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Status of particle physics:  
energy frontier
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LEP, LHC: SM describes final states of particle 
collisions precisely



SM@LHC: theory vs. 36 measurements at CMS
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SM DESCRIBES HIGH ENERGY MEASUREMENTS
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LEP, LHC: SM describes final states of particle 
collisions precisely 

SM is unstable



SM is unstable
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Figure 1: Left: SM RG evolution of the gauge couplings g1 =
p

5/3g0, g2 = g, g3 = gs, of the
top and bottom Yukawa couplings (yt, yb), and of the Higgs quartic coupling �. All couplings are
defined in the MS scheme. The thickness indicates the ±1� uncertainty. Right: RG evolution of
� varying Mt, Mh and ↵s by ±3�.

the Yukawa sector and can be considered the first complete NNLO evaluation of ��(µ).

We stress that both these two-loop terms are needed to match the sizable two-loop scale

dependence of � around the weak scale, caused by the �32y4t g
2
s + 30y6t terms in its beta

function. As a result of this improved determination of ��(µ), we are able to obtain a

significant reduction of the theoretical error on Mh compared to previous works.

Putting all the NNLO ingredients together, we estimate an overall theory error on Mh of

±1.0GeV (see section 3). Our final results for the condition of absolute stability up to the

Planck scale is

Mh [GeV] > 129.4 + 1.4

✓

Mt [GeV]� 173.1

0.7

◆

� 0.5

✓

↵s(MZ)� 0.1184

0.0007

◆

± 1.0th . (2)

Combining in quadrature the theoretical uncertainty with the experimental errors on Mt and

↵s we get

Mh > 129.4± 1.8 GeV. (3)

From this result we conclude that vacuum stability of the SM up to the Planck scale is

excluded at 2� (98% C.L. one sided) for Mh < 126GeV.

Although the central values of Higgs and top masses do not favor a scenario with a

vanishing Higgs self coupling at the Planck scale (MPl) — a possibility originally proposed
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Figure 5: Regions of absolute stability, meta-stability and instability of the SM vacuum in the Mt–
Mh plane (upper left) and in the �–yt plane, in terms of parameter renormalized at the Planck
scale (upper right). Bottom: Zoom in the region of the preferred experimental range of Mh and
Mt (the gray areas denote the allowed region at 1, 2, and 3�). The three boundary lines correspond
to ↵s(MZ) = 0.1184 ± 0.0007, and the grading of the colors indicates the size of the theoretical
error. The dotted contour-lines show the instability scale ⇤ in GeV assuming ↵s(MZ) = 0.1184.

determined at hadron colliders su↵ers from O(⇤QCD) non-perturbative uncertainties [41]. A

possibility to overcome this problem and, at the same time, to improve the experimental

error on Mt, would be a direct determination of the MS top-quark running mass from ex-

periments, for instance from the tt̄ cross-section at a future e+e� collider operating above

the tt̄ threshold. In this respect, such a collider could become crucial for establishing the

structure of the vacuum and the ultimate fate of our universe.

As far as the RG equations are concerned, the error of ±0.2 GeV is a conservative

estimate, based on the parametric size of the missing terms. The smallness of this error,

compared to the uncertainty due to threshold corrections, can be understood by the smallness

of all the couplings at high scales: four-loop terms in the RG equations do not compete with

finite tree-loop corrections close to the electroweak scale, where the strong and the top-quark

Yukawa coupling are large.

The LHC will be able to measure the Higgs mass with an accuracy of about 100–200

MeV, which is far better than the theoretical error with which we are able to determine the

condition of absolute stability.
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Status of particle physics:  
energy frontier

8

LEP, LHC: SM describes final states of particle collisions 
precisely 

SM is unstable 

No proven sign of new physics beyond SM at colliders*  

*There are some indications below discovery significance (such as lepton 
flavor non-universality in meson decays)



Status of particle physics:  
cosmic and intensity frontiers
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Universe at large scale described precisely by 
cosmological SM: ΛCDM (Ωm =0.3) 

Neutrino flavours oscillate  

Existing baryon asymmetry cannot be explained 
by CP asymmetry in SM 

Inflation of the early, accelerated expansion of the 
present Universe
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Extension of SM
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There are many extensions proposed, mostly 
with the aim of predicting some observable 
effect at the LHC — but there are none so far,  
so we may look elsewhere 

SM is highly efficient — let us stick to efficiency 
the only exception of economical description is the 
relatively large number of Yukawa couplings 



Extension of SM
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Neutrinos must play a key role 
with non-zero masses they must feel another force apart from the weak 
one, such as Yukawa coupling to a scalar, which requires the existence of 
right-handed neutrinos 

Simplest extension of GSM=SU(3)c×SU(2)L×U(1)Y is to 
G=GSM×U(1)Z  

     renormalizable gauge theory without any other symmetry 

Fix Z-charges by requirement of 

gauge and gravity anomaly cancellation and 
gauge invariant Yukawa terms for neutrino mass generation



Focus only on addition to the SM, 
find SM in this new book:
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fermion fields: 

where 

(νL can νR can also be Majorana neutrinos: Weyl-spinors 
embedded into different Dirac spinors) 

covariant derivative (includes kinetic mixing): 

Fermions 
(with new highlighted)
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propose an extension of the particles zoo of the standard model with three right-handed
Dirac neutrinos‡ and the gauge symmetry of the standard model Lagrangian GSM =
SU(3)c ⇥ SU(2)L ⇥ U(1)Y to GSM ⇥ U(1)Z . Such extensions have already been consid-
ered in the literature extensively§. In particular, it was shown that the charge assignment
of the matter fields is constrained by the requirement of anomaly cancellations up to two
free charges []. To define the model completely, one has to take a specific choice for these
remaining free charges. In this article we propose a new mechanism for the generation of
neutrino masses that fixes the values of the U(1)Z charges up to an overall scale that can
be embedded in the U(1)Z coupling.

2 Definition of the model

2.1 Fermion sector

We consider the usual three fermion families of the standard model extended with one
right-handed Dirac neutrino in each family.¶ We introduce the notation

 f
q,1 =

✓
U f

Df

◆

L

 f
q,2 = U f

R ,  f
q,3 = Df

R

 f
l,1 =

✓
⌫f

`f

◆

L

 f
l,2 = ⌫fR ,  f

l,3 = `fR

(2.1)

for the quark fields  q and for the lepton fields  l. In Eq. (2.1) L and R denote the left and
right-handed projections,

 L/R ⌘  
⌥

=
1

2
(1⌥ �5) ⌘ PL/R , (2.2)

except for the neutrinos, which di↵er from the charged fermions in the sense that the left and
right-handed fields are not projections of the same field, but denote di↵erent transformation

properties. Then the field content in family f (f = 1, 2 or 3) consists of two quarks, Uf ,
Df , a neutrino ⌫f and a charged lepton `f where Uf is the generic notation for the u-type
quarks U1 = u, U2 = c, U3 = t, while Df is that for d-type quarks, D1 = d, D2 = s
and D3 = b. The charged leptons `f can be `1 = e, `2 = µ or `3 = ⌧ and ⌫f are the
corresponding neutrinos, ⌫1 = ⌫e, ⌫2 = ⌫µ, ⌫3 = ⌫⌧ .

‡The negative results of the experiments searching for neutrinoless double �-decay make the Majorana
nature of neutrinos increasingly unlikely.

§For an incomplete set of popular examples and their studies see [?,?,?]
¶We find natural to assume one extra neutrino in each family although known observations do not

exclude other possibilities.
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Lagrangian (not considering QCD)
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Table 1: Assignments for the representations (for SU(N)) and charges (for U(1)) of fermion
and scalar fields of the complete model. The right-handed Dirac neutrinos ⌫R are sterile
under the GSM group. The sixth column gives a particular realization of the U(1)Z charges,
motivated below, and the last one is added for later convenience.

.

field SU(3)c SU(2)L yj zj zj rj = zj/z� � yj
UL, DL 3 2 1

6 z1
1
6 0

UR 3 1 2
3 z2

7
6

1
2

DR 3 1 �1
3 2z1 � z2 �5

6 �1
2

⌫L, `L 1 2 �1
2 �3z1 �1

2 0

⌫R 1 1 0 z2 � 4z1
1
2

1
2

`R 1 1 �1 �2z1 � z2 �3
2 �1

2

� 1 2 1
2 z� 1 1

2

� 1 1 0 z� �1 �1

For a matrix U 2 GSM ⇥ U(1)Z the fields transform as

U 1 (x) = eiT ·↵(x) ei y1�(x) ei z1�(x)  1(x) where T =
1

2
(⌧1, ⌧2, ⌧3)

U j (x) = ei yj�(x)ei zj⇣(x) j(x) where j = 2, 3
(2.3)

and ↵ = (↵1,↵2,↵3), �, ⇣ 2 R. The matrices ⌧i are the Pauli matrices, yj is the hyper-
charge, while zj denotes the Z-charge of the field  j. There is a lot of freedom how to
choose the Z-charges. In this article we make two assumptions that fix these completely.
The first is that the charges do not depend on the families, which is also the case in the
standard model.k With this assumption the assignment for the Z-charges of the fermions
can be expressed using two free parameters z1 and z2 of the U quark fields if we want a
model free of gauge and gravity anomalies. The rest of the charges must take values as
given in Table 1.

The Dirac Lagrangian summed over the family replications,

LD = i
3X

f=1

3X

j=1

⇣
 

f

q,j(x) /D
(j)
 f
q,j(x) +  

f

l,j(x) /D
(j)
 f
l,j(x)

⌘
,

D(j)
µ = @µ + igL T ·W µ + igY yjBµ + igZ zjZµ

(2.4)

kRecent observations [] hint at violation of lepton flavour universality, which may be taken into account
in our model by choosing family dependent Z-charges. However, those results are controversial at present
therefore, we neglect them.
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is invariant under local G = GSM ⇥ U(1)Z gauge transformations, provided the five gauge
fields introduced in the covariant derivative transform as

T ·W µ(x)
G�! T ·W 0

µ(x) = U(x)T ·W µ(x)U
†(x) +

i

gL
[@µ U(x)]U †(x)

Bµ
G�! B0

µ(x) = Bµ(x)� 1

gY
@µ�(x)

Zµ
G�! Z 0

µ(x) = Zµ(x)� 1

gZ
@µ⇣(x)

(2.5)

where U(x) = exp [iT ·↵ (x)]. The gauge invariant kinetic term for these vector fields is

LB,Z,W = �1

4
Bµ⌫B

µ⌫ � 1

4
Zµ⌫Z

µ⌫ � 1

4
W µ⌫ ·W µ⌫ , (2.6)

with Bµ⌫ = @µB⌫ � @⌫Bµ ⌘ @[µB⌫], Zµ⌫ = @[µZ⌫] and W µ⌫ = @[µW ⌫] � gW µ ⇥ W ⌫ .

The field strength T ·W µ⌫ transforms covariantly under G transformations, T ·W µ⌫
G�!

U(x)T ·W µ⌫ U
†(x), but Bµ⌫ and Zµ⌫ are invariant, therefore a kinetic mixing term of the

U(1) fields is also allowed by gauge invariance:

�sin ✓Z
2

Bµ⌫Z
µ⌫ . (2.7)

We can get rid of this mixing term by redefining the U(1) fields using the transformation

✓
B0

µ

Z 0

µ

◆
=

✓
1 sin ✓Z
0 cos ✓Z

◆✓
Bµ

Zµ

◆
. (2.8)

In terms of the redefined fields, the covariant derivative becomes

D(j)
µ = @µ + igL T ·W µ + igY yjB

0

µ + i(g0Z zj � g0Y yj)Z
0

µ (2.9)

where g0Y = gY tan ✓Z and g0Z = gZ/ cos ✓Z . Thus the kinetic mixing e↵ectively changes
the couplings of the matter fields to the vector field Zµ. Note that we cannot immediately
combine the coupling factor (g0Z zj�g0Y yj) into a single product of a coupling and a charge.
We shall discuss this issue further below.

Gauge symmetry forbids mass terms for gauge bosons. Fermion masses must also be
absent because

m  ̄ = m  ̄L R +m  ̄R L,

but the  L,  R fields transform di↵erently under G. Thus, the G-invariant Lagrangian
describes massless fields in contradiction to observation.
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Dirac: 

Gauge fields:
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Standard Φ complex SU(2)L doublet and new   
χ complex singlet: 

with scalar potential

Scalars
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2.2 Scalar sector

To solve the puzzle of missing masses we proceed similarly as in the standard model, but
in addition to the usual BEH-field � that is an SU(2)L-doublet

� =

✓
�+

�0

◆
=

1p
2

✓
�1 + i�2

�3 + i�4

◆
, (2.10)

we also introduce another complex scalar � that transforms as a singlet under GSM trans-
formations. The gauge invariant Lagrangian of the scalar fields is

L�,� = [D(�)
µ �]⇤D(�)µ�+ [D(�)

µ �]⇤D(�)µ�� V (�,�) (2.11)

where the covariant derivative for the scalar s (s = �, �) is

D(s)
µ = @µ + igL T ·W µ + igY ysBµ + i(g0Z zs � g0Y ys)Z

0

µ (2.12)

and the potential energy

V (�,�) = µ2
�|�|2 + µ2

�|�|2 +
�|�|2, |�|2�

✓
��

�
2

�
2 ��

◆✓ |�|2
|�|2

◆
, (2.13)

in addition to the usual quartic terms, introduces a coupling term ��|�|2|�|2 of the scalar
fields in the Lagrangian. In order that this potential energy be bounded from below, in
addition to the positivity of the self-couplings, ��, �� > 0, we also need that the coupling
matrix has to be positive definite, which translates to the condition

4���� � �2 > 0 . (2.14)

With these conditions satisfied, we can find the minimum of the potential energy at field
values (vacuum expectation values, or VEVs)

� = v =

s
2�µ2

� � 4��µ2
�

4���� � �2
, � = w =

s
2�µ2

� � 4��µ2
�

4���� � �2
, (2.15)

provided the conditions

�µ2
� > 2��µ

2
� and �µ2

� > 2��µ
2
� (2.16)

are satisfied simultaneously (the denominators are positive due to the constraint (2.14)).
The inequalities in (2.16) cannot be satisfied together if both µ2

� and µ2
� are positive. Thus

at least one of the mass parameters is negative automatically. If both are negative, then
the sign of � is unconstrained. If however, only one of them smaller than zero, then � must
also be negative.
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2.2 Scalar sector

To solve the puzzle of missing masses we proceed similarly as in the standard model, but
in addition to the usual BEH field � that is an SU(2)L-doublet

� =

✓
�+

�0

◆
=

1p
2

✓
�1 + i�2

�3 + i�4

◆
, (2.12)

we also introduce another complex scalar � that transforms as a singlet under GSM trans-
formations. The gauge invariant Lagrangian of the scalar fields is

L�,� = [D(�)
µ �]⇤D(�)µ�+ [D(�)

µ �]⇤D(�)µ�� V (�,�) (2.13)

where the covariant derivative for the scalar s (s = �, �) is

D(s)
µ = @µ + igL T ·W µ + igY ysBµ + i(g0Z zs � g0Y ys)Z

0

µ (2.14)

and the potential energy

V (�,�) = V0 � µ2
�|�|2 � µ2

�|�|2 +
�|�|2, |�|2�

✓
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�
2

�
2 ��

◆✓ |�|2
|�|2

◆
, (2.15)

in addition to the usual quartic terms, introduces a coupling term ��|�|2|�|2 of the scalar
fields in the Lagrangian. For the doublet |�| denotes the length p|�+|2 + |�0|2. The value
of the additive constant V0 is irrelevant for particle dynamics, but may be relevant for
inflationary scenarios, hence we allow for its nonvanishing value. In order that this potential
energy be bounded from below, we have to require the positivity of the self-couplings, ��,
�� > 0. The eigenvalues of the coupling matrix are

�
±

=
1

2

✓
�� + �� ±

q
(�� � ��)2 + �2

◆
, (2.16)

while the corresponding un-normalized eigenvectors are

u(+) =

✓
2
�
(�+ � ��)

1

◆
and u(�) =

✓
2
�
(�

�

� ��)
1

◆
. (2.17)

As �+ > 0 and �
�

< 0, in the physical region the potential can be unbounded from below
only if u(�) points into the first quadrant, which may occur only when � < 0. In this
case, to ensure that the potential is bounded from belwo, one also has to require that the
coupling matrix be positive definite, which translates into the condition

4���� � �2 > 0 . (2.18)

With these conditions satisfied, we can find the minimum of the potential energy at field
values � = v/

p
2 and � = w/

p
2 where the vacuum expectation values (VEVs) are

v =
p
2

s
2��µ2

� � �µ2
�

4���� � �2
, w =

p
2

s
2��µ2
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�

4���� � �2
. (2.19)
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2.2 Scalar sector

To solve the puzzle of missing masses we proceed similarly as in the standard model, but
in addition to the usual BEH-field � that is an SU(2)L-doublet

� =
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=
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�3 + i�4

◆
, (2.10)

we also introduce another complex scalar � that transforms as a singlet under GSM trans-
formations. The gauge invariant Lagrangian of the scalar fields is

L�,� = [D(�)
µ �]⇤D(�)µ�+ [D(�)

µ �]⇤D(�)µ�� V (�,�) (2.11)

where the covariant derivative for the scalar s (s = �, �) is

D(s)
µ = @µ + igL T ·W µ + igY ysBµ + i(g0Z zs � g0Y ys)Z
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µ (2.12)

and the potential energy
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�|�|2 + µ2
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◆
, (2.13)

in addition to the usual quartic terms, introduces a coupling term ��|�|2|�|2 of the scalar
fields in the Lagrangian. In order that this potential energy be bounded from below, in
addition to the positivity of the self-couplings, ��, �� > 0, we also need that the coupling
matrix has to be positive definite, which translates to the condition

4���� � �2 > 0 . (2.14)

With these conditions satisfied, we can find the minimum of the potential energy at field
values (vacuum expectation values, or VEVs)

� = v =

s
2�µ2

� � 4��µ2
�

4���� � �2
, � = w =

s
2�µ2

� � 4��µ2
�

4���� � �2
, (2.15)

provided the conditions

�µ2
� > 2��µ

2
� and �µ2

� > 2��µ
2
� (2.16)

are satisfied simultaneously (the denominators are positive due to the constraint (2.14)).
The inequalities in (2.16) cannot be satisfied together if both µ2

� and µ2
� are positive. Thus

at least one of the mass parameters is negative automatically. If both are negative, then
the sign of � is unconstrained. If however, only one of them smaller than zero, then � must
also be negative.

5

After spontaneous symmetry breaking of G ! SU(3)c ⇥ U(1)Q⇤⇤ we use the following
convenient parametrization for the scalar fields:

� =
1p
2
eiT ·⇠(x)/v

✓
0

v + h0(x)

◆
and �(x) =

1p
2
ei⌘(x)/w

�
w + s0(x)

�
. (2.17)

We can use the gauge invariance of the model to choose the unitary gauge when

�0(x) =
1p
2

✓
0

v + h0(x)

◆
and �0(x) =

1p
2

�
w + s0(x)

�
(2.18)

and the vector fields are transformed according to Eq. (2.5). With this gauge choice, the
scalar kinetic term contains quadratic terms of the gauge fields from which one can identify
mass parameters of the massive standard model gauge bosons proportional to the vac-
uum expectation value v of the BEH-field and also that of a massive vector boson Z

0µ

proportional to w.

We can diagonalize the mass matrix (quadratic terms) of the two real scalars (h0 and
s0) by the rotation ✓

h
H

◆
=

✓
cos ✓S � sin ✓S
sin ✓S cos ✓S

◆✓
h0

s0

◆
(2.19)

where for the scalar mixing angle ✓S 2 (�⇡
4 ,

⇡
4 ) we find

sin(2✓S) =
�vwp

(��v2 � ��w2)2 + (�vw)2
. (2.20)

The masses of the mass eigenstates h and H are

Mh/H =

✓
��v

2 + ��w
2 ⌥

q
(��v2 � ��w2)2 + (�vw)2

◆1/2

(2.21)

where Mh  MH by convention. At this point either h or H can be the standard model
Higgs boson.

2.3 Fermion masses

We already discussed that explicit mass terms of fermions would break SU(2)L ⇥ U(1)Y
invariance. However, we can introduce gauge-invariant fermion-scalar Yukawa interactions

LY = �

cD

�
Ū , D̄

�
L

✓
�(+)

�(0)

◆
DR + cU

�
Ū , D̄

�
L

✓
�(0) ⇤

��(+) ⇤

◆
UR + c`

�
⌫̄`, ¯̀

�
L

✓
�(+)

�(0)

◆
`R

�

+ h.c.
(2.22)

⇤⇤These are the only symmetries that we could observe in Nature so far.
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convenient parametrization for the scalar fields:

� =
1p
2
eiT ·⇠(x)/v

✓
0

v + h0(x)

◆
and �(x) =

1p
2
ei⌘(x)/w

�
w + s0(x)

�
. (2.17)
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and the vector fields are transformed according to Eq. (2.5). With this gauge choice, the
scalar kinetic term contains quadratic terms of the gauge fields from which one can identify
mass parameters of the massive standard model gauge bosons proportional to the vac-
uum expectation value v of the BEH-field and also that of a massive vector boson Z

0µ

proportional to w.

We can diagonalize the mass matrix (quadratic terms) of the two real scalars (h0 and
s0) by the rotation ✓
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=
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sin ✓S cos ✓S

◆✓
h0

s0

◆
(2.19)

where for the scalar mixing angle ✓S 2 (�⇡
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4 ) we find
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�vwp
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(2.21)

where Mh  MH by convention. At this point either h or H can be the standard model
Higgs boson.

2.3 Fermion masses

We already discussed that explicit mass terms of fermions would break SU(2)L ⇥ U(1)Y
invariance. However, we can introduce gauge-invariant fermion-scalar Yukawa interactions
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⇤⇤These are the only symmetries that we could observe in Nature so far.
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2.2 Scalar sector

To solve the puzzle of missing masses we proceed similarly as in the standard model, but
in addition to the usual BEH field � that is an SU(2)L-doublet

� =

✓
�+

�0

◆
=

1p
2

✓
�1 + i�2

�3 + i�4

◆
, (2.12)

we also introduce another complex scalar � that transforms as a singlet under GSM trans-
formations. The gauge invariant Lagrangian of the scalar fields is

L�,� = [D(�)
µ �]⇤D(�)µ�+ [D(�)

µ �]⇤D(�)µ�� V (�,�) (2.13)

where the covariant derivative for the scalar s (s = �, �) is

D(s)
µ = @µ + igL T ·W µ + igY ysBµ + i(g0Z zs � g0Y ys)Z

0

µ (2.14)

and the potential energy

V (�,�) = V0 � µ2
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, (2.15)

in addition to the usual quartic terms, introduces a coupling term ��|�|2|�|2 of the scalar
fields in the Lagrangian. For the doublet |�| denotes the length p|�+|2 + |�0|2. The value
of the additive constant V0 is irrelevant for particle dynamics, but may be relevant for
inflationary scenarios, hence we allow for its nonvanishing value. In order that this potential
energy be bounded from below, we have to require the positivity of the self-couplings, ��,
�� > 0. The eigenvalues of the coupling matrix are

�
±

=
1

2

✓
�� + �� ±

q
(�� � ��)2 + �2

◆
, (2.16)

while the corresponding un-normalized eigenvectors are

u(+) =

✓
2
�
(�+ � ��)

1

◆
and u(�) =

✓
2
�
(�

�

� ��)
1

◆
. (2.17)

As �+ > 0 and �
�

< 0, in the physical region the potential can be unbounded from below
only if u(�) points into the first quadrant, which may occur only when � < 0. In this
case, to ensure that the potential is bounded from belwo, one also has to require that the
coupling matrix be positive definite, which translates into the condition

4���� � �2 > 0 . (2.18)

With these conditions satisfied, we can find the minimum of the potential energy at field
values � = v/

p
2 and � = w/

p
2 where the vacuum expectation values (VEVs) are

v =
p
2

s
2��µ2

� � �µ2
�

4���� � �2
, w =

p
2

s
2��µ2

� � �µ2
�

4���� � �2
. (2.19)
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Standard Yukawa terms: 

lead to fermion masses after SSB: 

Neutrino Yukawa terms  (                   ):

After spontaneous symmetry breaking of G ! SU(3)c ⇥ U(1)Q⇤⇤ we use the following
convenient parametrization for the scalar fields:

� =
1p
2
eiT ·⇠(x)/v

✓
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v + h0(x)

◆
and �(x) =
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2
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�
. (2.17)

We can use the gauge invariance of the model to choose the unitary gauge when

�0(x) =
1p
2

✓
0
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◆
and �0(x) =
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�
(2.18)

and the vector fields are transformed according to Eq. (2.5). With this gauge choice, the
scalar kinetic term contains quadratic terms of the gauge fields from which one can identify
mass parameters of the massive standard model gauge bosons proportional to the vac-
uum expectation value v of the BEH-field and also that of a massive vector boson Z

0µ

proportional to w.

We can diagonalize the mass matrix (quadratic terms) of the two real scalars (h0 and
s0) by the rotation ✓

h
H

◆
=

✓
cos ✓S � sin ✓S
sin ✓S cos ✓S

◆✓
h0

s0

◆
(2.19)

where for the scalar mixing angle ✓S 2 (�⇡
4 ,

⇡
4 ) we find

sin(2✓S) =
�vwp

(��v2 � ��w2)2 + (�vw)2
. (2.20)

The masses of the mass eigenstates h and H are

Mh/H =
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��v

2 + ��w
2 ⌥
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(��v2 � ��w2)2 + (�vw)2

◆1/2

(2.21)

where Mh  MH by convention. At this point either h or H can be the standard model
Higgs boson.

2.3 Fermion masses

We already discussed that explicit mass terms of fermions would break SU(2)L ⇥ U(1)Y
invariance. However, we can introduce gauge-invariant fermion-scalar Yukawa interactions

LY = �

cD

�
Ū , D̄

�
L

✓
�(+)

�(0)

◆
DR + cU

�
Ū , D̄

�
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✓
�(0) ⇤

��(+) ⇤
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⇤⇤These are the only symmetries that we could observe in Nature so far.
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where h.c. means hermitian conjugate terms and the parameters cD, cU , c` are called
Yukawa couplings that are matrices in family indices. The Z-charge of the BEH-field
is constrained by U(1)Z invariance of the Yukawa terms to z� = z2 � z1, which works
simultaneously for all three terms.

After spontaneous symmetry breaking and fixing the unitary gauge, this Yukawa La-
grangian becomes

LY = � 1p
2
(v + h(x))

⇥
cD D̄LDR + cU ŪLUR + c` ¯̀L`R

⇤
+ h.c. (2.23)

We see that there are mass terms with mass matrices Mi =
civ
p

2
where i = D, U , `:

LY = �
✓
1 +

h(x)

v

◆⇥
D̄L MD DR + ŪL MU UR + ¯̀

L M` `R
⇤
+ h.c. (2.24)

The general complex matrices Mi can be diagonalized by bi-unitary transformations. The
diagonal elements on the basis of mass eigenstates provide the mass parameters of the
fermions. Due to the bi-unitary transformation the left and right-handed components of
the fermion field are di↵erent linear combinations of the mass eigenstates.

The neutrino oscillation experiments prove that at least two flavours of neutrinos are also
massive. In principle, the standard model charge assignment allows for a gauge invariant
Yukawa term

+c⌫
�
⌫̄`, ¯̀

�
L

✓
�(0) ⇤

��(+) ⇤

◆
⌫R + h.c. (2.25)

where ⌫L and ⌫R are the projections of the same field in the sense of Eq. (2.2). However,
such an option is rather arbitrary for multiple reasons. To mention three: (i) it would not
explain any other deviations from the standard model; (ii) it also would require a rather
unnatural hierarchy of Yukawa couplings, (iii) and such sterile neutrinos have no other role
in the theory and could not be observed directly.

To amend upon this issue, one can assume see-saw type mass generation [?]. In that
case the right-handed neutrino has a Majorana mass term [?]. The source of a Majorana
mass term can be Yukawa couplings to a new scalar, such as � in our case:

LR
Y = �1

2

X

i,j

(cR)ij ⌫c
i,R⌫j,R �+ h.c. (2.26)

The mass term appears after the spontaneous symmetry breaking of the symmtery of the �
field vacuum. At the same time the right-handed neutrino is the gauge singlet partner of the
left handed neutrino with a corresponding Yukawa coupling to the BEH field as in (2.25),
leading to Dirac mass terms after spontaneous symmetry breaking of the SU(2)L ⇥ U(1)Y
symmetry. Although this is a very attractive possibility, the right-handed neutrino has
to be either too heavy or the corresponding Yukawa coupling too small so that it cannot
e↵ectively influence the vacuum of the standard model [], which remains metastable.
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fermions. Due to the bi-unitary transformation the left and right-handed components of
the fermion field are di↵erent linear combinations of the mass eigenstates.

The neutrino oscillation experiments suggest non-vanishing neutrino masses and the
weak and mass eigenstates of the left-handed neutrinos do not coincide. In principle, the
charge assignment of our model allows for the following gauge invariant Yukawa terms of
dimension four for the neutrinos

L⌫
Y = �

X

i,j

✓
(c⌫)ijL̄i,L · �̃ ⌫j,R +

1

2
(cR)ij ⌫c

i,R⌫j,R �

◆
+ h.c. (2.31)

for arbitrary values of z1 and z2 if the superscript c denotes the charge conjugate of the field,
⌫c = �i�2⌫⇤ and the Z-charge of the right-handed neutrinos and the new scalar satisfy the
relation z� = �2z⌫R . There are two natural choices to fix the Z-charges: (i) the left- and
right-handed neutrinos have the same charge, or (ii) those have opposite charges. In the
first case we have

z2 � 4z1 = �3z1 , (2.32)

which is solved by z1 = z2 and it leads to the charge assignment of the U(1)B�L extension
of the standard model, studied in detail []. In the second case

z2 � 4z1 = 3z1 , (2.33)

which is solved by z1 = z2/7. As the overall scale of the Z-charges depends only on the
value of the gauge coupling g0Z , we set z2 freely. For instance, choosing z2 = 7/6 implies
z1 = 1/6 and the Z-charge of the BEH scalar is

z� = 1 , (2.34)

while that of the new scalar is
z� = �1 = �z� . (2.35)

While we cannot exclude the infinitely many cases when the magnitudes of Z-charges
of the left- and right-handed neutrinos di↵er, we find natural to assume that Eq. (2.33) is
valid. The corresponding Z-charges are given explicitly in the sixth column of Table 1.

After the spontaneous symmetry breaking of the symmtery of the vacuum of the scalar
fields Eq. (2.31) leads to the following mass terms for the neutrinos:

L⌫
Y = �1

2

X

i,j

"
�
⌫L, ⌫c

R

�
i
M(h, s)ij

✓
⌫c
L

⌫R

◆

j

+ h.c.

#
(2.36)

where

M(h, s)ij =

 
0 mD

�
1 + h

v

�

mD

�
1 + h

v

�
MM

�
1 + s

w

�

!

ij

, (2.37)
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z1 = 1/6 and the Z-charge of the BEH scalar is

z� = 1 , (2.34)
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While we cannot exclude the infinitely many cases when the magnitudes of Z-charges
of the left- and right-handed neutrinos di↵er, we find natural to assume that Eq. (2.33) is
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After the spontaneous symmetry breaking of the symmtery of the vacuum of the scalar
fields Eq. (2.31) leads to the following mass terms for the neutrinos:
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(a) anomaly free charges (b) from neutrino-scalar interactions (c) from re-parametrization of couplings

(a) (b) (c)

Table 1: Assignments for the representations (for SU(N)) and charges (for U(1)) of fermion
and scalar fields of the complete model. The charges yj denote the eigenvalue of Y/2, with
Y being the hypercharge operator and zj denote the supercharges of the fields  j of Eq. (2.1)
(j = 1, 2, 3). The right-handed Dirac neutrinos ⌫

R

are sterile under the G
SM

group. The
sixth column gives a particular realization of the U(1)Z charges, motivated below, and the
last one is added for later convenience.

.

field SU(3)
c

SU(2)
L

yj zj zj rj = zj/z� � yj
U
L

, D
L

3 2 1

6

Z
1

1

6

0

U
R

3 1 2

3

Z
2

7

6

1

2

D
R

3 1 �1

3

2Z
1

� Z
2

�5

6

�1

2

⌫
L

, `
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2

�3Z
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⌫
R
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2

� 4Z
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1

2

1

2

`
R

1 1 �1 �2Z
1

� Z
2
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fields introduced in the covariant derivative transform as
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Zµ G�! Z 0µ(x) = Zµ(x) � 1

gZ
@µ⇣(x)
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where U(x) = exp [iT · ↵ (x)]. The gauge invariant kinetic term for these vector fields is
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4
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4
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4
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with Bµ⌫ = @µB⌫ � @⌫Bµ ⌘ @
[µB⌫], Zµ⌫ = @

[µZ⌫] and W µ⌫ = @
[µW ⌫] � gW µ ⇥ W ⌫ .

The field strength T · W µ⌫ transforms covariantly under G transformations, T · W µ⌫
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U(x)T · W µ⌫ U †(x), but Bµ⌫ and Zµ⌫ are invariant, hence a kinetic mixing term of the
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We can get rid of this mixing term by redefining the U(1) fields using the transformation
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(a) anomaly free charges (b) from neutrino-scalar interactions (c) from re-parametrization of couplings

(a) (b) (c)

Table 1: Assignments for the representations (for SU(N)) and charges (for U(1)) of fermion
and scalar fields of the complete model. The charges yj denote the eigenvalue of Y/2, with
Y being the hypercharge operator and zj denote the supercharges of the fields  j of Eq. (2.1)
(j = 1, 2, 3). The right-handed Dirac neutrinos ⌫
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are sterile under the G
SM

group. The
sixth column gives a particular realization of the U(1)Z charges, motivated below, and the
last one is added for later convenience.
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where 

6x6 symmetric matrix (mD complex, MM real) 

in diagonal: Majorana mass terms (so νL massless!) 

but  νL and νR have the same q-numbers,                       
can mix, leading to type-I see-saw

fermions. Due to the bi-unitary transformation the left and right-handed components of
the fermion field are di↵erent linear combinations of the mass eigenstates.

The neutrino oscillation experiments suggest non-vanishing neutrino masses and the
weak and mass eigenstates of the left-handed neutrinos do not coincide. In principle, the
charge assignment of our model allows for the following gauge invariant Yukawa terms of
dimension four for the neutrinos

L⌫
Y = �

X

i,j

✓
(c⌫)ijL̄i,L · �̃ ⌫j,R +

1

2
(cR)ij ⌫c

i,R⌫j,R �

◆
+ h.c. (2.31)

for arbitrary values of z1 and z2 if the superscript c denotes the charge conjugate of the field,
⌫c = �i�2⌫⇤ and the Z-charge of the right-handed neutrinos and the new scalar satisfy the
relation z� = �2z⌫R . There are two natural choices to fix the Z-charges: (i) the left- and
right-handed neutrinos have the same charge, or (ii) those have opposite charges. In the
first case we have

z2 � 4z1 = �3z1 , (2.32)

which is solved by z1 = z2 and it leads to the charge assignment of the U(1)B�L extension
of the standard model, studied in detail []. In the second case

z2 � 4z1 = 3z1 , (2.33)

which is solved by z1 = z2/7. As the overall scale of the Z-charges depends only on the
value of the gauge coupling g0Z , we set z2 freely. For instance, choosing z2 = 7/6 implies
z1 = 1/6 and the Z-charge of the BEH scalar is

z� = 1 , (2.34)

while that of the new scalar is
z� = �1 = �z� . (2.35)

While we cannot exclude the infinitely many cases when the magnitudes of Z-charges
of the left- and right-handed neutrinos di↵er, we find natural to assume that Eq. (2.33) is
valid. The corresponding Z-charges are given explicitly in the sixth column of Table 1.

After the spontaneous symmetry breaking of the symmtery of the vacuum of the scalar
fields Eq. (2.31) leads to the following mass terms for the neutrinos:

L⌫
Y = �1

2

X

i,j

"
�
⌫L, ⌫c

R

�
i
M(h, s)ij

✓
⌫c
L

⌫R

◆

j

+ h.c.

#
(2.36)

where

M(h, s)ij =

 
0 mD

�
1 + h

v

�

mD

�
1 + h

v

�
MM

�
1 + s

w

�

!

ij

, (2.37)
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First diagonalize mD and MM  by defining 

so 

where 

with m and M diagonal,                     unitary matrix

with complex mD and real MM being symmetric 3 ⇥ 3 matrices, so M(0, 0) is a complex
symmetric 6 ⇥ 6 matrix. The diagonal elements of the mass matrix M(0, 0) provide Ma-
jorana mass terms for the left-handed and right-handed neutrinos. Thus we conclude that
the model predicts vanishing masses of the left-handed neutrinos at the fundamental level.

The o↵-diagonal elements represent interaction terms that look formally like Dirac mass
terms, �Pi,j ⌫i,L(mD)ij⌫j,R+ h.c. After spontaneous symmetry breaking the quantum
numbers of the particles ⌫c

i,L and ⌫i,R are identical, hence they can mix. Thus the prop-
agating states will be a mixture of the left- and right-handed neutrinos, so those can be
obtained by the diagonalization of the full matrix M(0, 0).

In order to understand the structure of the matrix M(0, 0) better, we first diagonalize
the matrices mD and MM separately by a unitary transformation and an orthogonal one.
Defining

⌫ 0

L,i =
X

j

(UL)ij⌫L,j and ⌫ 0

R,i =
X

j

(OR)ij⌫R,j , (2.38)

we can rewrite the neutrino Yukawa Lagrangian as

L⌫
Y = �1

2

X

i,j

"⇣
⌫ 0

L, ⌫
0c
R

⌘

i
M 0(h, s)ij

✓
⌫

0c
L

⌫ 0

R

◆

j

+ h.c.

#
(2.39)

where

M 0(h, s) =

 
0 mV

�
1 + h

v

�

V †m
�
1 + h

v

�
M
�
1 + s

w

�

!
. (2.40)

In Eq. (2.40) m and M are real diagonal matrices, while V = UT
L OR is a unitariy matrix,

V V † = 1, so M 0(0, 0) is mainfestly Hermitian with real eigenvalues that are the masses of
the mass eigenstates of neutrinos. In general,M 0(0, 0) may have 15 independent parameters:
mi and Mi (i = 1, 2 ,3), while there are three Euler angles and six phases V . Three phases
can be absorbed into the definition of ⌫ 0

L.

Assuming the hierarchy mi ⌧ Mj, we can integrate out the right-handed (heavy)
neutrinos and obtain an e↵ective higher dimensional operator with Majorana mass terms
for the left-handed neutrinos

L⌫
dim�5 = �1

2

X

i

mM,i

✓
1 +

h

v

◆2 ⇣
⌫

0c
i,L⌫

0

i,L + h.c.
⌘
. (2.41)

The Majorana masses

mM,i =
m2

i

Mi

(2.42)

are suppressed by the ratios mi/Mi as compared to mi. The latter have a similar role
in the Lagrangian as the mass parameters of the charged leptons, so one may assume
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If mi << Mj , can integrate out the heavy neutrinos 

where mM,i are Majorana masses, eigenvalues of  

                    , suppressed by mi/Mi 
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obtained by the diagonalization of the full matrix M(0, 0).

In order to understand the structure of the matrix M(0, 0) better, we first diagonalize
the matrices mD and MM separately by a unitary transformation and an orthogonal one.
Defining

⌫ 0

L,i =
X

j

(UL)ij⌫L,j and ⌫ 0

R,i =
X

j

(OR)ij⌫R,j , (2.38)

we can rewrite the neutrino Yukawa Lagrangian as

L⌫
Y = �1

2

X

i,j

"⇣
⌫ 0

L, ⌫
0c
R

⌘

i
M 0(h, s)ij

✓
⌫

0c
L

⌫ 0

R

◆

j

+ h.c.

#
(2.39)

where

M 0(h, s) =

 
0 mV

�
1 + h

v

�

V †m
�
1 + h

v

�
M
�
1 + s

w

�

!
. (2.40)

In Eq. (2.40) m and M are real diagonal matrices, while V = UT
L OR is a unitariy matrix,

V V † = 1, so M 0(0, 0) is mainfestly Hermitian with real eigenvalues that are the masses of
the mass eigenstates of neutrinos. In general,M 0(0, 0) may have 15 independent parameters:
mi and Mi (i = 1, 2 ,3), while there are three Euler angles and six phases V . Three phases
can be absorbed into the definition of ⌫ 0

L.

Assuming the hierarchy mi ⌧ Mj, we can integrate out the right-handed (heavy)
neutrinos and obtain an e↵ective higher dimensional operator with Majorana mass terms
for the left-handed neutrinos

L⌫
dim�5 = �1

2

X

i

mM,i

✓
1 +

h

v

◆2 ⇣
⌫

0c
i,L⌫

0

i,L + h.c.
⌘
. (2.41)

The Majorana masses

mM,i =
m2

i

Mi

(2.42)

are suppressed by the ratios mi/Mi as compared to mi. The latter have a similar role
in the Lagrangian as the mass parameters of the charged leptons, so one may assume
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If mi << Mj , can integrate out the heavy neutrinos 
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QED current remains unchanged: 

and
tan � =

w

v
(2.50)

is the ratio of the scalar vacuum expectation values (not a scalar mixing angle). For small
values of the new couplings �0ZY and �0Z , implying small , we have

✓T = +O(⌧ 2,3) . (2.51)

The charged current interactions remain the same as in the standard model. The neutral
current Lagrangian can be written in the form

L
NC

= L
QED

+ LZ + LT (2.52)

where the first term is the usual Lagrangian of QED,

L
QED

= eAµJ
µ
em

, Jµ
em

=
3X

f=1

3X

j=1

ej
⇣
 

f

q,j(x)�
µ f

q,j(x) +  
f

l,j(x)�
µ f

l,j(x)
⌘
, (2.53)

the second one is a neutral current coupled to the Z0 boson,

LZ = eZµ

⇣
cos ✓TJ

µ
Z � sin ✓TJ

µ
T

⌘
= eZµJ

µ
Z +O(✓T ) (2.54)

and the third one is the neutral current coupled to the T0 boson,

LT = eTµ

⇣
sin ✓TJ

µ
Z + cos ✓TJ

µ
T

⌘
= eTµJ

µ
T +O(✓T ) . (2.55)

In Eq. (2.53) e is the electric charge unit and ej is the electric charge of field  j in units of
e. In Eqs. (2.54) and (2.55) Jµ

Z is the usual neutral current,

Jµ
Z =

3X

f=1

3X

j=1

T
3

� sin2 ✓
W

ej
sin ✓

W

cos ✓
W

⇣
 

f

q,j(x)�
µ f

q,j(x) +  
f

l,j(x)�
µ f

l,j(x)
⌘
, (2.56)

while the new neutral current has the same dependence on fermion dynamics with di↵erent
coupling strength:

Jµ
T =

3X

f=1

3X

j=1

�0Zrj + �0ZY yj
sin ✓

W

⇣
 

f

q,j(x)�
µ f

q,j(x) +  
f

l,j(x)�
µ f

l,j(x)
⌘
. (2.57)

As the dependence on the couplings and charges of the neutral currents in Eqs. (2.56)
and (2.57) are very di↵erent for di↵erent fermion fields, the only way that the standard
model phenomenology is not violated by the extended model if ✓T is small, which supports
the expansions used in Eqs. (2.54) and (2.55).

To define the perturbation theory of this model explicitly, we present the Feynman rules
in Appendix A.
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and for the mixing angle ✓T of the Z 0 boson we find

sin ✓T =

"
1

2

 
1 � 1 � 2 � ⌧ 2p

(1 + 2 + ⌧ 2)2 � 4⌧ 2

!#
1/2

,

cos ✓T =

"
1

2

 
1 +

1 � 2 � ⌧ 2p
(1 + 2 + ⌧ 2)2 � 4⌧ 2

!#
1/2

,

(2.48)

so tan(2✓T ) = 2/(1 � 2 � ⌧ 2), with

 =
�0ZY + �0Zp

1 + �2Y
, ⌧ = 2

�0Z tan �p
1 + �2Y

(2.49)
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w

v
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em
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em
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3X
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3X
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ej
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f

q,j(x)�µ f
q,j(x) +  

f

l,j(x)�µ f
l,j(x)

⌘
, (2.53)

the second one is a neutral current coupled to the Z0 boson,

LZ = �eZµ

⇣
cos ✓TJµ

Z � sin ✓TJµ
T

⌘
= �eZµJ

µ
Z + O(✓T ) (2.54)

and the third one is the neutral current coupled to the T0 boson,

LT = �eTµ

⇣
sin ✓TJµ

Z + cos ✓TJµ
T

⌘
= �eTµJ

µ
T + O(✓T ) . (2.55)

In Eq. (2.53) e is the electric charge unit and ej is the electric charge of field  j in units of
e. In Eqs. (2.54) and (2.55) Jµ

Z is the usual neutral current,

Jµ
Z =

3X

f=1

3X

j=1

T
3

� sin2 ✓
W

ej
sin ✓

W

cos ✓
W

⇣
 

f

q,j(x)�µ f
q,j(x) +  

f

l,j(x)�µ f
l,j(x)

⌘
, (2.56)
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current with Z0 remains unchanged, but mixes 
with new current JT  of new couplings: 

both can be written as v-a interactions for non-chiral 
fields: 

with X = Z or T and summation over q and l flavors

while the new neutral current has the same dependence on fermion dynamics with di↵erent
coupling strength:

Jµ
T =

3X

f=1

3X

j=1

�0Zrj + �0ZY yj
sin ✓

W

⇣
 

f

q,j(x)�µ f
q,j(x) +  

f

l,j(x)�µ f
l,j(x)

⌘
. (2.57)

We can rewrite these currents as vector–axialvector currents using the non-chiral fields  f

Jµ
X =

X

f

 f (x)�µ
�
v(X)

f � a(X)

f �
5

�
 f (x) , X = Z or T , (2.58)

with vector couplings v(X)

f and axialvector couplings a(X)

f given in Appendix A and the
summation runs over all quark and lepton flavours.

As the dependence on the couplings and charges of the neutral currents in Eqs. (2.56)
and (2.57) are very di↵erent for di↵erent fermion fields, the only way that the standard
model phenomenology is not violated by the extended model if ✓T is small, which supports
the expansions used in Eqs. (2.54) and (2.55).

To define the perturbation theory of this model explicitly, we present the Feynman rules
in Appendix A.

2.6 Masses of the gauge bosons

The photon is massless, while the masses of the massive neutral bosons are

MZ = MW
cos ✓T
cos ✓

W

h
(1 +  tan ✓T )2 + (⌧ tan ✓T )2

i
1/2

(2.59)

and

MT = MW
sin ✓T
cos ✓

W

h
(1 �  cot ✓T )2 + (⌧ cot ✓T )2

i
1/2

(2.60)

where MW = 1

2

vgL and we assumed MT < MZ . Indeed, in order to have MZ within the
experimental uncertainty of the known measured value, we need ✓T ' 0, which justifies the
expansions at  = 0,

MZ =
MW

cos ✓
W

�
1 + O(2)

� ' MW

cos ✓
W

(2.61)

and

MT =
MW

cos ✓
W

⌧
�
1 + O(2)

� ' MZ0 (2.62)

where we used Eq. (2.51) and MZ0 = wg0

Z . Thus ⌧ can also be written as the ratio of the
masses of the two massive neutral gauge bosons,

⌧ =
MZ0

MW

cos ✓
W

' MT

MZ

, (2.63)
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The unknown scalar mass Mh or MH   and mixing 
angles, VEV ratio, new gauge coupling: 

2.6 Masses of the gauge bosons

The photon is massless, while the masses of the massive neutral bosons are

MZ0 = MW
cos ✓T
cos ✓W

h
(1 +  tan ✓T )

2 + (⌧ tan ✓T )
2
i1/2

(2.60)

and

MT = MW
sin ✓T
cos ✓W

h
(1�  cot ✓T )

2 + (⌧ cot ✓T )
2
i1/2

(2.61)

where MW = 1
2vgL and we assumed MT < MZ0 . Indeed, in order to have MZ0 within the

experimental uncertainty of the known measured value, we need ✓T ' 0 (precise constraint
will be presented elsewhere), which justifies the expansions at  = 0,

MZ0 =
MW

cos ✓W

�
1 + O(2)

� ' MW

cos ✓W
(2.62)

and

MT =
MW

cos ✓W
⌧
�
1 + O(2)

� ' MZ0 (2.63)

where we used Eq. (2.53) and MZ0 = wgZ0 . Thus ⌧ can also be written as the ratio of the
masses of the two massive neutral gauge bosons,

⌧ =
MZ0

MW

cos ✓W ' MT

MZ0
, (2.64)

justifying our assumption on the hierarchy of masses. In fact, unless w � v, we find
MT ⌧ MZ0 .

2.7 Free parameters

There are five parameters in the scalar sector, ��, ��, �, v and w that has to be determined
experimentally, while the values of µ� and µ� (at tree level) are given in Eq. (2.20). However,
it is more convenient to use parameters that can be measured more directly, for instance,

Mh , MH , sin ✓S , v = (
p
2GF)

�1/2 and tan � , (2.65)

of which we know two from measurements: one of the scalar masses and Fermi’s constant.

In addition to the neutrino Yukawa couplings (or neutrino masses and PMNS mixing
parameters), there are five free parameters in the model that we choose as the mass of the
new scalar particle Mh or MH (the other being fixed by the mass of the Higgs boson), the
scalar and vector mixing angles, the ratio of the vacuum expectation values and (essentially)
the new gauge coupling:

sin ✓S , sin ✓T , tan � , ⌧ . (2.66)
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2.6 Mixing in the neutral gauge sector

The neutral gauge fields of the standard model and the Z 0 mix, which leads to mass
eigenstates Aµ, Zµ and Tµ. The mixing is described by a 3⇥ 3 mixing matrix as

0

@
W 3

µ

B0

µ

Z 0

µ

1

A =

0

@
cos ✓W cos ✓T cos ✓W sin ✓T sin ✓W

� sin ✓W cos ✓T � sin ✓W sin ✓T cos ✓W
� sin ✓T cos ✓T 0

1

A

0

@
Z0

µ

Tµ

Aµ

1

A . (2.40)

For the Weinberg mixing angle ✓W we have the usual value sin ✓W = gY /
p
g2L + g2Y . We

introduce the notion of reduced coupling defined by �i = gi/gL, i.e. �L = 1. Then we have

sin ✓W =
�Yp
1 + �2Y

, cos ✓W =
1p

1 + �2Y
(2.41)

and for the mixing angle ✓T of the Z 0-boson we find

sin ✓T =

"
1

2

 
1� 1� 2 � ⌧ 2p

(1 + 2 + ⌧ 2)2 � 4⌧ 2

!#1/2
,

cos ✓T =

"
1

2

 
1 +

1� 2 � ⌧ 2p
(1 + 2 + ⌧ 2)2 � 4⌧ 2

!#1/2
,

(2.42)

so tan(2✓T ) = 2/(1� 2 � ⌧ 2), with

 =
�0ZY + �0Zp

1 + �2Y
, ⌧ = 2

�0Z tan �p
1 + �2Y

< 2 tan � (2.43)

and
tan � =

w

v
(2.44)

is the usual ratio of the scalar vacuum expectation values. For small values of the new
couplings �ZY and �0Z , implying small , we have

✓T = +O(⌧ 2,3) . (2.45)

The charged current interactions remain the same as in the standard model. The neutral
current Lagrangian can be written in the form

LNC = LQED + LZ0 + LT (2.46)

where the first term is the usual Lagrangian of QED,

LQED = �eAµJ
µ
em , Jµ

em =
3X

f=1

3X

j=1

ej

⇣
 

f

q,j(x)�
µ f

q,j(x) +  
f

l,j(x)�
µ f

l,j(x)
⌘
, (2.47)
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The charged current interactions remain the same as in the standard model. The neutral
current Lagrangian can be written in the form

LNC = LQED + LZ0 + LT (2.46)
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and

MT =
MW

cos ✓W
⌧
�
1 + O(2)

� ' MZ0 (2.55)

where we used Eq. (2.45) and MZ0 = wgZ0 . Thus ⌧ can also be written as the ratio of the
masses of the two massive neutral gauge bosons,

⌧ =
MZ0

MW

cos ✓W ' MT

MZ0
, (2.56)

justifying our assumption on the hierarchy of masses. In fact, unless w � v, we find
MT ⌧ MZ0 .

2.8 Free parameters

There are five free parameters in the scalar sector, ��, ��, �, v and w, while the values of
µ� and µ� (at tree level) are determined by the position of the minima of the BEH-field
and of the second scalar field,

µ2
� = ���v

2 � �

2
w2 , µ2

� = ���w
2 � �

2
v2 . (2.57)

However, it is more convenient to use parameters that can be measured more directly, for
instance,

Mh , MH , sin ✓S , v = (
p
2GF)

�1/2 and tan � , (2.58)

of which we know two from measurements: one of the scalar masses and Fermi’s constant.

In addition to the neutrino Yukawa couplings (or neutrino masses) and PMNS mixing
parameters, there are six free parameters in the model that in general we choose as

sin ✓⌫ , sin ✓S , sin ✓T , tan � , ⌧ (2.59)

and the mass of the new scalar particle Mh or MH (the other being fixed by the mass of
the Higgs boson). Then the other parameters, expressed in terms of the free ones, are

�� =
1

2v2
�
M2

h cos
2 ✓S +M2

H sin2 ✓S
�
, �� =

1

2w2

�
M2

h sin
2 ✓S +M2

H cos2 ✓S
�
,

� = sin(2✓S)
M2

H �M2
h

2vw
, w = v tan � , tan ✓Z =

⌧ �  tan �

tan � sin ✓W
,

 = cot(2✓T )
⇣q

1 + (1� ⌧ 2) tan2(2✓T )� 1
⌘
= (1� ⌧ 2) sin ✓T +O(✓3T ) ,

�0

Z =
⌧

2 tan � cos ✓W
, �0

Y =
⌧ �  tan �

tan � cos ✓W
, �0

ZY =
2 tan � � ⌧

2 tan � cos ✓W
.

(2.60)
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Possible consequences with 5 new parameters

29

The lightest stable new particle is a natural candidate for WIMP 
dark matter if it is sufficiently stable.  

Majorana neutrino mass terms are generated by the SSB of the 
scalar fields, providing the origin of neutrino masses and 
oscillations.  

Diagonalization of neutrino mass terms leads to the PMNS matrix, 
which in turn can be the source of lepto-baryogenesis. 

The vacuum of the χ scalar is charged (zj = −1) that may be a source 
of accelerated expansion of the universe as seen now.  

The second scalar together with the established BEH field may be 
the source of inflation in the curvaton scenario. 



Credibility requirement

30

Is there any region of the parameter space of the 
model that is not excluded by experimental 
results, both established in standard model 
phenomenology and elsewhere?  

Answer is not immediate, extensive studies are 
needed 

In order not to violate ew constraints, we need     
γZ, sinθT < 10-4 

super-weak force
~



UV behavior

with Zoltán Péli



Perturbative RG flows

32

New couplings are small, hence can use PT 
All β-functions derived at one loop 
Constrain scalar couplings by assuming that the new 
model remains perturbative and stable up to MPl: 

Among new couplings the flow is most sensitive to 
the largest neutrino Yukawa cN 

Require correct Higgs mass and VEV and w(mt)>0

Vákuum stabilitás

Stabilitásvizsgálat az U (1) kiterjesztésben (I)

Elvégeztük az új modell stabilitásvizsgálatát
Az alapvet� kritérium, hogy

�� > 0, (2)
�� > 0, (3)

4���� � �2 > 0, ha � < 0 (4)

teljesüljön egészen a Planck-skáláig.
Ezen felül megköveteltük, hogy a csatolások végig perturvbatívak
maradjanak. Továbbá azt, hogy a fizikai Higgs tömeg és vákuum
várható érték feleljen meg a valóságnak. Legutolsó sorban pedig az
új skalármezhöz tartozó vákuum várható érték ne legyen nulla
alacsony energián.
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if

Vacuum stability
The stability and consistency conditions I.

The criteria for the potential to be perturbative and stable are

4⇡ > �� > 0,
4⇡ > �� > 0,

4⇡ > |�|,
detC = 4���� � �2 > 0, if � < 0,

which have to be satisfied up to the Planck-scale.
After spontaneous symmetry breaking the model has two vacuum
expenctation values (v and w) and two physical scalar masses
Mh/H . In order to be consistent, we have to set:

v(MZ ) = 246 GeV and Mh(MZ ) = 125 GeV.
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CONSTRAINING THE PARAMETER SPACE OF 
THE SCALAR COUPLINGS
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Vacuum stability
Stability analysis in the particle physics model II.

We calculate the one-loop �-functions of the model and perform
the stability analysis of the scalar potential.
The initial conditions of the coupled system of ODE-s are given at
mt and most of them are set by measurements.
The unknown initial values are

��(mt), ��(mt), �(mt), c⌫(mt). (1)

Finally, we constrain the parameter space spanned by the unknown
couplings through the stability and consistency conditions.
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unknown initial values:



CONSTRAINING THE PARAMETER SPACE OF 
THE SCALAR COUPLINGS
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unknown initial values:

Vacuum stability
Stability analysis in the particle physics model II.

We calculate the one-loop �-functions of the model and perform
the stability analysis of the scalar potential.
The initial conditions of the coupled system of ODE-s are given at
mt and most of them are set by measurements.
The unknown initial values are

��(mt), ��(mt), �(mt), c⌫(mt). (1)

Finally, we constrain the parameter space spanned by the unknown
couplings through the stability and consistency conditions.
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Particle physics model of                                        
cosmic inflation

with Zoltán Péli and István Nándori



COSMIC INFLATION IN A NUTSHELL

Inflation could explain the 
flatness problem: the case of flat universe is an unstable 
fix point — how can we observe a flat Universe now? 
horizon problem: on our horizon (                                 )        
we see causally disconnected patches of the Universe — 
how can those be in almost perfect thermal 
equilibrium? 
almost perfect thermal equilibrium:  can we explain 
primordial fluctuations?

About cosmic inflation in a nutshell
Shortcomings of the Big Bang Cosmology II.

If we consider the deviation from the flat geometry a function of
time t, then the flat geometry (k = 0) act as an unstable fixed
point. Since our universe is measured to be flat with some
uncertainty, this is re�ered to as fine tuning or flatness problem.
Our ’horizon’ is a sphere centered on us, with diameter
dH (t) =

R t0
0 dt 0/a(t 0). On our horizon, we see causally disconnected

patches of the universe. How can those be in almost perfect
thermal equilibrium? This is the horizon problem.
’almost perfect’ thermal equilibrium : How could we explain the
CMB or equivalently the primordial density fluctuations?
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COSMIC INFLATION IN A NUTSHELL

Inflation could explain the scale of anisotropy in the CMB: 
during inflation the horizon of the observable universe 
decreases (                          ) 
the wavelengths of fluctuations can become larger than the 
observable universe: causally connected patches become 
disconnected  
after inflation ends, these fluctuations become observable 
again with the increasing size of the horizon in a radiation 
and matter dominated universe 
the power spectra of scalar fluctuations of the metric and 
tensor fluctuations of gravity can be related to measurable 
quantities

About cosmic inflation in a nutshell
Cosmological inflation II.

Since a / eHt during inflation, the geometry is exponentially
driven towards flatness during inflation.
The horizon size shrinks exponentially during inflation
dt/a = e�Htdt: Two causally disconnected events at the end of the
inflation were causally connected before it!
Tiny fluctuations produced during inflation exit the shrinking
horizon and then proceed to reenter it at a later time after
inflation (when the horizon size starts to grow).
The power spectra of these fluctuations can be measured
(WMAP,COBE). The power spectra P(k) is defined as:

h0|�(⌧, x)�(⌧, y)|0i =
Z dk

k P(k)eik·(x�y), d⌧ =

dt
a
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COSMIC INFLATION IN A NUTSHELL

One such quantity is the tensor 
to scalar ratio r = PT/PS (ratio of 
the corresponding power 
spectra, compatible with zero) 

The other one is the scalar tilt 
ns:                             is the 
exponent in the power function 
that describes the power 
spectrum of scalar fluctuations 
(ns = 0.966)

Az inflációról dióhéjban

Bevezet� (III)

A két megfigyelhet� mennyiség egyike a tenzorfluktuációk aránya a
skalárfluktuációkhoz képest (r).
A skalárfluktuációk hatványspektruma hatványfüggvényszer�, ahol
a kitev� ns � 1. Ez utóbbi (ns) a skalár-tilt és ez a második
megfigyelhet� mennyiség.Planck Collaboration: Cosmological parameters

Fig. 27. Constraints on the running of the scalar spectral index
in the ⇤CDM model, using Planck TT,TE,EE+lowE+lensing
when marginalizing over r (samples, coloured by the spectral
index at k = 0.05Mpc�1), and the equivalent result when r = 0
(black contours). The Planck data are consistent with zero run-
ning, but also allow for significant negative running, which gives
a positive tilt ns,0.002, and hence less power, on large scales
(k ⇡ 0.002Mpc�1).

The precision of the Planck temperature constraint re-
mains limited by cosmic variance from the scalar compo-
nent and is model dependent. The tightest and least model-
dependent constraints on the tensor amplitude come from the
Keck Array and BICEP2 Collaborations (2016, BK14) analysis
of the BICEP2/Keck field, in combination with Planck high-
frequency maps to remove polarized Galactic dust emission.
The BK14 observations measure the B-mode polarization power
spectrum in nine bins at ` <⇠ 300, with the tensor amplitude in-
formation coming mainly from scales ` ' 100, where the B-
mode spectrum from scattering at recombination is expected to
peak. The Planck CMB power spectrum measurements use a
much larger sky area, and are useful to convert this measurement
into a constraint on the tensor-to-scalar ratio r at a given scale
with little additional cosmic variance error. To relate the tensor
measurement to constraints on specific inflation models (which
usually predict a region in the ns–r plane), combining with the
Planck data is also essential, although model dependent.

Figure 28 shows the constraints in the ns–r plane, with r
added as a single additional parameter to the base model and
plotted at pivot scale 0.002 Mpc�1. We assume the tensor-mode
spectrum is close to scale invariant, with spectral index given
by the inflation consistency relation to second order in slow-roll
parameters. Planck alone gives

r0.002 < 0.10, (95 %, TT,TE,EE+lowE+lensing), (42)

with ns = 0.9659±0.0041 at 1�. Adding BK14 to directly mea-
sure the tensor amplitude significantly tightens the r constraint,
and adding BAO data tightens (slightly) the ns constraint. Using
the Planck temperature likelihoods we find

r0.002 < 0.065 (95 %, TT+lowE+lensing+BK14+BAO), (43)
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Fig. 28. Constraints on the tensor-to-scalar ratio r0.002 in
the ⇤CDM model, using Planck TT,TE,EE+lowE and Planck
TT,TE,EE+lowE+lensing (red and green, respectively), and
joint constraint with BAO and BICEP2/Keck (blue, includ-
ing Planck polarization to determine the foreground compo-
nents, Keck Array and BICEP2 Collaborations 2016). This as-
sumed the inflationary consistency relation and negligible run-
ning. Dashed grey contours show the joint constraint when us-
ing CamSpec instead of Plik as the high-` Planck likelihood,
indicating the level of modelling uncertainty in the polarization
results. Dotted lines show the loci of approximately constant
e-folding number N, assuming simple V / (�/mPl)p single-
field inflation. Solid lines show the approximate ns–r relation
for locally quadratic and linear potentials to first order in slow
roll; red lines show the approximate allowed range assuming
50 < N < 60 and a power-law potential for the duration of in-
flation. The solid black line (corresponding to a linear potential)
separates concave and convex potentials.

with ns = 0.9663 ± 0.0041 at 1�, or adding polarization

r0.002 < 0.065 (95 %, TT,TE,EE+lowE+lensing
+BK14+BAO), (44)

with ns = 0.9670 ± 0.0037 at 1�. However, the small change
when adding polarization is not stable to the choice of polariza-
tion likelihood; when using the CamSpec TT,TE,EE+lowE like-
lihood in place of Plik, we find the weaker constraint r0.002 <
0.077 for the same data combination as that used in Eq. (44).

All the ns–r contours exclude convex potentials at about
the 95 % confidence (somewhat less if we use the CamSpec
likelihood, see Fig. 28), which substantially restricts the range
of allowed inflation models and disfavours all simple integer
power law potentials. More generally, since r depends on the
slope of the potential, the smallness of the empirical upper
limit on r implies that the inflationary potential must have been
nearly flat when modes exited the horizon. The measured ns
must then be determined largely by the second derivative of
the potential, suggesting a hierarchy in the magnitudes of the
slow-roll parameters, favouring hilltop-like potentials. For a de-

39

Z. Péli, Z. Trócsányi, I. Nándori Infláció stabil világegyetemben 2019.10.25. 10 / 17

About cosmic inflation in a nutshell
Cosmological inflation III.

More specifically the power spectra of the metric (’scalar’) and
gravitational wave (’tensor’) fluctuations are measured. We
extract two important parameters from these: the tensor-to-scalar
ratio r and the scalar tilt ns:

r = PT/PS ,

ns � 1 =

d lnPS
d ln k

One can calculate the ns and r values corresponding to an
inflationary model and then compare it to the most recent
observational data.
ns and r are functions of time or equivalently N . According to our
current horizon size, we can only measure ns and r values 50 � 60
efoldings before the end of the inflation.
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SLOW-ROLL MODEL IN A NUTSHELL

Az inflációról dióhéjban

Többteres infláció (II)

Az inflációt többteres esetben az állíthatja le, ha

✏ =
3
2

✓p
⇢
+ 1

◆
< 1, vagy ⌘ij ⇠ d✏

dN < 1 (7)

elromlik. Ezek az ú.n. slow-roll feltételek. Az infláció leálltánál
természetesen N � 60 szükséges.

ábra: W.
H. Kinney,
TASI
Lectures on
inflation
(2009)

Többteres inflációnál a megfigyelhet� mennyiségek száma is b�vül:
a skalár-tilt mellett lesz entrópia-tilt, ’a kett� közötti korreláció -
tilt’ illetve maga a korrelációs szög �.
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from W.H. Kinney: TASI lectures on inflation
The minimum has to be 
sufficiently far for N > 60 
(observables are const-
ructed from the slow-roll 
parameters taken 50−60  
e-folds before the end of 
inflation) 
How can such a potential 
energy emerge?

One or more scalar field(s) coupled to gravity can cause inflation as the 
equation of state (p = - ε) implies negative pressure, leading to 
exponential increase of the scale factor:                (N is the e-fold number)a / eN

ε ε



SLOW ROLL WITH TWO FIELDS

VEVs are proportional to (detC)-1/2 

The couplings run according to the RGEs

2

forms as a singlet under the standard model gauge trans-
formations. The potential energy of these scalar fields is
assumed as

V (�,�) = V0 � µ2
�|�|2 � µ2

�|�|2

+
�
|�|2, |�|2

�✓��
�
2

�
2 ��

◆✓
|�|2
|�|2

◆
(2)

where |�|2 = |�+|2+|�0|2. This potential energy function
contains a coupling term �|�|2|�|2 of the scalar fields in
addition to the usual quartic terms. Our model for cos-
mic inflation works only if � < 0. The value of the addi-
tive constant V0 is irrelevant for particle dynamics, but
as we shall see, it is relevant for the inflationary model,
hence we allow a non-vanishing value for it, to be speci-
fied later. In order that this potential energy be bounded
from below, we have to require the positivity of the self-
couplings, ��, �� > 0, and also the coupling matrix be
positive definite,

det� = 4���� � �2 > 0 . (3)

If these conditions are satisfied, we find the minimum of
the potential energy at field values � = v and � = w
where the vacuum expectation values (VEVs) are

v =

s
2��µ2

� � �µ2
�

4���� � �2
, w =

s
2��µ2

� � �µ2
�

4���� � �2
. (4)

Using the VEVs, we can express the quadratic couplings
as

µ2
� = 2��v

2 + �w2 , µ2
� = 2��w

2 + �v2 . (5)

For � < 0, the constraint (3) ensures that the denomi-
nators of the VEVs in Eq. (4) are positive, so the VEVs
have non-vanishing real values only if the inequalities

2��µ
2
� � �µ2

� > 0 and 2��µ
2
� � �µ2

� > 0 (6)

are satisfied simultaneously, which can be satisfied if at
most one of the quadratic couplings is smaller than zero.

After spontaneous symmetry breaking and choosing
unitary gauge, the scalar kinetic term leads to a mass
matrix of the two real scalars. We can diagonalize this
matrix by an orthogonal rotation and find the for the half
of the squares of the masses of the mass eigenstates:

M2
h/H

2
= ��v

2+��w
2⌥

q
(��v2 � ��w2)2 + (�vw)2 (7)

where Mh  MH by convention. At this point either h
or H can be the standard model Higgs boson. As Mh

must be positive, the condition

v2w2
⇣
4���� � �2

⌘
> 0 (8)

has to be fulfilled. If both VEVs are greater than zero,
as needed for two non-vanishing scalar masses, then this
condition coincides with the positivity constraint (3).

We studied the ultraviolet behaviour of the scalar cou-
plings of this model in Ref. [16] where we constrained the
parameter space by requiring that (i) the scalar poten-
tial remains bounded from below and (ii) the couplings
remain perturbative up to the Planck scale.
Cosmological inflation – We now explore the cosmic

inflation of the two-field model of Sect. . We consider
slow-roll inflation when the potential energy has a large,
almost flat area for small field values and a global mini-
mum at large values of the VEVs. Such a potential en-
ergy allows for slow roll of the fields from small values
towards the global minimum, resulting in cosmic infla-
tion. The required form of the potential energy function
appears naturally at some high energy scale, for certain
values of the scalar couplings at the electroweak scale mt.
As Eq. (4) shows, the VEVs are inversely proportional to
the square root of the scalar coupling determinant det�.
Fig. 1 shows the running of det� together with that of
the couplings from initial values at the electroweak scale
chosen from the stability region. We see a narrow wedge
– like an inverse resonance – where det� becomes very
small, implying VEVs at around field values of 105 GeV.
The figure shows an example with vanishing Yukawa cou-
pling c⌫ of the right-handed neutrino, but below we show
that the value of c⌫ influences only the size of the param-
eter space of the scalar couplings where this phenomenon
leads to such potential energy function that can support
cosmic inflation in accordance with current values of rel-
evant observables.

FIG. 1. Running of the scalar couplings and of det�. g means
any of the couplings.

The single-field particle physics inflationary models
predict purely curvature perturbations, resulting from
energy density fluctuations. Having multiple fields al-
lows for multiple types of fluctuations, and hence several
observable quantities, such as the tilts corresponding to
curvature, isocurvature (emerging due to fluctuations in
the relative number density of particles in the system)
and a correlation angle � [17].
Following Ref. [18], we introduce a local rotation of

(�,�) into (�, s) where � refers to the adiabatic field and s

V (�,�) = V0 � µ2
�|�|2 � µ2

�|�|2 +
1

2
(|�|2, |�|2)C

✓
|�|2
|�|2

◆

z }| {✓
2�� �
� 2��

◆



SLOW ROLL WITH TWO FIELDS

The determinant of the 
coupling matrix in the 
denominator becomes 
very small in a certain 
region of the parameter 
space 

As a result, the VEVs 
become large, O(105GeV) 
at the scale of inflation μinf
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RUNNING OF THE DETERMINANT OF THE 
SCALAR COUPLINGS
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RUNNING OF THE DETERMINANT OF THE 
SCALAR COUPLINGS
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SLOW ROLL WITH ONE FIELD

Traditional normalization of V 
with one field is  

→ r has to be sizable, somewhat 
in contradiction with current 
trend of measurements 
(compatible with r = 0) 

with multiple fields we can 
separate the value of r and V0  

Az inflációról dióhéjban

Bevezet� (III)

A két megfigyelhet� mennyiség egyike a tenzorfluktuációk aránya a
skalárfluktuációkhoz képest (r).
A skalárfluktuációk hatványspektruma hatványfüggvényszer�, ahol
a kitev� ns � 1. Ez utóbbi (ns) a skalár-tilt és ez a második
megfigyelhet� mennyiség.Planck Collaboration: Cosmological parameters

Fig. 27. Constraints on the running of the scalar spectral index
in the ⇤CDM model, using Planck TT,TE,EE+lowE+lensing
when marginalizing over r (samples, coloured by the spectral
index at k = 0.05Mpc�1), and the equivalent result when r = 0
(black contours). The Planck data are consistent with zero run-
ning, but also allow for significant negative running, which gives
a positive tilt ns,0.002, and hence less power, on large scales
(k ⇡ 0.002Mpc�1).

The precision of the Planck temperature constraint re-
mains limited by cosmic variance from the scalar compo-
nent and is model dependent. The tightest and least model-
dependent constraints on the tensor amplitude come from the
Keck Array and BICEP2 Collaborations (2016, BK14) analysis
of the BICEP2/Keck field, in combination with Planck high-
frequency maps to remove polarized Galactic dust emission.
The BK14 observations measure the B-mode polarization power
spectrum in nine bins at ` <⇠ 300, with the tensor amplitude in-
formation coming mainly from scales ` ' 100, where the B-
mode spectrum from scattering at recombination is expected to
peak. The Planck CMB power spectrum measurements use a
much larger sky area, and are useful to convert this measurement
into a constraint on the tensor-to-scalar ratio r at a given scale
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and adding BAO data tightens (slightly) the ns constraint. Using
the Planck temperature likelihoods we find

r0.002 < 0.065 (95 %, TT+lowE+lensing+BK14+BAO), (43)
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Fig. 28. Constraints on the tensor-to-scalar ratio r0.002 in
the ⇤CDM model, using Planck TT,TE,EE+lowE and Planck
TT,TE,EE+lowE+lensing (red and green, respectively), and
joint constraint with BAO and BICEP2/Keck (blue, includ-
ing Planck polarization to determine the foreground compo-
nents, Keck Array and BICEP2 Collaborations 2016). This as-
sumed the inflationary consistency relation and negligible run-
ning. Dashed grey contours show the joint constraint when us-
ing CamSpec instead of Plik as the high-` Planck likelihood,
indicating the level of modelling uncertainty in the polarization
results. Dotted lines show the loci of approximately constant
e-folding number N, assuming simple V / (�/mPl)p single-
field inflation. Solid lines show the approximate ns–r relation
for locally quadratic and linear potentials to first order in slow
roll; red lines show the approximate allowed range assuming
50 < N < 60 and a power-law potential for the duration of in-
flation. The solid black line (corresponding to a linear potential)
separates concave and convex potentials.

with ns = 0.9663 ± 0.0041 at 1�, or adding polarization

r0.002 < 0.065 (95 %, TT,TE,EE+lowE+lensing
+BK14+BAO), (44)

with ns = 0.9670 ± 0.0037 at 1�. However, the small change
when adding polarization is not stable to the choice of polariza-
tion likelihood; when using the CamSpec TT,TE,EE+lowE like-
lihood in place of Plik, we find the weaker constraint r0.002 <
0.077 for the same data combination as that used in Eq. (44).

All the ns–r contours exclude convex potentials at about
the 95 % confidence (somewhat less if we use the CamSpec
likelihood, see Fig. 28), which substantially restricts the range
of allowed inflation models and disfavours all simple integer
power law potentials. More generally, since r depends on the
slope of the potential, the smallness of the empirical upper
limit on r implies that the inflationary potential must have been
nearly flat when modes exited the horizon. The measured ns
must then be determined largely by the second derivative of
the potential, suggesting a hierarchy in the magnitudes of the
slow-roll parameters, favouring hilltop-like potentials. For a de-
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to the entropy field. The adiabatic field is the path length
along the classical trajectory, while s remains a constant.
The number of slow-roll parameters also increase. In the
single-field case, in addition to the parameter ✏ describing
the deviation from the equation of state of the de-Sitter

space-time, ✏ = 3
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, there is only one other slow

roll parameter ⌘, which essentially describes the rate of
change of ✏. In our example we have three ⌘ parameters
that can be expressed approximately from the potential
as

⌘ij ' m2
p

@ijV

V
, ij = ss, ��, s� , (9)

while

✏ ' 1

2
m2

P

✓
@�V

V

◆2

. (10)

In principle, inflation is possible only until both ✏ and ⌘ij
are small, resulting in the slow roll.

To set the exact conditions of slow roll, we solved the
equations of motion with the integration variable trans-
formed to the number of e-folds N , and terminated the
process, when either of the slow-roll parameters reached
unity. We set the starting point of the trajectory at van-
ishing field values. For the parameter values of the po-
tential energy we used values allowed by the perturba-
tivity and stability conditions mentioned in the section
describing the model, namely |�|, �i ⇠ O(10�1 � 10�2)
and µ2

i /GeV2 ⇠ O(1� 3⇥ 104). For such values we have
found that the ⌘ij parameters increase much faster than
✏, reaching 1, while ✏ remaining small, about O(10�30).
Hence, we set the end of inflation by the condition
⌘ij = 1. In practice the parameter ⌘�� increases the
fastes. We show an example of such a trajectory in Fig. 2.
This trajectory induces N > 200 e-folds. The value of
⌘⇤ss refers to the value of ⌘ss at 60 e-folds before the end
of inflation.

The observables are constructed from the slow-roll pa-
rameters taken 50�60 e-folds before the end of inflation.
This corresponds to an even smaller ✏, which reduces the
tensor-to-scalar ratio, r = 16✏(sin�)2 to essentially zero.
Such a small r is not excluded by cosmological measure-
ments. The smallness of r however is in conflict with the
traditional cosmological normalization

V0 ' r
�
1.6 · 1016 GeV

�4
. (11)

This conflict may be resolved by assuming that the adia-
batic and entropy fluctuations were maximally correlated
at 50 � 60 e-folds before the end of inflation, implying
cos� = 1, and hence predicting zero for the tensor-to-
scalar ratio. Consequently, we have to find di↵erent con-
ditions to set the scale of inflation µinf and for the nor-
malization of the potential energy. As suggested above,
we provide the first from the particle physics model by
identifying µinf with the location of the wedge in the run-
ning of det�. The case of� = 0, i.e. maximally correlated
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fluctuations are referred to as the curvaton scenario. In
this case, the various tilts coincide. Neglecting ✏, we have:

ns � 1 = 2⌘ss (12)

Considering ⌘ss as a function of V0 (see Eq. (9) with V0

in V in the denominator), we normalize it to produce
the scalar tilt in agreement with the most recent data,
ns ' 0.966, yielding V0 ' 5⇥ 1042 GeV4.
Having fixed the value of V0, we propose the following

inflationary scenario. The scalar potential energy is given
by Eq. (2). After the Big Bang the characteristic en-
ergy scale of particle interactions is near the Planck scale,
hence the VeVs of the scalar fields are fluctuating around
zero. As the universe expands, the characteristic energy
scale decreases and the scalar couplings run according
to their renormalization group equations, exhibiting the
wedge for det� at a scale around 1016 GeV that we iden-
tify with the scale of inflation. At this scale the global
minimum of the potential energy function increases to
about 105 GeV and the fields start to roll slowly towards
this minimum, resulting in cosmic inflation. This accel-
erated expansion continues until the acceleration (sec-
ond time derivative of the fields) remain negligible in the
equation of the motion, determined by max ⌘ij = 1. The
universe continues its Hubble expansion, decreasing the
characteristic energy scale, and the global minimum of
the scalar potential quickly returns to small field values.
Predicting the scalar couplings – The cosmological in-

flation as described in the previous section occurs only in
a restricted region of the parameter space of the scalar
couplings, which we define at the electroweak scale.
The wedge in the running of det� appears only for

�(mt) < 0. We have scanned this side of the parame-
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along the classical trajectory, while s remains a constant.
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In principle, inflation is possible only until both ✏ and ⌘ij
are small, resulting in the slow roll.

To set the exact conditions of slow roll, we solved the
equations of motion with the integration variable trans-
formed to the number of e-folds N , and terminated the
process, when either of the slow-roll parameters reached
unity. We set the starting point of the trajectory at van-
ishing field values. For the parameter values of the po-
tential energy we used values allowed by the perturba-
tivity and stability conditions mentioned in the section
describing the model, namely |�|, �i ⇠ O(10�1 � 10�2)
and µ2
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found that the ⌘ij parameters increase much faster than
✏, reaching 1, while ✏ remaining small, about O(10�30).
Hence, we set the end of inflation by the condition
⌘ij = 1. In practice the parameter ⌘�� increases the
fastes. We show an example of such a trajectory in Fig. 2.
This trajectory induces N > 200 e-folds. The value of
⌘⇤ss refers to the value of ⌘ss at 60 e-folds before the end
of inflation.

The observables are constructed from the slow-roll pa-
rameters taken 50�60 e-folds before the end of inflation.
This corresponds to an even smaller ✏, which reduces the
tensor-to-scalar ratio, r = 16✏(sin�)2 to essentially zero.
Such a small r is not excluded by cosmological measure-
ments. The smallness of r however is in conflict with the
traditional cosmological normalization
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This conflict may be resolved by assuming that the adia-
batic and entropy fluctuations were maximally correlated
at 50 � 60 e-folds before the end of inflation, implying
cos� = 1, and hence predicting zero for the tensor-to-
scalar ratio. Consequently, we have to find di↵erent con-
ditions to set the scale of inflation µinf and for the nor-
malization of the potential energy. As suggested above,
we provide the first from the particle physics model by
identifying µinf with the location of the wedge in the run-
ning of det�. The case of� = 0, i.e. maximally correlated
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fluctuations are referred to as the curvaton scenario. In
this case, the various tilts coincide. Neglecting ✏, we have:
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Considering ⌘ss as a function of V0 (see Eq. (9) with V0

in V in the denominator), we normalize it to produce
the scalar tilt in agreement with the most recent data,
ns ' 0.966, yielding V0 ' 5⇥ 1042 GeV4.
Having fixed the value of V0, we propose the following

inflationary scenario. The scalar potential energy is given
by Eq. (2). After the Big Bang the characteristic en-
ergy scale of particle interactions is near the Planck scale,
hence the VeVs of the scalar fields are fluctuating around
zero. As the universe expands, the characteristic energy
scale decreases and the scalar couplings run according
to their renormalization group equations, exhibiting the
wedge for det� at a scale around 1016 GeV that we iden-
tify with the scale of inflation. At this scale the global
minimum of the potential energy function increases to
about 105 GeV and the fields start to roll slowly towards
this minimum, resulting in cosmic inflation. This accel-
erated expansion continues until the acceleration (sec-
ond time derivative of the fields) remain negligible in the
equation of the motion, determined by max ⌘ij = 1. The
universe continues its Hubble expansion, decreasing the
characteristic energy scale, and the global minimum of
the scalar potential quickly returns to small field values.
Predicting the scalar couplings – The cosmological in-

flation as described in the previous section occurs only in
a restricted region of the parameter space of the scalar
couplings, which we define at the electroweak scale.
The wedge in the running of det� appears only for
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In principle, inflation is possible only until both ✏ and ⌘ij
are small, resulting in the slow roll.

To set the exact conditions of slow roll, we solved the
equations of motion with the integration variable trans-
formed to the number of e-folds N , and terminated the
process, when either of the slow-roll parameters reached
unity. We set the starting point of the trajectory at van-
ishing field values. For the parameter values of the po-
tential energy we used values allowed by the perturba-
tivity and stability conditions mentioned in the section
describing the model, namely |�|, �i ⇠ O(10�1 � 10�2)
and µ2
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found that the ⌘ij parameters increase much faster than
✏, reaching 1, while ✏ remaining small, about O(10�30).
Hence, we set the end of inflation by the condition
⌘ij = 1. In practice the parameter ⌘�� increases the
fastes. We show an example of such a trajectory in Fig. 2.
This trajectory induces N > 200 e-folds. The value of
⌘⇤ss refers to the value of ⌘ss at 60 e-folds before the end
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tensor-to-scalar ratio, r = 16✏(sin�)2 to essentially zero.
Such a small r is not excluded by cosmological measure-
ments. The smallness of r however is in conflict with the
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This conflict may be resolved by assuming that the adia-
batic and entropy fluctuations were maximally correlated
at 50 � 60 e-folds before the end of inflation, implying
cos� = 1, and hence predicting zero for the tensor-to-
scalar ratio. Consequently, we have to find di↵erent con-
ditions to set the scale of inflation µinf and for the nor-
malization of the potential energy. As suggested above,
we provide the first from the particle physics model by
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To set the exact conditions of slow roll, we solved the
equations of motion with the integration variable trans-
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Such a small r is not excluded by cosmological measure-
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ditions to set the scale of inflation µinf and for the nor-
malization of the potential energy. As suggested above,
we provide the first from the particle physics model by
identifying µinf with the location of the wedge in the run-
ning of det�. The case of� = 0, i.e. maximally correlated

FIG. 2. A possible trajectory of the rolling of the scalar fields.

fluctuations are referred to as the curvaton scenario. In
this case, the various tilts coincide. Neglecting ✏, we have:

ns � 1 = 2⌘ss (12)

Considering ⌘ss as a function of V0 (see Eq. (9) with V0

in V in the denominator), we normalize it to produce
the scalar tilt in agreement with the most recent data,
ns ' 0.966, yielding V0 ' 5⇥ 1042 GeV4.
Having fixed the value of V0, we propose the following

inflationary scenario. The scalar potential energy is given
by Eq. (2). After the Big Bang the characteristic en-
ergy scale of particle interactions is near the Planck scale,
hence the VeVs of the scalar fields are fluctuating around
zero. As the universe expands, the characteristic energy
scale decreases and the scalar couplings run according
to their renormalization group equations, exhibiting the
wedge for det� at a scale around 1016 GeV that we iden-
tify with the scale of inflation. At this scale the global
minimum of the potential energy function increases to
about 105 GeV and the fields start to roll slowly towards
this minimum, resulting in cosmic inflation. This accel-
erated expansion continues until the acceleration (sec-
ond time derivative of the fields) remain negligible in the
equation of the motion, determined by max ⌘ij = 1. The
universe continues its Hubble expansion, decreasing the
characteristic energy scale, and the global minimum of
the scalar potential quickly returns to small field values.
Predicting the scalar couplings – The cosmological in-

flation as described in the previous section occurs only in
a restricted region of the parameter space of the scalar
couplings, which we define at the electroweak scale.
The wedge in the running of det� appears only for

�(mt) < 0. We have scanned this side of the parame-

                                                    , assume that Δ* = 0 
→ V0 obtained from ⌘ij = 1 (✏ ' 0)

3

to the entropy field. The adiabatic field is the path length
along the classical trajectory, while s remains a constant.
The number of slow-roll parameters also increase. In the
single-field case, in addition to the parameter ✏ describing
the deviation from the equation of state of the de-Sitter

space-time, ✏ = 3
2

⇣
p
⇢ + 1

⌘
, there is only one other slow

roll parameter ⌘, which essentially describes the rate of
change of ✏. In our example we have three ⌘ parameters
that can be expressed approximately from the potential
as

⌘ij ' m2
p

@ijV

V
, ij = ss, ��, s� , (9)

while

✏ ' 1

2
m2

P

✓
@�V

V

◆2

. (10)

In principle, inflation is possible only until both ✏ and ⌘ij
are small, resulting in the slow roll.

To set the exact conditions of slow roll, we solved the
equations of motion with the integration variable trans-
formed to the number of e-folds N , and terminated the
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Established observations require physics beyond SM, but 
do not suggest a rich BSM physics 

U(1)Z extension may explain all known results 
Anomaly cancellation and neutrino mass generation 
mechanism are used to fix the supercharges (Z-charges) 
up to reasonable assumptions 

May explain the origin of inflationary potential for 
curvaton model 

Parameter space can and need be constrained from 
existing experimental results (e.g. searches in missing 
energy events)



The end


