S-matrix: u v
=

S(u, v)S(u, v2γ) = 1

(θ ≡ πu)

==

unitarity:

crossing
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Mirror transformation as analytical continuation

Example 1: Lorentz-invariant 
massive integrable QFT

γ uγ

u

physical particles

m
irr

or
 p

ar
tic

le
s

space

tim
e

For an observer living in the physical space, 

a mirror particle looks as physical particle 
with complex rapidity

p(u) → p̃(u) = − iE(uγ) γ : u → uγ

Physical theory → Mirror theory
S(u, v) → S̃(u, v) ≡ S(uγ, vγ)

E(u) → Ẽ(u) = − ip(uγ)

E = m cosh(πu)
E2 − p2 = m2

uγ ≡ u + i/2

u−γ ≡ u − i/2

Example 2: N=4 SYM

u−γ

uγu
2g + i /2

2g − i /2−2g − i /2

−2g + i /2

up = m sinh(πu)

Phys=Mirror
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EFFECTIVE QFT FOR PERIODIC BOUNDARY 
CONDITIONS

A

B

Degrees of freedom of the effective QFT: 

particles winding around the A and B cycles

Physical theory defined on the B-cycle of length R, 

Mirror theory defined on the A-cycle of length L



Wigner Research Center for Physics, December 3, 2019 !7

physical particles

m
irr

or
 p

ar
tic

le
s

physical space

= mirror time

m
irr

or
 s

pa
ce



=p

hy
si

ca
l t

im
e

R

L

The Hilbert space of the effective QFT is spanned on the elementary 
excitations on a torus with asymptotically large space and time circles.

Two types of them: time-wrapping particles in the physical theory and and 
space-wrapping particles in the mirror theory

Operators creating wrapping particles: 

A(u) = time-wrapping operator

B(u) = space-wrapping operator

Particles wrapping the same cycle do not scatter 
but particles wrapping different cycles do: 

1. Wrapping operators

=
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A(u)

A(uγ)

B(u)

B(u−γ)

creates a mirror particle wrapping the B-cycle

creates physical particle wrapping the A-cycle


creates a mirror particle wrapping the A-cycle

creates a physical particle wrapping the B-cycle
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B(v)A(u) = S(vγ, u) A(u)B(v), [B(u), B(v)] = [A(u), A(v)] = 0

⟨L |A(u) = e−LE(u) ⟨L | , B(u) |R⟩ = e−RẼ(u) |R⟩

Fock-space realisation:

⟨L |R⟩ = 1

⟨
M

∏
j=1

B(vj)
N

∏
k=1

A(wk)⟩L,R ≡ ⟨L |
M

∏
j=1

B(vj)
N

∏
k=1

A(wk) |R⟩

Fock-space expectation value:
⟨𝒪⟩L,R = ⟨L |·:𝒪 ·:|R⟩
For any operator define

·: ·:where       is the anti-normal product:

 all B’s are on the left of all A’s

2. Algebra of the wrapping operators

⟨
M

∏
j=1

B(vj)
N

∏
k=1

A(wk)⟩ =
M

∏
j=1

N

∏
k=1

S(vγ
j , wk)

M

∏
j=1

e−RẼ(vj)
N

∏
k=1

e−LE(wk)

Expectation value of N time-wrapping 
and M space-wrapping operators: w2

u1 u2 uM

w1

. . .

wN
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`

=

3. Operator form of Bethe-Yang equations 

Modular invariance gives the on-shell conditions (Bethe-Yang equations): 

For N physical and M mirror particles: M+N equations for M+N rapidities

w2

u1 u2 uM

w1

. . .

wN

A,B A, B+A
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3. Operator form of Bethe-Yang equations 

1 + e−iLp̃(uj)
M

∏
k=1

S̃(uk, uj) = 0, j = 1,…, M

B-Y equations in the mirror channel

u1 u2 uj uM

uj uj

⟨(1 + B(w−γ
k ))

M

∏
j=1

B(uj)
N

∏
k=1

A(wk)⟩
L,R

= 0, k = 1,...,N

Similarly, in the physical channel

wk
w−γ

k

.

⟨
M

∏
j=1

B(uj)
N

∏
k=1

A(wk) (1 + A(uγ
j ))⟩

L,R

= 0, j = 1,...,M

Operator form:

u1 u2 uM

uγ
j

uj

.
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4. Free-field realisation    

B(u) = e−φ(u), A(uγ) = e−iφ̄(u)Wrapping operators as vertex operators:

[φ(u), φ̄(v)] = i log S̃(u, v)

⟨L | φ̄(u) = φ̄∘(u)⟨L | , φ(u) |R⟩ = φ∘ |R⟩

[φ̄(u), φ̄(v)] = [φ(u), φ(v)] = 0

φ∘(u) = RẼ(u), φ̄∘(u) = Lp̃(u), ⟨L |R⟩ = 1

Canonical commutation relations:

Fock space:

⟨𝒪⟩L,R = ⟨L |·:𝒪 ·:|R⟩Expectation value:

⟨φ̄(u) φ(v)⟩ = i log S̃(u, v) + φ̄(u)∘ φ∘(v)

⟨e−iφ̄(u) e−φ(v)⟩ = log S̃(v, u) e−iφ̄∘(u)−φ∘(v)

- operators for the phases along the B, A cycles in mirror kinemathicsφ(u), φ̄(u)
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X

n1,n2
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1

2

X

n
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which can be exponentiated. The general term consists of a sum of m groups of identical mode numbers
containing r1, . . . , rm elements with ri = 1, 2, . . . . and apart of the combinatorial factor, the weight will
be

e�RE(n1,r1; ... ;nm,rm) (9)

where by E(n1, r1; . . . ; nm, rm) we understand the energy corresponding to the solution of the Bethe
equations (4) with m groups of coinciding mode numbers and rapidities, r1 + · · ·+ rm = M . The energy
of a Bethe state is the sum of the energies of the quasi-particles,
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ph
ys

ic
al

mirror

𝒵(L, R) = Tr[e−R H̃] = ∑
ψ

⟨ψ |e−R H̃ |ψ⟩
⟨ψ |ψ⟩

=
∞

∑
M=0

∑
n1<n2<...<nM

e−R(Ẽ(u1)+...+Ẽ(uM))

−Lp̃(uj) + i
M

∑
k=1

log S̃(uk, uj) = 2πnj, j = 1,…, M

5. Partition function at finite volume R in terms of EQFT    

Let us evaluate exactly the sum over particles (without assuming that the density is finite)    

The sum goes over the Bethe quantum numbers which 
appear in the logarithmic form of the Bethe-Yang equations: 

Our aim is to sum over the solutions of the Bethe-Yang equations 
(with no approximation) without solving them.
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→
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∑
m=0

1
m! ∑

r1,...,rm≥1
∑

n1,...,nm

m

∏
j=1

(−1)rj−1

rj
e−rjRẼ(uj)𝒵(L, R) =

∞

∑
M=0

∑
n1<n2<…<nM

M

∏
j=1

e−RẼ(uj)

. 1. Relax the constraint                                 by introducing multi-wrapping 
particles

n1 < n2 < … < nM
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Z(L,R) = Tr
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e�RH

⇤
(1)

where the trace is taken in the full Hilbert space. Assuming that R ⌧ L, our goal is to evaluate the leading
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1
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logZL(R). (2)

We restrict ourselves to the simplest case of a theory with diagonal S-matrix S(u, v) and one single type
of quasiparticle excitation, but the argument is general. Here u is the rapidity variable, which parametrises
the momentum p = p(u) of a quasiparticle in a convenient way. For a theory with diagonal scattering, the
quantisation condition on a cylinder with circumference R is given by the Bethe equations which read, in
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Here �j is the total scattering phase for the j-th particle, or magnon,

�j(u1, . . . , uM ) ⌘ pjL+
1

i

MX

k( 6=j)

logS(uj , uk). (4)

The states in finite volume are labeled by discrete quantum numbers (3) and the identity operator in the
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function is given by the series
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X
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integers,

Z(L,R) =
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M !

X
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Y
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(1� �jk) e
�RE(n1,...,nM ). (7)
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X
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2

X

n

e�RE(n,n) + . . . (8)
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containing r1, . . . , rm elements with ri = 1, 2, . . . . and apart of the combinatorial factor, the weight will
be
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where by E(n1, r1; . . . ; nm, rm) we understand the energy corresponding to the solution of the Bethe
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of a Bethe state is the sum of the energies of the quasi-particles,
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(−1)r−1

r
e−rRẼ(u)

scatters (r-1) 
times with itself, 
S(u,u)=-1

r-wrapping particle: 

cyclic symmetry 
of order r

wraps length r R

ϕ̃l ≡ ⟨φ̄(vl)
m

∏
j=1

e−rjφ(vj)⟩ = p̃(ul)L +
1
i

m

∑
k(≠l)

rk log S̃(ul, uk) + π(rl − 1) = 2πnl
Quantization 

condition:
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∑
r1,...,rm

∑
n1,...,nm

M

∏
j=1

e−rjRẼ(uj) = ∮
ℝ

⋯∮
ℝ

m

∏
j=1

d log(1 + e−iϕ̃(uj))
2πi ∑

r1,...,rm

m

∏
j=1

(−1)rj−1

rj
e−RrjẼ(uj)

. 2. Express the discrete sum over Bethe and wrapping numbers as a 
contour integral around the real axis

m

∏
j=1

duj

2πi
G̃(u1, . . . , un; r1, . . . , rm)

1 + e−iϕ̃(uj)

 Jacobian 
� 


“Gaudin 
determinant”

G̃ = det[∂ϕ̃j /∂uk]

3. Represent the contour integral as a Fock expectation value. For the 
we need an operator realization of the Gaudin determinant - the only 
non-trivial part of this construction

.

ϕ̃l ≡ ⟨φ̄(vl)
m

∏
j=1

e−rjφ(vj)⟩ = p̃(ul)L +
1
i

m

∑
k(≠l)

rk log S̃(ul, uk) + π(rl − 1) = 2πnl, l = 1,...,m
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Operator realization of the Gaudin determinant

Introduce a pair of fermionic “ghost” fields �  with commutation relationsψ̄(u), ψ(u)

and action on the Fock vacua ⟨L | ψ̄(u) = 0, ψ(u) |R⟩ = 0

det [
∂ϕ̃j

∂uk ] =
m

∏
j=1

e−R rjẼ(uj) = ⟨
m

∏
j=1

[φ̄′�(uj) − rj ψ̄(uj) ψ′�(uj)] e−rjφ(uj)⟩
L,R

Then

Ω = exp∮ℝ

du
2πi (−iφ̄′�(u)log(1 + e−φ(u)) +

i ψ̄(u)ψ′ �(u)
1 + eφ(u) ) 1

1 + eiφ̄(u)

𝒵(L, R) = ⟨Ω⟩L,R

Now we can perform the sum over particle and wrapping numbers:

Ω — operator creating the physical vacuum (finite R) out of 
the bare vacuum (asymptotically large R) 
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. 4. Continuum spectrum approximation
1

1 + eiφ̄(u)
→ 0

1
1 + eiφ̄(u)

→ 1

u
The expectation value of � is 
huge. Up to exponentially small in L 
terms

φ̄(u) ∼ L

Ω = exp∮ℝ

du
2πi (−iφ̄′�(u)log(1 + e−φ(u)) +

i ψ̄(u)ψ′�(u)
1 + eφ(u) )

𝒵(L, R) = ⟨Ω⟩L,R
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6. Feynman graphs = exact cluster expansion

φ̄′� log(1 + e−φ) =
∞

∑
n=1

(−1)n−1

n
φ̄′� φnVertices:

Propagators: −⟨φ̄′�q(u)φq(v)⟩ = ⟨ψ′�(u)ψ̄(v)⟩ = K̃(u, v) K̃(u, v) =
1
i

∂u log S̃(u, v)

u1 u2

n

(u, r)

n

(u, r)

n

(u, r) u1 u2

Feynman rules 

bosonic loops fermionic loopstrees

The bosonic loops 
and the fermionic 
loops cancel and 
the free energy is 
given by the sum 
over tree graphs. 

I.K., Didina Serban, D. L. Vu, 
arXiv[hep-th]1805.02591, 
1809.05705, 1906.01909

φ(u) = φ∘(u) + φq(u), φ̄(u) = φ̄∘(u) + φ̄q(u)
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Wrapping particles 
weakly interacting after 
being put in a large box 

Non-interacting clusters of 
wrapping particles: behave as free 
fermions with renormalized energy

The meaning of the tree diagrams in the cluster expansion: 

TBA and tree expansion 3

Z(L,R) = Tr
⇥
e�RH

⇤
(1)

where the trace is taken in the full Hilbert space. Assuming that R ⌧ L, our goal is to evaluate the leading
term of the free energy

F (R) = lim
L!1

1

L
logZL(R). (2)

We restrict ourselves to the simplest case of a theory with diagonal S-matrix S(u, v) and one single type
of quasiparticle excitation, but the argument is general. Here u is the rapidity variable, which parametrises
the momentum p = p(u) of a quasiparticle in a convenient way. For a theory with diagonal scattering, the
quantisation condition on a cylinder with circumference R is given by the Bethe equations which read, in
the n-particle sector,

�j = 2⇡nj with nj integer, j = 1, . . . ,M . (3)

Here �j is the total scattering phase for the j-th particle, or magnon,

�j(u1, . . . , uM ) ⌘ pjL+
1

i

MX

k( 6=j)

logS(uj , uk). (4)

The states in finite volume are labeled by discrete quantum numbers (3) and the identity operator in the
M -particle sector of the Hilbert space can be decomposed as a sum of products of normalised states

In =
X

n1<...<nM

|n1, . . . , nM ihn1, . . . , nn|. (5)

If we denote by EM (n1, . . . , nM ) the eigenvalue of the Hamiltonian for the state |I1, . . . , IN i, the partition
function is given by the series

Z(L,R) =
1X

M=0

X

n1<n2<···<nM

e�RE(n1,...,nM ). (6)

Our goal is to replace in the thermodynamical limit L ! 1 the discrete sums by multiple integrals. For
that we have first to get rid of the ordering of the quantum numbers. We can insert a factor which kills
the configurations with coinciding quantum numbers, after which the sum can be taken over non-restricted
integers,

Z(L,R) =
1X

M=0

1

M !

X

n1,...,nM

Y

j<k

(1� �jk) e
�RE(n1,...,nM ). (7)

Expanding the product of Kronecker symbols, one obtains the cumulant expansion

Z(L,R) = 1 +
1

2!

X

n1,n2

e�RE(n1,n2) �
1

2

X

n

e�RE(n,n) + . . . (8)

which can be exponentiated. The general term consists of a sum of m groups of identical mode numbers
containing r1, . . . , rm elements with ri = 1, 2, . . . . and apart of the combinatorial factor, the weight will
be

e�RE(n1,r1; ... ;nm,rm) (9)

where by E(n1, r1; . . . ; nm, rm) we understand the energy corresponding to the solution of the Bethe
equations (4) with m groups of coinciding mode numbers and rapidities, r1 + · · ·+ rm = M . The energy
of a Bethe state is the sum of the energies of the quasi-particles,
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the momentum p = p(u) of a quasiparticle in a convenient way. For a theory with diagonal scattering, the
quantisation condition on a cylinder with circumference R is given by the Bethe equations which read, in
the n-particle sector,

�j = 2⇡nj with nj integer, j = 1, . . . ,M . (3)

Here �j is the total scattering phase for the j-th particle, or magnon,

�j(u1, . . . , uM ) ⌘ pjL+
1

i

MX

k( 6=j)

logS(uj , uk). (4)

The states in finite volume are labeled by discrete quantum numbers (3) and the identity operator in the
M -particle sector of the Hilbert space can be decomposed as a sum of products of normalised states

In =
X

n1<...<nM

|n1, . . . , nM ihn1, . . . , nn|. (5)

If we denote by EM (n1, . . . , nM ) the eigenvalue of the Hamiltonian for the state |I1, . . . , IN i, the partition
function is given by the series

Z(L,R) =
1X

M=0

X

n1<n2<···<nM

e�RE(n1,...,nM ). (6)

Our goal is to replace in the thermodynamical limit L ! 1 the discrete sums by multiple integrals. For
that we have first to get rid of the ordering of the quantum numbers. We can insert a factor which kills
the configurations with coinciding quantum numbers, after which the sum can be taken over non-restricted
integers,

Z(L,R) =
1X

M=0

1

M !

X

n1,...,nM

Y

j<k

(1� �jk) e
�RE(n1,...,nM ). (7)

Expanding the product of Kronecker symbols, one obtains the cumulant expansion

Z(L,R) = 1 +
1

2!

X

n1,n2

e�RE(n1,n2) �
1

2

X

n

e�RE(n,n) + . . . (8)

which can be exponentiated. The general term consists of a sum of m groups of identical mode numbers
containing r1, . . . , rm elements with ri = 1, 2, . . . . and apart of the combinatorial factor, the weight will
be

e�RE(n1,r1; ... ;nm,rm) (9)

where by E(n1, r1; . . . ; nm, rm) we understand the energy corresponding to the solution of the Bethe
equations (4) with m groups of coinciding mode numbers and rapidities, r1 + · · ·+ rm = M . The energy
of a Bethe state is the sum of the energies of the quasi-particles,
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7. Path integral and localisation

φ, φ̄

𝒵(L, R) = ∫ 𝒟[fields] e−𝒜[fields]

−𝒜[fields] = ∫
du
2π (log(1 + e−φ) ∂φ̄ −

ψ̄ ∂ψ
1 + eφ

+ (φ̄ − φ̄∘)ρ+(φ − φ∘)ρ̄ + ϑ̄ψ + ψ̄ϑ)
−∫

du
2π

dv
2π

log S̃(u, v)(ρ̄(u)ρ(v) + ϑ̄(v)ϑ(u))

φ∘(u) = RẼ(u), φ̄∘(u) = Lp̃(u)

ρ, ρ̄ θ, θ̄Impose the correlators by introducing a pair of auxiliary fields
ρ, ρ̄ ϑ, ϑ̄ψ̄, ψ

commutative grassmanian

the dependence on R and L through the classical fields:

Remark: The bosonic part of the path integral was obtained using 
different arguments by Jiang, Komatsu and Veskovi [ARXIV:1906.07733] 
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Localization

 Q-exact localisation term

𝒜 = 𝒜∘ + Q(u) ⋅ ℬ
ℬ = Q̄𝒜

𝒵 → 𝒵t = ∫ e−𝒜t 𝒜 → 𝒜t = 𝒜∘ + tQℬ, 𝒜∘ ≡ − L∫
du
2π

p′�(u)ρ(u) .

∂𝒵t

∂t
= ∫ e−𝒜∘−tQℬ(−Qℬ) = ∫ Q (e−𝒜∘−tQℬℬ) = 0

t → ∞ : 𝒵 = e−𝒜∘

Qℬ=0

Take the limit of 
infinite perturbation:

Q = ∫ (ψ̄
δ

δφ
+ φ̄

δ
δψ

+ρ̄
δ

δϑ
+ϑ̄

δ
δρ

), Q̄ = ∫ (ψ
δ

δφ̄
+ φ

δ
δψ̄

+ρ
δ

δϑ̄
+ϑ

δ
δρ̄

)

Q2 = Q̄2 = 0, Q̄Q = QQ̄ = 2

𝒜∘ = − L∫
dp̃(u)

2π
ρ(u)

By standard localisation argument integral  localises to the critical point:

Fermionic symmetry:
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φ(u) = RẼ(u) − i∫
dv
2π

log S̃(u, v) ρ(v)

ρ(u) = ∂u log(1 + e−φ(u))

As a consequence of localisation : the theory is one-loop exact and the 
gaussian fluctuations of the bosons and the fermions cancel => no quantum 
corrections to the critical action at all

The critical point:                    

ϵ(u) = RẼ(u) − ∫ K̃(v, u) log(1 + e−ϵ(v))

𝒵(L, R) = exp (L∫
dp̃(u)

2π
log [1 + e−ϵ(u)])

ϵ(u) = φcrit(u) - pseudo energy                      

equation for the 

critical point identical to 
the TBA integral equation:

The partition function:
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8. Excited states in the physical channel

The correct prescription 
imposes the on-shell condition 
as a contour integral: (1)+(2)

⟨ (1 + B(w−γ
j )

N

∏
k=1

A(wk) Ω⟩ = 0, j = 1,2,...,N

𝒵(L, R, w) = ⟨
N

∏
k=1

A(wk) Ω⟩
L,R

, A(wk) = e−iφ̄(w−γ)
k(1)

(2)

ph
ys

ic
al

TBA and tree expansion 3

Z(L,R) = Tr
⇥
e�RH

⇤
(1)

where the trace is taken in the full Hilbert space. Assuming that R ⌧ L, our goal is to evaluate the leading
term of the free energy

F (R) = lim
L!1

1

L
logZL(R). (2)

We restrict ourselves to the simplest case of a theory with diagonal S-matrix S(u, v) and one single type
of quasiparticle excitation, but the argument is general. Here u is the rapidity variable, which parametrises
the momentum p = p(u) of a quasiparticle in a convenient way. For a theory with diagonal scattering, the
quantisation condition on a cylinder with circumference R is given by the Bethe equations which read, in
the n-particle sector,

�j = 2⇡nj with nj integer, j = 1, . . . ,M . (3)

Here �j is the total scattering phase for the j-th particle, or magnon,

�j(u1, . . . , uM ) ⌘ pjL+
1

i

MX

k( 6=j)

logS(uj , uk). (4)

The states in finite volume are labeled by discrete quantum numbers (3) and the identity operator in the
M -particle sector of the Hilbert space can be decomposed as a sum of products of normalised states
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function is given by the series

Z(L,R) =
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X
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e�RE(n1,...,nM ). (6)

Our goal is to replace in the thermodynamical limit L ! 1 the discrete sums by multiple integrals. For
that we have first to get rid of the ordering of the quantum numbers. We can insert a factor which kills
the configurations with coinciding quantum numbers, after which the sum can be taken over non-restricted
integers,

Z(L,R) =
1X
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1

M !
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n1,...,nM
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j<k
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�RE(n1,...,nM ). (7)

Expanding the product of Kronecker symbols, one obtains the cumulant expansion

Z(L,R) = 1 +
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e�RE(n1,n2) �
1

2
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n

e�RE(n,n) + . . . (8)

which can be exponentiated. The general term consists of a sum of m groups of identical mode numbers
containing r1, . . . , rm elements with ri = 1, 2, . . . . and apart of the combinatorial factor, the weight will
be

e�RE(n1,r1; ... ;nm,rm) (9)

where by E(n1, r1; . . . ; nm, rm) we understand the energy corresponding to the solution of the Bethe
equations (4) with m groups of coinciding mode numbers and rapidities, r1 + · · ·+ rm = M . The energy
of a Bethe state is the sum of the energies of the quasi-particles,
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mirrorw = {w1, . . . , wN}

Naive prescription for the artition 
function for an excited state with 
rapidities

Relation to 
Dorey-Tateo:

N

∏
j=1

A(wj) → exp[ ∮
w−γ

du
2πi

(−iφ̄(u))
φ′�(u) − ψ̄(u) ψ′�(u)

1 + eφ(u) ]

Ωw = exp∮ℝ∪w−γ

du
2πi (−iφ̄′�(u)log(1 + e−φ(u)) +

i ψ̄(u)ψ′�(u)
1 + eφ(u) )

𝒵(L, R, w) = ⟨Ωw⟩L,R
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𝔻 ≡ ei∂u /2K ( u ) = K 0 ( u + i a / 2 ) + K 0 ( u − i a / 2 ) = ( 𝔻 a + 𝔻 − a ) K 0 K 0 ( u , v ) =
π

cosh π ( u − v )

K → 𝕂 =
𝔻 a + 𝔻 − a

𝔻 + 𝔻 − 1 K ( u , v ) =
1
i

∂ u log S ( u , v )

𝒜 = ∫ d2x [ 1
4π

(∂μϕ)2 +
2μ2

sin πb2
cosh(bϕ)]

p(u) = m sinh πu, E(u) = m cosh πu

One particle, no bound states;  
relativistic theory: mirror=physical

ν = 1 +
1
b2

, a = 1 −
2
ν

(0 < b ≤ 1)

log S(u) = (𝔻a + 𝔻−a)log S0(u)

𝔻 = exp ( i
2

∂
∂u )

(𝔻 + 𝔻−1)K0(u) = 2πδ(u)

S0(u) = tanh
π(u − i/2)

2
K0(u, v) =

1
i

∂u log S0(u, v) - “universal kernel”

example: sinh-Gordon model

𝒜[fields] = ∫
du
2π ( φ̄ φ′�− ψ̄ ψ′�

1 + eφ
+ (φ̄ − φ̄∘)ρ+(φ − φ∘)ρ̄ + θ̄ψ + ψ̄θ)

+i∫
du
2π

dv
2π (ρ̄(u)ρ(v) + θ(u)θ̄(v))(𝔻a + 𝔻−a)log S0(u, v)
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φ → φ + R E ( u )

φ̄ → Lp(u) + (𝔻 + 𝔻−1)φ̄ ψ̄ → (𝔻 + 𝔻−1)ψ̄

𝒜 = ∫
du
2π [φ(𝔻 + 𝔻−1)∂φ̄ −

(𝔻a + 𝔻−a)∂φ̄
1 + e−φ ]

+∫
du
2π [ψ(𝔻 + 𝔻−1)∂̄ψ −

ψ̄(𝔻a + 𝔻−a)∂ψ
1 + eφ ]

The action can be cast into a quasi-local form by a field redefinition

[𝔻 + 𝔻−1] φ = − (𝔻a + 𝔻−a)log(1 + e−φ)Critical point: 

“Discrete Liouville equation”

[Zamolodchikov, 
Lukyanov]

Q𝔻+𝔻−1 = 1 + Q𝔻a+𝔻−a

φ = (𝔻a + 𝔻−a)log QBaxter Q-function:

Q(u + i /2)Q(u − i /2) − Q (u + ia /2) Q (u − ia /2) = 1=>

T(u) =
(𝔻1−a + 𝔻a−1)Q

Q
, T̃(u) =

(𝔻1+a + 𝔻−1−a)Q
Q

(𝔻a − 𝔻−1) T = 0
(𝔻a − 𝔻)T̃ = 0
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Generalizations?

Path integral formulation of the Thermodynamic Bethe Ansatz 
The theory is one-loop exact. Explains why there are only 
exponential corrections to the free energy
Works also for scattering matrices not of difference type, as in AdS/CFT 

— EQFT be generalised easily to


1) open boundary conditions


2)  the case of  diagonal scattering theories as ADE


3) the case of non-diagonal scattering (nested Bethe Ansatz) and bound   
states assuming the string hypothesis. 

       Do we really need this assumption? - not clear at the moment

— Hopefully can be adapted to other 
geometries with application to AdS/CFT 

Summary



Wigner Research Center for Physics, December 3, 2019 !27

Thank you!


