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What are the SU(N) symmetric Heisenberg 
models that we are interested in?

H =
X

i,j

Pi,j Pi,j is the transposition operator

i j i j
Pi,j | 〉→ | 〉 N species on each site 

that are treated equally. 

simplest example: 

SU(2) S=1/2 (fundamental representation) 

[but not the S=1 !]

Pij |�i↵j� = |↵i�j�



What are the SU(N) symmetric Heisenberg 
models that we are interested in?
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For the S = 1/2 fundamental representation of the SU(2):
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Single-atom-resolved fluorescence imaging of an atomic Mott insulator

Jacob F. Sherson et al., Nature 467, 68 (2010)

also 
Probing the Superfluid–to–Mott Insulator Transition at the Single-Atom Level
W. S. Bakr et al., Science 329, 547 (2010)



SU(3): Competing spin and quadrupolar ordering in spin 
models (NiGa2S4?)

H = J
X

i,j

h
cos #SiSj + sin# (SiSj)

2
i
� h

X

i

Sz
i

bilinear-biquadratic Heisenberg model for S=1 spins:

Q̂iQ̂j = 2
⇣
ŜiŜj

⌘2
+ ŜiŜj � 8/3

Q̂iQ̂j + ŜiŜj = �2Pi,j �
2
3

Increased SU(3) symmetry at ϑ=π/4:

all the 3 states of the S=1 spin become identical

|x� =
i�
2

(|1� � |1̄�)

|y� =
1�
2

(|1�+ |1̄�)

|z� = �i|0�



What methods do we use?

(i)  Variational - site factorized wave function

(ii) Flavor wave calculations 

(iii) Exact diagonalization of small clusters

(iv) iPEPS: infinite project entangled pair states(variational 

approach based on tensor ansatz)

(v) Variational - Gutzwiller projected fermionic wave 

functions



Triangular lattice, S=1 and SU(3)



SU(2) vs. SU(3) - two sites

⊗ = ⊕
22 1 3× = +

½ ⊗ ½ = 0 ⊕ 1

Addition of two S=½ SU(2) spins:

using Young diagrams:

↑ or ↓ spin

|↑↓〉−|↓↑〉 singlet, odd 
(anti-symmetrical)

|↑↑〉, |↑↓〉+|↓↑〉, |↓↓〉 triplet 
even (symmetrical)

⊗ = ⊕
33 3 6× = +

Addition of two SU(3) spins:

|aa〉, |bb〉, |cc〉, |ab〉+|ba〉, 
|ac〉+|ca〉, and |bc〉+|cb〉.
even (symmetrical)

|ab〉−|ba〉, |ac〉−|ca〉, 
|bc〉−|cb〉: odd (anti-
symmetrical).

|a〉, |b〉, and |c〉. 

H = P12

P12(|αβ⟩ − |βα⟩) = −(|αβ⟩ − |βα⟩)

P12(|αβ⟩ + |βα⟩) = +(|αβ⟩ + |βα⟩) E=+1, even wave function

E=−1 , odd wave function
1 2



SU(3) singlet

in the SU(3) singlet the spins are fully entangled:
 we cannot write it in a product form

= |ABC〉 + |CAB〉 + |BCA〉 − |BAC〉 − |ACB〉 − |BCA〉
spins fully antisymmetrized

SU(3) irreps on 3 sites

1 2 × 83 = +

Addition of three SU(3) spins (27 states):

⊕⊕ 2×=⊗ ⊗

+ 10× ×3 3



Variational (classical) approach
a site-product wave function for e.g. SU(3):

minimal, when the di and dj on the bond are orthogonal 
different colors on a bond

Evar =
��|H|�⇥
��|�⇥ = J

X

hi,ji

��di · d̄j

��2

|�i� = dA,i|A�i + dB,i|B�i + dC,i|C�i

|�� =
Y

i

| i�



The fate of SU(3) on triangular lattice

“classical” solution?crystal of singlets?
SU(3) classical state is perfectly 

happy on the triangular lattice - the 
3 mutually perpendicular d’s form a 

3 sublattice structure. 

SU(2) frustrated!

A. M. Läuchli, F. Mila, and K. Penc, Phys. Rev. Lett. 97, 087205 (2006)

H. Tsunetsugu and M. Arikawa, J. Phys. Soc. Jpn. 75, 083701 (2006) 
[NiGa2S4, Nakatsuji]

http://link.aps.org/abstract/PRL/v97/e087205
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SU(3) on triangular lattice - exact diagonalization

Signature of SU(3) breaking in the 
excitation spectrum:

Anderson tower compatible 
with 3 sublattice order

C2 - Casimir operator, analog of the 
total spin S^2
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K. Penc, A. M. Läuchli, in `Introduction to Frustrated 
Magnetism', p. 331-362, Springer Series in Solid-State 
Sciences, Vol. 164, eds. C. Lacroix, F. Mila, and P. Mendels 
(Springer, 2011)

http://www.springer.com/materials/book/978-3-642-10588-3
http://www.springer.com/materials/book/978-3-642-10588-3
http://link.springer.com/chapter/10.1007%2F978-3-642-10589-0_13


SU(3) flavour-wave theory

States in the fully symmetric multiplet 
can be represented by 3 Schwinger 

bosons aA,aB and aC

1 2 ... M1

N. Papanicolaou, Nucl. Phys. B 305, 367 (1988) 
A. Joshi et al. PRB 60, 6584 (1999)

We enlarge the fundamental to the fully 
symmetric representation of M boxes.

The site product wave function is the “classical” 
solution (no quantum entanglement between sites)

|�i� = dA,i|A�i + dB,i|B�i + dC,i|C�i

|�� =
Y

i

| i�

|�,⇥⇤ = cos
�

2
| �⇤+ sin

�

2
ei�| ⇥⇤

cf. SU(2) spin coherent state for SU(2)

a†A,iaA,i + a†B,iaB,i + a†C,iaC,i = M

Pij =
X

µ,��{A,B,C}

a†µ,ia
†
�,ja�,iaµ,j



a b

H = (a† + b)(a+ b†)

quadratic in operators: we know how to diagonalize it (spin wave)

H = �MJL+M
X

⌫

X

k

⇥⌫(k)

✓
�†
⌫(k)�⌫(k) +

1

2

◆

SU(3) flavour-wave theory 

1/M expansion:

Holstein-Primakoff
 bosons

ã†A, ãA !
q
M � ã†B ãB � ã†C ãC

!
p
M � 1

2
p
M

⇣
ã†B ãB + ã†C ãC

⌘
+ . . .

Pij =
X

µ,��{A,B,C}

a†µ,ia
†
�,ja�,iaµ,j



Structure factors in S=1 
bilinear-biquadratic 
Heisenberg model 

QMC (A. Völl and S. Wessel)
Phys. Rev. B 91, 165128 (2015)

ANNIKA VÖLL AND STEFAN WESSEL PHYSICAL REVIEW B 91, 165128 (2015)
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FIG. 3. (Color online) Uniform susceptibility χu and specific
heat CV as functions of temperature T taken for different values
of θ , as indicated. The dashed lines show the S = 1 single-spin Curie
behavior χC

u = S(S + 1)/(3T ) of the uniform susceptibility.

e.g., the Shottky-like peak position of CV by a factor 3
as compared to the data shown in Fig. 1 of Ref. [26]. In
fact, the data in Ref. [26] apply to J = 1/3 instead of the
anticipated value of J = 1 [32]. The susceptibility data in
Fig. 3 clearly exhibit a divergent low-T response in the
ferromagnetically ordered region, including the SU(3) point,
while χu saturates to a finite value in the ferroquadrupolar
ground state, indicative of the gapless nature of this regime.
The comparison to the single-spin S = 1 Curie behavior in
Fig. 3, which is approached by the QMC data in the large-T
limit, similarly exhibits an enhanced (suppressed) polarizabil-
ity of the systems within the ferromagnetic (ferroquadrupolar)
region.

In addition to the Shottky-like peak at T = O(J ), the
specific heat exhibits for the ferroquadrupolar region a su-
perlinear suppression at low temperatures, while CV vanishes
linearly with temperature within the ferromagnetic region. In
fact, from the dispersions of the low-energy Goldstone modes,
considered in more detail in Sec. IV, we expect the low-T
specific heat to exhibit a linear (quadratic) asymptotic low-T
scaling within the ferromagnetic (ferroquadrupolar) regime,
which can be observed more directly from the appropriately
rescaled low-T specific heat data shown in Fig. 4. In all the
considered cases, the rescaled quantities approach constant
low-T values. Anticipating further discussion in Sec. IV,
we consider first the pure biquadratic model, θ = −π/2,
in more detail. For a single linearly dispersing low-energy
mode with ω(q) = c|q|, we obtain a leading contribution
to the low-T specific heat CV = 3 ζ (3)/π × T 2/c2, where
ζ (3) ≈ 1.202. Employing as an estimate for the velocity a
value of c ≈ 4.8 (cf. the discussion in Sec. IV), we obtain
a value of CV /T 2 ≈ 0.05. The data in Fig. 4 are then in
agreement with the presence of two such independent linear
soft-mode contributions. Similarly, for θ = −0.625π , we
obtain CV /T 2 ≈ 0.2 for two linear soft modes with c ≈ 3.4,
again in agreement with the specific heat data in Fig. 4.
For θ ! θSU(3), the system exhibits quadratic low-energy soft
modes (cf. the discussion in Sec. IV). A single quadratically
dispersing low-energy mode with ω(q) = bq2 provides a
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FIG. 4. Rescaled specific heat CV /T (CV /T 2) for the ferromag-
netic (ferroquadrupolar) region as a function of temperature T for
different values of θ , as indicated.

contribution CV = π/12 × T/b to the low-T specific heat.
From the exact result of the low-energy dispersion [9] at
the SU(3) point, with b = 3/

√
8 ≈ 1.06 (cf. the discussion

in Sec. IV), we obtain a low-T contribution of CV /T ≈ 0.24,

FIG. 5. (Color online) Dynamical spin and quadrupolar structure
factors SS(ω,q) and SQ(ω,q) for different values of θ along the
path & → K → M → & through the Brillouin zone [& = (0,0)ᵀ,
K = (4π/3,0)ᵀ, M = (2π/3,π/

√
3)ᵀ]. The dashed lines indicate the

quadrupolar wave dispersion relations obtained within flavor-wave
theory.
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Triangular lattice, SU(4)



SU(4) on triangular lattice - exact diagonalization

Signature of SU(4) breaking in the 
excitation spectrum:

Anderson tower compatible 
with 4 sublattice order for large 

enough second neighbor J’ 

C2 - Casimir operator, analog of the 
total spin S^2

dratic bosonic terms, the Hamiltonian can be diagonalized
and, up to a constant, is given by

HFW! !
k!RBZ

!
m ,n

"mn#k$!%m ,k
n† %m ,k

n "
1
2" . #2$

The energies of the flavor modes are given by

"mn#k $!2!#J"J!$2#&J cos#krmn$"J! cos#krmn! $'2,
#3$

where rmn and rmn! are the NN and NNN distances between
sublattices m and n. There are 12 branches in the reduced
Brillouin zone &RBZ, Fig. 1#b$', which is equivalent to three
in the normal Brillouin zone. The operators % and b are
related through a Bogoliubov transformation.
In Fig. 2 we show a plot of the flavor dispersion for some

arbitrary value of J!/J . For J!!0, the energy of the flavor
excitations becomes effectively one dimensional15 &e.g.,
"12(k)!2J# sin kx#, with a zero energy node along the kx
!0 line$. These low-energy quantum fluctuations destroy the
four-sublattice long-range order. Including J!, the magnons
along the (-M line acquire finite dispersion )!JJ!, and this
will reduce the fluctuations and stabilize the LRO state.

Quantitatively the fluctuations are reflected in the effective
staggered moment *M+!M#*! i,mbi

m†(l)bi
m(l)+, which

reads

*M+!M# !
n,m

$ J"J!
"mn#k$

#
1
2 % RBZ

-M"
3
2"

3
2.

ln
J!
16J "O#J!/J $. #4$

The logarithmic divergence is the manifestation of the low-
energy modes. The *M+ for M!1 is finite when J!/J
$0.12 #inset in Fig. 2$, and we take this criterion for the
stability of the LRO. Note that, within the linear flavor-wave
theory, the staggered moments and the energy are symmetric
in J and J!. So we expect LRO to be stable for 0.12%J!/J
%8 #for J!0 we have four decoupled intercalated triangular
lattices$.
To assess the validity of these results in the extreme quan-

tum limit of the fundamental representation, we have looked
for signatures of the quantum phase transition in the exact
spectrum on a finite system. Specifically, we have numeri-
cally diagonalized a 12-site cluster defined by the lattice vec-
tors T1!2u1"4u2 and T2!4u1"2u2. This particular clus-
ter inherits the D6 symmetry of the triangular lattice, and it is
also compatible with the four-sublattice ordering. Our aim
was to identify the existence of the so-called Anderson tower
spectrum, a set of states well separated from the others,
which become degenerate and give rise to a linear combina-
tion with LRO in the thermodynamic limit.3,16 For SU#2$
models, their energy for an N-site system, measured from the
ground state, is proportional to S2/N , where the total spin S
is the addition of sublattice spins which maximize the sub-
lattice magnetizations.17 In the SU#4$ case, the same formula
is expected to hold if S2 is replaced by the first Casimir
operator C of the SU#4$ algebra #see Ref. 9 for the definition
and convention$.
These states can be easily identified in Fig. 3#a$, which

shows the spectrum for J!/J!0.2. In particular, the degen-
eracies and the symmetry properties are in complete agree-
ment with group-theoretical calculations.18 This structure is
also present in the spectra obtained for all values of J!/J
larger than 0.2 up to J!!J , including J!!J/2, a special
point for the 12-site cluster where the tower structure can be
explicitly proven.18 By contrast, the spectrum for J!!0 is
shown in Fig. 3#b$. Clearly, the tower structure is lost: The
excitation energies are not aligned on a straight line, and the
symmetry and degeneracy of the corresponding excited
states do not agree with group theory. This behavior is con-
sistent with a quantum phase transition between J!/J!0 and
0.2. Due to the very rapid increase of the size of the Hilbert
space, we could not study larger systems to check that the
tower structure is still there for large enough J!/J , and to
perform a finite-size scaling of the slope. Still, the compari-
son of the spin-wave results, obtained in the thermodynamic
limit, with these exact diagonalization results gives a very
strong indication that there is a quantum phase transition
between a four-sublattice ordered state for large enough J!/J
and some kind of spin liquid for J!!0.

FIG. 1. #a$ Four-sublattice long-range-ordered state with basis
vectors u1!(1,0) and u2!(#1/2,!3/2). The dashed line repre-
sents the next-nearest-neighbor exchange. The sublattices are la-
beled according to the occupation by the states of the fundamental
representation. #b$ Brillouin zone of the triangular lattice. The
smaller, shaded hexagon denotes the reduced Brillouin zone asso-
ciated with the four-sublattice order.

FIG. 2. Flavor-wave dispersion for J!/J!0.1. Inset: Reduced
moment as a function of J!/J .

BRIEF REPORTS PHYSICAL REVIEW B 68, 012408 #2003$

012408-2

What is the nature of this disordered ground state? For
SU!2" models, experience with frustrated systems has shown
that it is useful to look at the structure of the low-lying
singlet spectrum of a finite system, which can contain a
single state in valence-bond solids with no lattice-symmetry
breaking, four states for true spin liquids on a torus !topo-
logical degeneracy19", a finite number of states in valence-
bond solids with lattice-symmetry breaking, or a prolifera-
tion of low-lying singlets, as in the spin-1/2 kagome
antiferromagnet.20 In the present case, exact diagonalization
results on finite-size clusters with 12 and 16 sites show that

there are four !respectively, six" singlets before the first mul-
tiplet, but no clear tendency can be identified.
To reach larger system sizes, we have decided to resort to

variational calculations in the spirit of the resonating
valence-bond approach to frustrated SU!2" magnets.21 There
are significant differences though. First, one needs at least
four sites to make an SU!4" singlet. Now, among all possible
four-site clusters, the particular role of the singlet plaquettes
was pointed out by Li et al.:7 On a triangular lattice, each
plaquette has a diagonal energy of !(13/4)J , which is much
lower than the diagonal energy of the LRO state !which is 0".
Thus the singlet plaquettes are a good starting point for a
variational calculation. To implement the method, we define
a Hilbert space which is spanned by the different coverings
!# j$ ( j"1, . . . ,Ncov) of the finite-size cluster with singlet
plaquettes. The eigenenergies are then the solution of the
generalized eigenvalue problem det(EOi j!Hij)"0, where
Oij"%# i!# j$and Hij"%# i!H!# j$. A systematic way to im-
prove the method is to double the Hilbert space by including
the states !# j!$"H!# j$, which leads to the

"# Hij Hi j
(2)

Hij
(2) Hij

(3)$ !E# Oij Hi j

Hi j Hi j
(2)$ ""0 !5"

2Ncov#2Ncov eigenvalue problem, where Hij
(n)

"%# i!H n!# j$. This step can be repeated to include matrix
elements of further powers of H n. The efficiency of the
method is illustrated in Table I.
The advantage of the variational approach is that we

could perform calculations for much larger clusters, up to 36
sites with two additional steps, 48 sites with one additional
step, and 64 sites with no additional step. For clarity, we
focus the discussion on two natural possibilities: !i" The sin-
glet plaquettes form a pattern with long-range order, the most
natural candidate being then the static covering !plaquette
array" as in the square lattice9 &see Fig. 4!a"'; !ii" the
plaquettes undergo strong resonances between configurations
that differ only locally, the smallest pattern that allows such
a resonance being the diamond depicted in Fig. 4!b".
The first possibility is definitely not favored by our varia-

tional results: For both the 36-site and the 48-site clusters,
the plaquette covering which has the largest weight in the
ground-state wave function is not the square covering, but a

FIG. 3. Low-energy spectrum of the 12-site cluster as a function
of the first Casimir C for !a" J!/J"0.2 and !b" J!"0. The Ander-
son tower of states is clearly identified for J!/J"0.2 !upper plot".
The Young diagrams corresponding to the states that build up the
tower are depicted.

TABLE I. Energy, degeneracy, and wave vector of the low-lying singlet states of the 12- and 16-site
symmetric clusters obtained for J"1 and J!"0 by exact diagonalization and by the variational approach
with 0, one, and two additional steps. The second column is the energy of a single covering !no resonance
between plaquettes". The number of plaquette coverings is equal to 36 !84" for 12 !16" sites, while there are
462 !24 024" singlets in the full Hilbert space. In the exact diagonalization spectrum, these states lie below
the first multiplet (E"!12.841 and !18.451 for 12 and 16 sites, respectively".

N Diagonal energy 0 steps one step two steps Exact Degeneracy k

12 !9.75 !14.657 !15.314 !15.381 !15.384 1 (
12 !9.75 !12.206 !13.781 !14.141 !14.188 3 M
16 !13 !19.253 !20.935 !21.068 !21.079 1 (
16 !13 !15.767 !17.979 !18.634 !18.908 2 (
16 !13 !16.798 !18.252 !18.624 !18.754 3 M

BRIEF REPORTS PHYSICAL REVIEW B 68, 012408 !2003"

012408-3

K. Penc, M. Mambrini, P. Fazekas, F. Mila, Phys. Rev. B 68, 
012408 ︎(2003) ︎



Square lattice, SU(3)



SU(3) square lattice, classical solutions: 
macroscopically degenerate

Order by disorder: 
the zero point energy of the quantum 
fluctuations over a mean field solution 

selects the ground state

EZP =
M

2

X

�

X

k

��(k)

All bonds happy at the mean field level, 
frustration due to abundance of choices
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SU(3) flavour-wave: helical states
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SU(3) flavour-wave theory: 1/M expansion

quadratic in operators → we know how to diagonalize it (spin wave)

H = �MJL+M
X

⌫

X

k
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✓
�†
⌫(k)�⌫(k) +

1
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◆

EZP =
M

2
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X

k

��(k)
Order by disorder: 

if classically degenerate, 
quantum fluctuations decide the 

winner
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SU(3) flavour-wave: helical dispersion,zero-point energy
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T. A. Tóth et al., PRL 105, 265301 (2010).

http://link.aps.org/doi/10.1103/PhysRevLett.105.265301


structure of the flavor wave Hamiltonian

disconnected (commuting) terms,
each of them gives EZP = 0 the connected term gives EZP > 0

a

b

c

a

b

c

fluctuation energy minimal  
if next nearest neighbor spins  

are also of different color

H =

+ (a† + b)(b† + a)

+ (b† + c)(c† + b)

H =

+ (a† + b)(b† + a)

+ (b† + c)(c† + b)
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Unbiased calculation: 
iPEPS, DMRG
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B. Bauer, P. Corboz, A. M. Läuchli, L. Messio, 
K. Penc, M. Troyer, F. Mila: 
Phys. Rev. B 85, 125116/1-11 (2012)

http://link.aps.org/doi/10.1103/PhysRevB.85.125116


SU(2) coupled chains

decoupled SU(2) spin chain:
Luttinger liquid with a 

spinon continuum

coupled SU(2) spin chain:
 antiferromagnetic LRO, with magnons as 
bound states developing from the lower 

edge of the continuum

k

ω

0 π 2π

[Qk and Ql, Figs. 1(a) and 1(c)] is shown to demonstrate
the excellent one-dimensionality of the system. In fact, we
have found a systematic variation of order 30 !eV in the
effective ladder bandwidth [14], and subtract this interlad-
der contribution to obtain the intrinsic parameters Jr and
Jl. Figures 1(d) and 1(e) show the INS intensity at Q ¼
½1:5 0 0# (the band minimum), demonstrating a Zeeman
splitting into three triplet components at finite field;
Gaussian fits yield the energies shown in Fig. 1(f).

The spectrum changes dramatically above Bc: we find a
continuum of excitations extending over much of the
Brillouin zone and up to energies of 0.8 meV. We consider
first a field corresponding to half magnetic saturation (m ¼
0:5, Fig. 2), where the ladder is equivalent to a gapless spin
chain in zero field (below). Here the continuous spectrum

of spinon excitations [15] is bounded by "lðQhÞ ¼ @!ðQhÞ
and "uðQhÞ ¼ 2@!ðQh

2 Þ, where @!ðQhÞ ¼ #Jj sinð2$QhÞj
[16] with # a quantum renormalization factor which is
determined exactly from the system geometry and inter-
action parameters. In Fig. 2(a), it is clear that the com-
mensurate m ¼ 0:5 spectrum is well described by such a
shape. Its continuum nature is illustrated strikingly in
high-statistics measurements taken at B ¼ 10:1 T: both
constant-E [Figs. 2(b) and 2(d)] and constant-Q
[Fig. 2(c)] scans show broad regions of continuous inten-
sity, the latter extending from 0.15 meV (lower measure-
ment limit) to 0.8 meV. We stress two important points.
First, these data are taken well inside the LL regime, at a
temperature significantly below the LL crossover, TLL

[11], but above the boundary to 3D order induced by
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FIG. 1 (color online). Spin dynamics
in the QD phase (B< Bc) at T ¼
50 mK. (a)–(c) Triplet dispersion at B ¼
0 T from constant-Q scans along the
ladder axis and in the two perpendicular
directions. (d)–(e) Triplet excitations at
Q ¼ ½1:5 0 0# in fields of 0 and 4 T.
(f) Zeeman splitting of the triplet modes
at Q ¼ ½1:5 0 0#. Solid lines are fits ex-
plained in the text.

FIG. 2 (color online). Excitation spec-
trum in the LL phase (TN < T ¼
250 mK< TLL) at B ¼ 10:1 T (m &
0:5) after subtraction of the zero-field
background. (a) Measured (left) and
simulated (right) INS intensities. Solid
lines mark the edges of the two-spinon
continuum. (b),(d) Constant-E scans
taken along maxima of the transverse
structure factor (insets: scan trajectories
in white). (c) Constant-Q scan at Q ¼
½0:5 0 0:61#. Black dashed lines in (b)–
(d) are based on a %-function spinon
spectrum [solid lines in panel (a)], red
solid lines and shading on a full contin-
uum calculation.
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SU(3) coupled chains

decoupled SU(3) spin chain:
Luttinger liquid,

 excitations form a continuum

softening at 2Pi/3 leads to
3 sublattice LRO 

for the coupled SU(3) chains?

k

ω

0 2π/3 4π/3 2π



Square lattice, SU(4)



SU(2) vs. SU(4) - two sites

⊗ = ⊕
22 1 3× = +

½ ⊗ ½ = 0 ⊕ 1

Addition of two S=½ SU(2) spins:

using Young diagrams:

↑ or ↓ spin

|↑↓〉−|↓↑〉 singlet, odd 
(anti-symmetrical) comb.

|↑↑〉, |↑↓〉+|↓↑〉, |↓↓〉 triplet 
even (symmetrical) comb.

⊗ = ⊕
44 6 10× = +

Addition of two SU(4) spins:

|aa〉, |bb〉, |cc〉, |dd〉, 
|ab〉+|ba〉, |ac〉+|ca〉, etc.
even (symmetrical).

|↑ 〉, |↓ 〉, |↑   〉,  and |↓   〉

|ab〉−|ba〉, |ac〉−|ca〉, etc.
odd (anti-symmetrical).

|a〉, |b〉, |c〉, and |d〉. 

H = P12

P12(|αβ⟩ − |βα⟩) = −(|αβ⟩ − |βα⟩)

P12(|αβ⟩ + |βα⟩) = +(|αβ⟩ + |βα⟩) E=+1, even wave function

E=−1 , odd wave function
1 2



multiplets
SU(4) singlet

SU(4) singlet plaquette
entangled spins and orbitals

= −
spin singlet bond:

= |↑↓〉−|↓↑〉

orbital singlet bond:

= |        〉−|        〉

= |abcd〉−|bacd〉+|badc〉−|bdac〉−...
spins fully antisymmetrized

SU(4) irreps on 4 sites

1 3× 15 35

⊗ ⊕ 2×

4 × = +

Addition of four SU(4) spins (256 states):

⊕⊕ 3× ⊕ 3×=⊗ ⊗

+ + +2× 20 3× 45× ×4 4 4



SU(4) ladder

One!dimensional ladder

excitations:
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M. van den Bossche et al., 
Phys. Rev. Lett. 86, 4124 (2001).

GS twofold degenerate 
(translational invariance broken):

gapped excitation spectrum, 
situation similar to 

J1-J2 SU(2) Heisenberg chain:



SU(4) on 2D-square lattice: 
is it a crystal of singlets ?

M. van den Bossche et al., 
Eur. Phys. J. B 17, 367 (2000).

M van den Bossche, FC Zhang & F Mila (2000)

exact diagonalization, 16 sites

4!fold degenerate ground state?

Two!dimensional square lattice
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SU(4) on 2D-square lattice: iPEPS

V V V V

A

B

B

A

H

H

D = 12 and a unit cell 4 × 2

dimerization and Neel-like state: 
both spatial and the SU(4) 

symmetry is broken

⊗ = ⊕
44 6 10× = +

the 6 dimensional irreducible 
representation is realized on the 

dimers, can Neel order

2-step scenario:
(i) Dimerization: 6-dimensional 

irreps are formed
(ii) the 6-imensional irreps can 

possibly Néel order

P. Corboz, A. M. Läuchli, K. Penc, M. Troyer, F. Mila, 
PRL 107, 215301 (2011). 

iPEPS: infinite project entangled pair states

http://link.aps.org/doi/10.1103/PhysRevLett.107.215301


SU(4) on square lattice: 2 step scenario
2-step scenario:

(i) Dimerization: 6-

dimensional irreps are 
formed


(ii) the antipodal pairs in the 
6-imensional irreps can 
possibly Néel order

P. Corboz, A. M. Läuchli, K. Penc, M. Troyer, F. Mila, PRL 107, 215301 (2011). 

Weight diagram of the 
6-dimensional irrep.

BC

BD

AB

Sublattice �AB

DA

AC

CD

Sublattice �CD

H1

H2

H3

http://link.aps.org/doi/10.1103/PhysRevLett.107.215301


F. H. Kim, F. F. Assaad, K. Penc, F. Mila, 
Phys. Rev. B 100, 085103/1-8 (2019)

KIM, ASSAAD, PENC, AND MILA PHYSICAL REVIEW B 100, 085103 (2019)

A

B

C

D

(a) Néel (b) VBS

FIG. 1. Illustrations of the (a) Néel-like pattern with an ordering
vector q = (π ,π ) and (b) VBS configuration with an ordering vector
q = (π , 0) for the Mott-insulating state of SU(4) fermions with two
particles per site. The flavors A, B, C, and D of the fermions are
represented by the colors blue, yellow, red, and green, respectively.
The horizontal lines represent the intrachain coupling Jx whereas
the vertical dashed lines represent the interchain coupling Jy that
controls the dimensional crossover. The grey ellipse-shape objects
in (b) indicate the strongly entangled pairs of sites.

Néel-ordered configuration has been suggested as a possible
ground state by VMC calculations [31], and this possibility
has been further supported by the linear flavor-wave theory
(LFWT) [35], an extension of the spin-wave theory for SU(2)
spins. Furthermore, QMC simulations carried out on the
SU(4) Hubbard model in the strong-coupling regime with
sizes up to 16 × 16 show the Néel ordering [36,37]. However,
it remains to be seen if this magnetic order will survive
in the Heisenberg limit. As a matter of fact, auxiliary field
QMC simulations with system sizes up to 24 × 24 seem to
suggest the absence of long-range order [11] for the SU(4)
AFM Heisenberg model at half filling. The existence of an
ordered magnetic state in this model thus appeals for further
investigations.

To progress further on this issue, we study here the evo-
lution of this system between 2D and 1D by tuning the
interchain couplings (thus obtaining a collection of 1D chains
from the 2D square lattice). The aim is to show that this
dimensional crossover triggers a continuous phase transition
to a valence bond solid (VBS) in 1D, and that it supports the
long-range antiferromagnetic configuration for the 2D lattice,
albeit with a small magnetic moment. An example of the
Néel-like configuration and the VBS configuration is shown
in Fig. 1. The phase transition from the Néel state during this
dimensional crossover will first be assessed by the LFWT by
closely following the steps in Ref. [35]. The results of the
auxiliary field QMC simulations (free of the sign problem
for the current model) will then be presented by considering
system sizes up to 40 × 40, showing a small local moment in
the 2D model and supporting a continuous transition between
the Néel state and the VBS state during the dimensional
transition.

II. THE MAGNETIC TRANSITION WITH THE LINEAR
FLAVOR-WAVE THEORY (LFWT)

We first define the SU(4) AFM Heisenberg model in 2D
with the intrachain coupling Jx and the interchain coupling Jy

depicted in Fig. 1,

H =
∑

⟨ı⃗,ȷ⃗ ⟩

∑

µ,ν

Jı⃗,ȷ⃗ Ŝµ
ν (ı⃗)Ŝν

µ(ȷ⃗ ). (3)

The site indices ⟨ı⃗, ȷ⃗ ⟩ run over the nearest neighbors, and
the indices µ, ν ∈ {A, B,C, D} label the flavors. The nearest-
neighbour coupling Jı⃗,ȷ⃗ is given by

Jı⃗,ȷ⃗ =
{

Jx for intrachain bonds,
Jy for interchain bonds. (4)

At the isotropic point Jx = Jy, the model describes a square
lattice whereas the regime Jy/Jx = 0 corresponds to decou-
pled chains. The states of the model of interest are the
states of the six-dimensional fully antisymmetric self-adjoint
representation. We will assume a Néel-type ordering with a
bipartite configuration, where we have the flavors A and B on
one sublattice and the flavors C and D on the other sublat-
tice. Assuming the existence of such a magnetic phase, we
will apply the multiboson approach [35,38– 40] to study the
behavior of the ordered magnetic moment of the system as a
function of the interchain coupling Jy in the linear flavor-wave
approximation. Within this approach, a boson is attributed to
each of the six existing states in the irreducible representation.
We will thus be working in terms of the composite particles,
not in terms of the individual flavor particles.

A. The LFWT multiboson Hamiltonian

Let the six states of the antisymmetric irrep be

AB =
|AB⟩ − |BA⟩

√
2

, AC =
|AC⟩ − |CA⟩

√
2

,

DA =
|DA⟩ − |AD⟩

√
2

, BC =
|BC⟩ − |CB⟩

√
2

,

BD =
|BD⟩ − |DB⟩

√
2

, CD =
|CD⟩ − |DC⟩

√
2

. (5)

The bar over the flavors is used as a reminder that the flavor
indices are antisymmetric. We group these states into the
set #:

# = {AB, AC, DA, BC, BD,CD}. (6)

The states are represented in the weight diagram in Fig. 2.
Let us attribute a boson to each of these states. In other words,
the bosons d

AB
, d

AC
, d

DA
, d

BC
, d

BD
, d

CD
, and their adjoint

counterparts will be used to create and annihilate the six states
of the irrep. Since our model has one composite particle per
site, we have the constraint

∑

η∈#

d †
ηdη = n c, (7)

with n c = 1 for each site, where the boson index η ∈ # refers
to the individual states in #. As for the SU(4) generators Ŝµ

ν (i)
on a site i, they can be written as

Ŝµ
ν (i) =

D∑

α=A
α ̸=µ,ν

d †
αν (i)dαµ(i) − δµ,ν

1
2

n c, (8)
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FIG. 4. QMC results for the isotropic SU(4) Heisenberg model,
Jx = Jy = 1. (a) Spin-spin and (b) VBS correlation functions
SVBS(q) =

∑
δ [SVBS(q)]δ,δ for various lattice sizes along a high

symmetry path in the Brillouin zone. The projection parameter "

grows as a function of system size L so to guarantee that we have
indeed converged to the ground state. (c) Spin correlation ratio. For
each system size, we have checked convergence in the projection
parameter. This quantity grows but shows no clear saturation to unity
for lattice sizes up to 40 × 40. The data are consistent with a small
local moment. (d) Spin-spin correlation at the antiferromagnetic
wave vector divided by the volume, the ordered moment corresponds

charge fluctuations in the diagonal part of Ŝµ
ν (i), Eq. (27),

are neglected). Figures 4(a) and 4(b) plot the spin as well as
VBS correlation functions on our biggest lattice. While the
antiferromagnetic spin fluctuations dominate, one observes
strong q = (0,π ) and q = (π , 0) VBS fluctuations thus lend-
ing support to the point of view that the SU(4) quantum
antiferromagnetic is close to a quantum critical point.

Finally, we calculate the value of the ordered moment. In
the pure Neél state, where the fluctuations are fully neglected,
m = 1 and the correlations in real space are

∑

µ,ν

〈
Ŝµ

ν ( j)Ŝν
µ(i)

〉
=

⎧
⎨

⎩

5 if i = j;
1 if i ̸= j, same sublattice;

−1 if i ̸= j, different sublattice.
(38)

Correspondingly, the correlation function in the reciprocal
space,

SNeél
Spin (q) = 4 + L2δq,Q , (39)

shows a peak diverging with the system size at the ordering
vector Q = (π ,π ).

Figure 4(d) plots SSpin(Q)/L2 as a function of 1/L for the
QMC calculation. The local moment, defined in Eq. (22),
corresponds to

m2 ≡ lim
L→∞

1
L2

SSpin(Q) . (40)

A polynomial fit in 1/L using the values for L = 16, 24, 32,
and 40 gives m2 = 0.0126(10). As apparent, large system
sizes and large projection parameters support a small but finite
local moment in the thermodynamic limit. In particular our
results suggest that

mQMC = 0.11 ± 0.04 (41)

and is hence two times smaller that the linear flavor-wave
result. As shown in the Appendix, this value of the local
moment matches well with the one obtained from the Hubbard
model in the large U/t limit [37].

C. Dimensional crossover

To investigate the dimensional crossover, we consider
again the spin and VBS correlation ratios. As apparent in
Figs. 5(a) and 5(b), the data are consistent with a direct
and continuous transition between the AFM and VBS at
Jc

y = 0.74–0.78. A more precise study of the transition is
certainly possible but difficult. In particular we have seen that
due to the small magnetic moment of the AFM state in the
isotropic limit, very large system sizes are required to merely
establish long-range order. Given the numerically accessible
lattice sizes, we believe that these difficulties will hinder an
accurate estimate of the critical point as a function of dimen-
sionality. As mentioned at the beginning of the section, charge
fluctuations have the potential of enhancing the magnetic

←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
to m2 = SSpin(Q)/L2. For each system size, we have checked for
convergence in ". Extrapolation of converged results support a small
but finite local moment m.
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A
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C

D

(a) Néel (b) VBS

FIG. 1. Illustrations of the (a) Néel-like pattern with an ordering
vector q = (π ,π ) and (b) VBS configuration with an ordering vector
q = (π , 0) for the Mott-insulating state of SU(4) fermions with two
particles per site. The flavors A, B, C, and D of the fermions are
represented by the colors blue, yellow, red, and green, respectively.
The horizontal lines represent the intrachain coupling Jx whereas
the vertical dashed lines represent the interchain coupling Jy that
controls the dimensional crossover. The grey ellipse-shape objects
in (b) indicate the strongly entangled pairs of sites.

Néel-ordered configuration has been suggested as a possible
ground state by VMC calculations [31], and this possibility
has been further supported by the linear flavor-wave theory
(LFWT) [35], an extension of the spin-wave theory for SU(2)
spins. Furthermore, QMC simulations carried out on the
SU(4) Hubbard model in the strong-coupling regime with
sizes up to 16 × 16 show the Néel ordering [36,37]. However,
it remains to be seen if this magnetic order will survive
in the Heisenberg limit. As a matter of fact, auxiliary field
QMC simulations with system sizes up to 24 × 24 seem to
suggest the absence of long-range order [11] for the SU(4)
AFM Heisenberg model at half filling. The existence of an
ordered magnetic state in this model thus appeals for further
investigations.

To progress further on this issue, we study here the evo-
lution of this system between 2D and 1D by tuning the
interchain couplings (thus obtaining a collection of 1D chains
from the 2D square lattice). The aim is to show that this
dimensional crossover triggers a continuous phase transition
to a valence bond solid (VBS) in 1D, and that it supports the
long-range antiferromagnetic configuration for the 2D lattice,
albeit with a small magnetic moment. An example of the
Néel-like configuration and the VBS configuration is shown
in Fig. 1. The phase transition from the Néel state during this
dimensional crossover will first be assessed by the LFWT by
closely following the steps in Ref. [35]. The results of the
auxiliary field QMC simulations (free of the sign problem
for the current model) will then be presented by considering
system sizes up to 40 × 40, showing a small local moment in
the 2D model and supporting a continuous transition between
the Néel state and the VBS state during the dimensional
transition.

II. THE MAGNETIC TRANSITION WITH THE LINEAR
FLAVOR-WAVE THEORY (LFWT)

We first define the SU(4) AFM Heisenberg model in 2D
with the intrachain coupling Jx and the interchain coupling Jy

depicted in Fig. 1,

H =
∑

⟨ı⃗,ȷ⃗ ⟩

∑

µ,ν

Jı⃗,ȷ⃗ Ŝµ
ν (ı⃗)Ŝν

µ(ȷ⃗ ). (3)

The site indices ⟨ı⃗, ȷ⃗ ⟩ run over the nearest neighbors, and
the indices µ, ν ∈ {A, B,C, D} label the flavors. The nearest-
neighbour coupling Jı⃗,ȷ⃗ is given by

Jı⃗,ȷ⃗ =
{

Jx for intrachain bonds,
Jy for interchain bonds. (4)

At the isotropic point Jx = Jy, the model describes a square
lattice whereas the regime Jy/Jx = 0 corresponds to decou-
pled chains. The states of the model of interest are the
states of the six-dimensional fully antisymmetric self-adjoint
representation. We will assume a Néel-type ordering with a
bipartite configuration, where we have the flavors A and B on
one sublattice and the flavors C and D on the other sublat-
tice. Assuming the existence of such a magnetic phase, we
will apply the multiboson approach [35,38– 40] to study the
behavior of the ordered magnetic moment of the system as a
function of the interchain coupling Jy in the linear flavor-wave
approximation. Within this approach, a boson is attributed to
each of the six existing states in the irreducible representation.
We will thus be working in terms of the composite particles,
not in terms of the individual flavor particles.

A. The LFWT multiboson Hamiltonian

Let the six states of the antisymmetric irrep be

AB =
|AB⟩ − |BA⟩

√
2

, AC =
|AC⟩ − |CA⟩

√
2

,

DA =
|DA⟩ − |AD⟩

√
2

, BC =
|BC⟩ − |CB⟩

√
2

,

BD =
|BD⟩ − |DB⟩

√
2

, CD =
|CD⟩ − |DC⟩

√
2

. (5)

The bar over the flavors is used as a reminder that the flavor
indices are antisymmetric. We group these states into the
set #:

# = {AB, AC, DA, BC, BD,CD}. (6)

The states are represented in the weight diagram in Fig. 2.
Let us attribute a boson to each of these states. In other words,
the bosons d

AB
, d

AC
, d

DA
, d

BC
, d

BD
, d

CD
, and their adjoint

counterparts will be used to create and annihilate the six states
of the irrep. Since our model has one composite particle per
site, we have the constraint

∑

η∈#

d †
ηdη = n c, (7)

with n c = 1 for each site, where the boson index η ∈ # refers
to the individual states in #. As for the SU(4) generators Ŝµ

ν (i)
on a site i, they can be written as

Ŝµ
ν (i) =

D∑

α=A
α ̸=µ,ν

d †
αν (i)dαµ(i) − δµ,ν

1
2

n c, (8)
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FIG. 5. (a) VBS and (b) spin correlation ratios as a function
of Jy, while keeping Jx = 1. The crossing in the spin and VBS
channels are slightly shifted. From the VBS data, one would have:
Jc

y ≃ 0.76–0.78, whereas for the spin Jc
y ≃ 0.74–0.76. Given the

overall scatter of the crossing point, this difference is not significant
enough to claim two separate transitions. (c) 1

L2
∂E0
∂Jy

shows no jump,
thereby supporting a continuous transition.

moment in the isotropic limit, such that a model with charge
fluctuations may be more suitable to study the criticality of the
dimensional crossover. Figure 5(c) plots 1

L2
∂E0
∂Jy

as a function of
Jy. The smoothness of the function constitutes an additional
hint that the transition is continuous.

IV. CONCLUSION

Using QMC and LFWT, we investigated the SU(4) AFM
Heisenberg model in the fully antisymmetric six-dimensional
self-conjugate representation in two spatial dimensions and
the dimensional crossover to one dimension. Both methods
show that the isotropic model in 2D has AFM order, albeit
with a very small magnetic moment according to the QMC
data. The LFWT predicts a larger magnetic moment (m =
0.214) than the QMC calculations (m ≃ 0.11). The dimen-
sional crossover to 1D yields a phase transition from the Néel
state to the VBS, and the critical value of the dimensional
crossover is Jc

y = 0.74–0.78 according to QMC. The fading
of the Néel phase during the dimensional crossover is also

captured by the LFWT, although it overestimates the robust-
ness of the Néel phase with a predicted transition value of
Jc

y = 0.279. We understand the discrepancy between the QMC
and LFWT calculations as a consequence of the Berry phase.
For the SU(2) model, Haldane [42] has shown that skyrmion
changing configurations (hedgehogs or monopoles) carry C4
charge such that the proliferation of quadruple monopole
instances leads to a VBS state. On the realm of the theory
deconfined quantum criticality (DQC) quadruple monopole
instances are expected to be irrelevant at criticality and beyond
criticality condense to form the VBS state [43,44]. Remark-
ably, hedgehog singularities and the conclusions of Ref. [42]
can be generalized to SU(N) [25,27]. LFWT does not allow
for singular field configurations, and the strong VBS fluctua-
tions observed in the QMC calculations suggest that they can-
not be omitted for an accurate description of the SU(4) quan-
tum antiferromagnet. In particular, promoting N to a contin-
uous variable, our results show that the SU(4) quantum anti-
ferromagnet is close to a putative deconfined quantum critical
point to the VBS. Various, yet to be numerically confirmed,
field theories can be put forward to understand this quantum
phase transition [25,45] in a two-dimensional setting. Finally,
the nature of the dimensional driven transition to the VBS
remains to be studied. In the realm of the theory of DQC, the
reduction of the lattice symmetry from C4 to C2 allows for
double monopole instances in the field theory. A continuous
transition—as supported by the numerical data—would re-
quire double monopole instances to be irrelevant at criticality.
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A. Auxiliary field QMC: formulation

It is beyond the scope of this article to provide a full
description of the auxiliary field QMC approach. Here we will
restrict ourselves to a formulation of the model akin to be
implemented in the Algorithms for Lattice Fermions (ALF)
library [41]. Our starting point is a fermionic representation
of the SU(N) generators,

Ŝµ
ν (i) = ĉ†

i,ν ĉi,µ − δµ,ν

N

N∑

α=1

ĉ†
i,α ĉi,α , (27)

where the half-filling constraint

Nc =
N∑

ν=1

ĉ†
i,ν ĉi,ν = N

2
(28)

selects the fully antisymmetric self-adjoint representa-
tion. In this representation, the Heisenberg model, H =∑

⟨i, j⟩ J⟨i, j⟩
∑

µ,ν Ŝµ
ν (i)Ŝν

µ( j)
reads

H = HJ + HU ,

HJ = −1
2

∑

⟨i, j⟩
J⟨i, j⟩(D̂

†
i, j D̂i j + D̂i, j D̂

†
i, j ) ,

HU = U
∑

i

(
N∑

ν=1

[
ĉ†

i,ν ĉi,ν − 1
2

])2

. (29)

In the above, D̂†
i, j =

∑
ν ĉ†

i,ν ĉ j,ν and we have relaxed the
half-filled constraint at the expense of the Hubbard interaction
HU . Since [HU ,HJ ] = 0 the constraint will be automatically
imposed when carrying out simulations at any finite positive
value of U , and in the limit of infinite projection parameter $
(see below). We use the equation

D̂†
i, j D̂i j + D̂i, j D̂

†
i, j = 1

2 [(D̂†
i, j + D̂i j )

2 + (iD̂†
i, j − iD̂i j )

2]
(30)

so as to write the Hamiltonian in terms of perfect squares of
Hermitian operators as required by the standards of the ALF
library [41]. While ground state properties can be obtained
using the grand canonical formulation of the auxiliary field
QMC and extrapolating to zero temperature, it is more con-
venient to adopt a projective scheme based on the equation:

⟨ψ0|Ô|ψ0⟩
⟨ψ0|ψ0⟩

= lim
$→∞

⟨ψT |e−$H/2Ôe−$H/2|ψT ⟩
⟨ψT |e−$H|ψT ⟩

(31)

provided that ⟨ψ0|ψT ⟩ ̸= 0. We have chosen the trial wave
function to be the ground state of the tight binding model on
the square lattice,

HT = −
∑

⟨i, j⟩

N∑

ν=1

(ĉ†
i,ν ĉ j,ν + H.c.), (32)

with antiperiodic (periodic) boundary conditions in the x (y)
direction. To study the dimensional crossover we use the
exchange defined in Eq. (4), set Jx to unity, the imaginary
time step &τ = 0.025 and U = 0.25. For the considered
values of the projection parameter, $, we have tested that this

choice of the Hubbard interaction suffices to freeze the charge
fluctuations within the statistical uncertainty.

B. Isotropic case

To pin down the nature of ground state of the SU(4)
Heisenberg model, we compute equal time spin-spin corre-
lation function

SSpin(q) = 1
L2

∑

i, j,µ,ν

eiq·(ri−r j )
〈
Ŝµ

ν ( j)Ŝν
µ(i)

〉
. (33)

The SSpin(q) fulfills the

1
L2

∑

q

SSpin(q) = C1 (34)

sum rule, where C1 is the value of the Casimir operator Ĉ1 =∑
µ,ν Ŝµ

ν (i)Ŝν
µ(i) on a site. For the six-dimensional irreducible

representation C1 = 5. The above sum rule is valid only in the
absence of charge fluctuations, so that it provides an excellent
crosscheck for the validity of our calculation and choice of
the Hubbard U. Indeed, our QMC calculations satisfied the
sum rule up to 2.5 × 10−4 precision. While in Ref. [11] our
biggest size corresponded to 24 × 24, enhanced computer
power allows us to reach ground state properties at L = 40.

The results for SSpin(q) are shown in Fig. 4(a) for different
system sizes. We can observe a clear peak at q = Q = (π ,π ),
which grows as the system size is increased, revealing the
formation of the Neél state. To check the presence of long-
range order, we consider the correlation ratio:

RSpin(L) = 1 −
SSpin(Q − (0, 2π/L))

SSpin(Q)
. (35)

This quantity scales to unity (zero) in the ordered (disordered)
phase, and is a renormalization group invariant quantity such
that in the vicinity of a critical point—where scaling holds—
we expect

RSpin(L) = F ((g − gc)L1/ν, L−ω ). (36)

In the above, g is the control parameter, ν the correlation
length exponent and ω the leading correction to scaling ex-
ponent. As apparent from Fig. 4(c), the ground state estimate
of RSpin(L) as a function of system size is initially flat and then
grows substantially when L ! 24. This form of the correlation
ratio strongly suggests that we are close to a critical point. It
is tempting to interpret N as a tuning parameter that drives the
system from the Néel to VBS state. In this scenario, the local
moment is small due to competing VBS fluctuations. To test
this, we have computed the VBS correlation functions:

[SVBS(q)]δ,δ′ = 1
L2

∑

i, j

eiq·(ri−r j )

× (⟨&̂i,i+δ&̂ j, j+δ′ ⟩ − ⟨&̂i,i+δ⟩⟨&̂ j, j+δ′ ⟩) (37)

with

&̂i,i+δ =
∑

µ,ν

Ŝµ
ν (i)Ŝν

µ(i + δ).

Note that to facilitate the calculation of the dimer correla-
tion function, we have used Ŝµ

ν (i) = ĉ†
i,ν ĉi,µ − 1

2δµ,ν (i.e., the
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FIG. 5. (a) VBS and (b) spin correlation ratios as a function
of Jy, while keeping Jx = 1. The crossing in the spin and VBS
channels are slightly shifted. From the VBS data, one would have:
Jc

y ≃ 0.76–0.78, whereas for the spin Jc
y ≃ 0.74–0.76. Given the

overall scatter of the crossing point, this difference is not significant
enough to claim two separate transitions. (c) 1

L2
∂E0
∂Jy

shows no jump,
thereby supporting a continuous transition.

moment in the isotropic limit, such that a model with charge
fluctuations may be more suitable to study the criticality of the
dimensional crossover. Figure 5(c) plots 1

L2
∂E0
∂Jy

as a function of
Jy. The smoothness of the function constitutes an additional
hint that the transition is continuous.

IV. CONCLUSION

Using QMC and LFWT, we investigated the SU(4) AFM
Heisenberg model in the fully antisymmetric six-dimensional
self-conjugate representation in two spatial dimensions and
the dimensional crossover to one dimension. Both methods
show that the isotropic model in 2D has AFM order, albeit
with a very small magnetic moment according to the QMC
data. The LFWT predicts a larger magnetic moment (m =
0.214) than the QMC calculations (m ≃ 0.11). The dimen-
sional crossover to 1D yields a phase transition from the Néel
state to the VBS, and the critical value of the dimensional
crossover is Jc

y = 0.74–0.78 according to QMC. The fading
of the Néel phase during the dimensional crossover is also

captured by the LFWT, although it overestimates the robust-
ness of the Néel phase with a predicted transition value of
Jc

y = 0.279. We understand the discrepancy between the QMC
and LFWT calculations as a consequence of the Berry phase.
For the SU(2) model, Haldane [42] has shown that skyrmion
changing configurations (hedgehogs or monopoles) carry C4
charge such that the proliferation of quadruple monopole
instances leads to a VBS state. On the realm of the theory
deconfined quantum criticality (DQC) quadruple monopole
instances are expected to be irrelevant at criticality and beyond
criticality condense to form the VBS state [43,44]. Remark-
ably, hedgehog singularities and the conclusions of Ref. [42]
can be generalized to SU(N) [25,27]. LFWT does not allow
for singular field configurations, and the strong VBS fluctua-
tions observed in the QMC calculations suggest that they can-
not be omitted for an accurate description of the SU(4) quan-
tum antiferromagnet. In particular, promoting N to a contin-
uous variable, our results show that the SU(4) quantum anti-
ferromagnet is close to a putative deconfined quantum critical
point to the VBS. Various, yet to be numerically confirmed,
field theories can be put forward to understand this quantum
phase transition [25,45] in a two-dimensional setting. Finally,
the nature of the dimensional driven transition to the VBS
remains to be studied. In the realm of the theory of DQC, the
reduction of the lattice symmetry from C4 to C2 allows for
double monopole instances in the field theory. A continuous
transition—as supported by the numerical data—would re-
quire double monopole instances to be irrelevant at criticality.
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Summary of iPEPS results
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We propose a two-orbital Hubbard model on an emergent honeycomb lattice to describe the low-energy physics
of twisted bilayer graphene. Our model provides a theoretical basis for studying metal-insulator transition, Landau
level degeneracy lifting, and unconventional superconductivity that are recently observed.
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INTRODUCTION

The recent discovery of correlated insulator state [1] and
unconventional superconductivity [2] in bilayer graphene
with a small twist angle has generated tremendous excitement
[3– 5]. At small twist angles, the moiré pattern creates a
superlattice with a large unit cell comprising more than 10 000
atoms, and dramatically modifies the low-energy electronic
structure. In particular, near certain “magic” twist angles,
four lowest-energy minibands with a total bandwidth on
the order of 10 meV are separated from excited bands and
accommodate a range of carrier densities from charge −4e
to 4e per supercell. Due to the strong suppression of kinetic
energy in these narrow bands, Coulomb interaction may drive
correlated electron phenomena [6]. Remarkably, the recent
experiments [1,2] on such twisted bilayer graphene (TBG)
discovered metal-insulator transition and superconductivity
at low temperature by tuning the carrier density, applying
the magnetic field, or slightly varying the twist angle. These
fascinating phenomena show a number of similarities with
that of cuprates. Notably, a correlated insulating state occurs
below 4 K at the filling of charge ±2e per supercell. Under
electrostatic doping, two superconducting domes appear on
both sides of the insulating state, with a maximum transition
temperature Tc = 1.7 K and a record-low carrier density of a
few 1011cm−2. The mechanism of metal-insulator transition
and superconductivity, the nature of the correlated insulating
state and the superconducting state are all open questions.

The Hubbard model is the standard model to study metal-
insulator transition driven by the competition of kinetic energy
and Coulomb interaction [7]. It is also believed to capture
key features of the cuprate superconductors [8– 10]. To study
metal-insulator transition in TBG, it is highly desirable to iden-
tify the real-space Wannier orbitals for the low-energy mini-
band and find the corresponding tight-binding and Hubbard
model.

This is, however, a nontrivial task that has not been ac-
complished so far. Thanks to extensive studies using various
methods [6,11– 23], the band structure of TBG at small twist
angle is known to be rather complex and depends sensitively
on microscopic details such as lattice relaxation. Near the so-
called magic twist angle, various methods find four nearly flat
minibands at low energy, but differ significantly on important
features such as their bandwidth and the gap to excited bands.
Therefore, as a first step, it is important to extract robust

and universal features of these narrow minibands from both
theoretical calculation and experimental findings on bilayer
graphene at small twist angles.

In this paper, we demonstrate that the electronic structure
of narrow minibands and the effect of Coulomb interaction in
TBG are essentially captured by a two-orbital Hubbard model,
constructed from Wannier orbitals that extend over the size
of supercells. We deduce the centers and symmetry of Wan-
nier orbitals by a straightforward symmetry analysis, without
explicitly computing their wave functions. Importantly, the
centers of these Wannier orbitals form an emergent honeycomb
lattice. The two types of sublattice sites of this honeycomb
lattice correspond to AB and BA regions of twisted bilayer
graphene, respectively, while the hexagon centers correspond
to AA regions, as depicted in Fig. 1. At every site of the
honeycomb lattice, there are two degenerate Wannier orbitals
with px - and py -like symmetries, forming a doublet under
on-site threefold rotation. We then construct an effective tight-
binding model on this honeycomb lattice, which reproduces
key features of the miniband structure of TBG [11,12]. By
including Coulomb repulsion, our model provides a useful
theoretical basis for studying the metal-insulator transition
in TBG as a function of twist angle and carrier density,
Dirac fermion reconstruction at charge neutrality, as well as
other strongly correlated phenomena such as unconventional
superconductivity.

The procedure of our analysis is outlined in Fig. 2. First,
from general considerations on the lowest minibands of TBG
and tight-binding calculation by Nam and Koshino [11], we
infer the band symmetry eigenvalues at all high symmetry
points !,K,M of mini Brillouin zone (MBZ) of TBG. Then we
examine all possible positions of Wannier centers (which form
a lattice in real space) and symmetries of Wannier orbitals
(s-, p-wave, etc.) to search for solutions consistent with the
band symmetries in k space. Luckily, we find that the band
symmetries at all high symmetry points can only be reproduced
when Wannier orbitals with (px ,py ) on-site symmetry are
located on a honeycomb lattice. Based on this important result,
we construct the simplest tight-binding model that reproduces
the key features of band structure, in particular, the warped
Fermi surfaces near the miniband edges at ! point.

This paper is organized as follows. In Sec. I, we study
the band structure and energy eigenstates of TBG through
the group-theoretical approach. From the obtained energy
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FIG. 1. Atomic structure and tight-binding model in twisted
bilayer graphene. In this figure, rotation angle θ = 6.01◦. Blue and
red little dots represent the carbon atoms of bottom and top layers,
respectively. Green and blue giant dots represent AB and BA spots,
which form a honeycomb lattice, and AA spots lie in hexagon centers
of the honeycomb lattice. At each giant dot (AB/BA spots), there
reside two degenerate orbitals with px,y symmetries under on-site
threefold rotation.

eigenstates, in Sec. II we deduce the positions of Wannier
orbital centers and the symmetries of Wannier orbitals. Based
on the Wannier orbitals, we then construct tight-binding model
in Sec. III. Then, we address the Hubbard model and metal-
insulator transition in Sec. IV, Dirac fermion reconstruction,
and Landau-level degeneracy breaking in Sec. V, and make
connections between theoretical and experimental results. At
last, in Sec. VI, we discuss some open questions such as the
nature of correlated insulating and unconventional supercon-
ducting phases of TBG.

FIG. 2. The strategy and organization of this work.

I. BAND STRUCTURE

The first question we ask is: Are the lowest bands on the
electron and hole sides separated from excited bands? Only
when low- and high-energy bands are separated by a band gap
is a theoretical description using a small number of low-energy
degrees of freedom possible.

To answer this question, we look into theoretical calculation
and experimental evidence on the band structure of TBG.
Different numerical methods all show that band edges of
the lowest-energy electron and hole minibands near charge
neutrality are located at " point of the MBZ. However,
conflicting results are found on the gap at " point between
these lowest bands and higher-energy bands when the twist
angle is small. Some numerical calculations report relatively
large gaps of 10 − 20 meV on both electron and hole sides
[11], while others show that the gap only exists on the electron
side [17] or even no gap exists [13,15,18].

In the experiment performed on TBG near the twist angle
θ = 1.08◦, the conductance is found to be zero over a wide
range of electron or hole densities near n = ±ns = ±2.7 ×
1012 cm− 2—the density at which the four lowest bands are
completely filled or empty. The measured thermal activation
gaps are about 40 meV, comparable to the single-particle band
gaps found by Nam and Koshino in tight-binding calculations
with relaxed lattice structure [11]. Hence we conclude that, at
small twist angles, the lowest bands of TBG are well separated
from excited bands above and below.

Our next goal is to understand the band structure and Bloch
wave function of the lowest minibands analytically. Previous
analytical calculations have mostly focused on the minibands
near the corners of MBZ [6,21], where the original Dirac points
of graphene remain present, but exhibit a much reduced Fermi
velocity. However, a full analysis of energy bands at all high
symmetry points remains lacking.

To do this, we need to work out energy eigenstates of TBG,
which are superpositions of states on two layers hybridized
through interlayer tunneling. In real space, the interlayer
tunneling takes the general form

HT =
∑

m,n=A,B

∑

xm, yn

ξ †(xm)T (xm, yn)η( yn) + H.c., (1)

where xm, yn denote the coordinates of carbon atom sites
on layers 1 and 2, respectively, and m,n denotes the A/B
sublattice. ξ and η are the electron annihilation operators on the
two layers, respectively. T describes the tunneling amplitudes
between two sites x and y on different layers.

We define electron operator at a given momentum k as
follows: ξk = (ξA

k ,ξB
k )T,ηk = (ηA

k ,ηB
k )T, where

ξn
k =

∑

xn

eik·xn

ξ (xn), ηn
k =

∑

yn

eik· yn

η( yn), (2)

with n = A,B. By employing the two-center approximation
T (x, y) = T (x − y) [6,21,22], we can write Eq. (1) in mo-
mentum space as

HT =
∑

q,G1,G2

ξ
†
q+G1

Tq(G1,G2)ηq+G2 + H.c., (3)
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While the enhancement of spin-space symmetry from the usual SU(2) to SUðNÞ is promising for finding
nontrivial quantum spin liquids, its realization in magnetic materials remains challenging. Here, we
propose a new mechanism by which SU(4) symmetry emerges in the strong spin-orbit coupling limit. In d1

transition metal compounds with edge-sharing anion octahedra, the spin-orbit coupling gives rise to
strongly bond-dependent and apparently SU(4)-breaking hopping between the Jeff ¼ 3=2 quartets.
However, in the honeycomb structure, a gauge transformation maps the system to an SU(4)-symmetric
Hubbard model. In the strong repulsion limit at quarter filling, as realized in α-ZrCl3, the low-energy
effective model is the SU(4) Heisenberg model on the honeycomb lattice, which cannot have a trivial
gapped ground state and is expected to host a gapless spin-orbital liquid. By generalizing this model to
other three-dimensional lattices, we also propose crystalline spin-orbital liquids protected by this emergent
SU(4) symmetry and space group symmetries.
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Introduction.—Nontrivial quantum spin liquids (QSLs)
are expected to exhibit many exotic properties such as
fractionalized excitations [1,2], in addition to the absence
of long-range order. Despite vigorous studies in the last
several decades, however, material candidates for such
QSLs are still rather limited.
An intriguing scenario to realize a nontrivial QSL is by

generalizing the spin system, which usually consists of
spins representing the SU(2) symmetry to SUðNÞ “spin”
systems with N > 2. We expect stronger quantum fluctua-
tions in SUðNÞ spin systems with a larger N, which could
lead the system to an SUðNÞ QSL even on unfrustrated,
bipartite lattices, including the honeycomb lattice [3–6].
The SUðNÞ spin systems with N > 2 can be realized in

ultracold atomic systems, using the nuclear spin degrees of
freedom (d.o.f.)[7]. In electron spin systems, however,
realization of this SUðNÞ symmetry is more challenging.
It would be possible to combine the spin and orbital d.o.f. so
that local electronic states are identified with a representation
of SUðNÞ. QSL realized in this context may be called
quantum spin-orbital liquids (QSOLs) because it involves
spin and orbital d.o.f. Despite the appeal of such a possibility,
the actual Hamiltonian is usually not SUðNÞ-symmetric,
reflecting the different physical origins of the spin and orbital
d.o.f. For example, the relevance of an SU(4)QSOLhas been
discussed for Ba3CuSb2O9 (BCSO) with a decorated honey-
comb lattice structure [5,8,9]. It turned out, however, that the
estimated parameters for BCSO are rather far from themodel
with an exact SU(4) symmetry [10].Moreover, the spin-orbit
coupling (SOC) and the directional dependence of the orbital

hopping usually break both the spin-space and orbital-space
SU(2) symmetries, as exemplified in iridates [11]. Thus, it
would seem even more difficult to realize an SUðNÞ-
symmetric system in real magnets with SOC. (See
Refs. [12–15] for the proposed realization of SUðNÞ sym-
metry. However, they do not lead to QSOL because of their
crystal structures).
In this Letter, we demonstrate a novel mechanism for

realizing an SU(4) spin system in a solid-state system with
an on site SOC. Paradoxically, the symmetry of the spin-
orbital space can be enhanced to SU(4) when the SOC
is strong. In particular, we propose α-ZrCl3 [16–18] as
the first candidate for an SU(4)-symmetric QSOL on the
honeycomb lattice. Its d1 electronic configuration in the
octahedral ligand field, combined with the strong SOC,
implies that the ground state of the electron is described by
a Jeff ¼ 3=2 quartet [19]. In fact, the resulting effective
Hamiltonian appears to be anisotropic in the quartet space.
Nevertheless, we show that the model is gauge equivalent
to an SU(4)-symmetric Hubbard model. In the strong
repulsion limit, its low-energy effective Hamiltonian is
the Kugel-Khomskii model [20] on the honeycomb lattice,
exactly at the SU(4) symmetric point,

Heff ¼ J
X

hiji

!
Si · Sj þ

1

4

"!
Ti · Tj þ

1

4

"
; ð1Þ

where J > 0, and Sj and Tj are pseudospin-1=2 operators
defined for each site j. SU(4) symmetry can be made
manifest by rewriting the Hamiltonian, up to a constant
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The SU(4)-symmetric spin-orbital model on the honeycomb lattice was recently studied in connection to
correlated insulators such as the eg Mott insulator Ba3CuSb2O9 and the insulating phase of magic-angle twisted
bilayer graphene at quarter filling. Here we provide a unified discussion of these systems by investigating
an extended model that includes the effects of Hund’s coupling and anisotropic, orbital-dependent exchange
interactions. Using a combination of mean-field theory, linear flavor-wave theory, and variational Monte Carlo,
we show that this model harbors a quantum spin-orbital liquid over a wide parameter regime around the
SU(4)-symmetric point. For large Hund’s coupling, a ferromagnetic antiferro-orbital ordered state appears, while
a valence-bond crystal combined with a vortex orbital state is stabilized by dominant orbital-dependent exchange
interactions.
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I. INTRODUCTION

Kugel-Khomskii (KK) models [1] are effective Hamilto-
nians with couplings between spin and orbital degrees of
freedom that describe various phenomena in transition metal
oxides [2,3]. Recently, the applications of KK models have
been extended to Mott insulators with strong spin-orbit cou-
pling [4], iron-pnictide superconductors [5], Coulomb im-
purity lattices designed with scanning tunneling microscope
[6], and cold atom systems [7]. In realistic KK models, the
interplay between orbital configuration and lattice geometry
generally constrains the virtual electron transfers and gen-
erates exchange frustration in the form of bond-dependent
and anisotropic spin-orbital interactions [4]. This kind of
exchange enhances quantum fluctuations even in unfrus-
trated lattices [8], leading to the expectation that KK models
may present exotic orders, valence bond crystals (VBCs), or
even quantum spin-orbital liquids (QSOLs) as their ground
states [9].

The most well-studied examples of KK models display
two-orbital degeneracy and can be implemented in three dis-
tinct solid-state platforms. Historically, the first one arises in
Mott insulators with eg orbitals [1], where the orbital Hilbert
space is spanned by d3z2−r2 and dx2−y2 orbitals [10– 14]. The
second platform comprises t2g Mott insulators with 4/5d1

magnetic species, in which the strong spin-orbit coupling
(SOC) favors a low-energy j = 3/2 multiplet [15]. These
models can be alternatively expressed in terms of pseudospins
and pseudo-orbitals that mimic the eg operators [16– 20].
Lastly, two-orbital degenerate KK models were proposed as
relevant descriptions for correlated insulators observed in
twistronic systems [21,22]. This proposal hangs upon the

validity of Wannier orbitals to reproduce the twist-induced
flat bands. If this is the case and the interactions are siz-
able enough to describe these systems in the strong-coupling
regime, then KK Hamiltonians naturally arise as minimal
models for their insulating phases [23– 30].

One example of the two-orbital KK model is the SU(4)
Heisenberg model, which is receiving renewed interest due
to suggested implementations in the three solid-state plat-
forms described above [19,20,23– 32]. Although the model
is not exchange-frustrated, the higher symmetry fosters liq-
uid ground states as first noted in SU(N) “spin” models in
the large-N limit [33– 35]. A specific study of the SU(4)
Heisenberg model on the honeycomb lattice was performed in
Ref. [36] using several numerical and analytical techniques.
The combination of exact diagonalization (ED) and varia-
tional Monte Carlo (VMC) provided good evidence in favor of
a π -flux QSOL with fermionic excitations similar to the ones
obtained in large-N theories. The experimental motivation
of the authors of Ref. [36] was the eg system Ba3CuSb2O9,
in which Cu2+ ions were proposed to form layered hon-
eycomb lattices [37]. Other theoretical descriptions of the
same compound also regarded the SU(4) Heisenberg model
as relevant, but included exchange-frustrated terms induced
by orbital-dependent virtual hopping processes [31,38]. In the
last year, two new platforms for the SU(4) Heisenberg model
were proposed: the analogues of Kitaev materials with 4/5d1

magnetic species (e.g., α-ZrCl3) [19,20] and the Mott phase
of twisted bilayer graphene (TBG) [24].

The purpose of this paper is to study the effects of
exchange-frustrated and Hund’s coupling induced interac-
tions on the SU(4) Heisenberg model on the honeycomb
lattice. We present a detailed analysis of a KK model derived
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We show that, in the presence of a π=2 artificial gauge field per plaquette, Mott insulating phases of
ultracold fermions with SUðNÞ symmetry and one particle per site generically possess an extended chiral
phase with intrinsic topological order characterized by an approximate ground space of N low-lying
singlets for periodic boundary conditions, and by chiral edge states described by the SUðNÞ1 Wess-
Zumino-Novikov-Witten conformal field theory for open boundary conditions. This has been achieved by
extensive exact diagonalizations for N between 3 and 9, and by a parton construction based on a set of N
Gutzwiller projected fermionic wave functions with flux π=N per triangular plaquette. Experimental
implications are briefly discussed.
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The search for unconventional quantum states of matter
in realistic models of strongly correlated systems has been
an extremely active field of research over the last 25 years.
Mott insulating phases in which charge degrees of freedom
are gapped have been argued to potentially host several
families of quantum spin liquids ranging from resonating
valence bond Z2 quantum spin liquids [1–3] to U(1)
algebraic spin liquids [4–6] and chiral spin liquids (CSLs)
[7–15]. The topological properties of these phases have
attracted a lot of attention due to their potential impact on
the implementation of quantum computers [16].
Cold atoms open new perspectives in that respect. In

particular, alkaline rare earths allow one to realize SUðNÞ
Mott phases with N as large as 10 [17–24], and if a chiral
phase can be stabilized, its low-energy theory is expected
to be the SUðNÞ level k¼ 1 Chern-Simons theory. The
possibility to destroy long-range order in SUðNÞ general-
izations of the SU(2) antiferromagnet on bipartite lattices
has long been known [4,25], but the first proposal of a
chiral phase in the context of SUðNÞ models of cold atoms
goes back to the work of Hermele et al. [26,27], who
showed that a mean-field approach leads to the stabilization
of chiral phases on the square lattice in the limit of large N
and a large number of particles per sitemwith N=m integer
and ≥ 5. The same mean field applied to SUð6Þ on the
honeycomb lattice with one particle per site has also led to
the prediction of a chiral state, with a competing plaquette
state very close in energy [28]. More recently, Ref. [29]
suggested the stabilization of SUðNÞ CSLs on the square
lattice using static synthetic gauge fields, based on a slave-
rotor mean-field approach. In all theses cases, the results

call for further investigation with methods that go beyond
mean-field theory.
In this Letter, we show that the ground state of the Mott

phase of N-color fermions on the triangular lattice with one
particle per site is a SUðNÞ CSL in a large parameter range
if the system is subject to a static artificial gauge field with
flux π=2 per triangular plaquette. The starting point is the
SUðNÞ Hubbard Hamiltonian

H ¼ −t
X

hi;ji

XN

α¼ 1

ðeϕijc†i;αcj;α þ H:c:Þ þ U
X

i;α<β

ni;αniβ : ð1Þ

If the phases ϕij are chosen in a such a way that the (gauge-
invariant) flux through each triangular plaquette is equal
to Φ, then, at a filling of one particle per site, and for large
enough U=t, the effective model is an SUðNÞ Heisenberg
model with local spins in the fundamental representation
of SUðNÞ endowed with real pairwise permutations and
complex three-site permutations. The Hamiltonian is a
generalization of the SU(2) model with scalar chirality
[30,31] and is defined by

H ¼ J
X

hi;ji
Pij þ K3

X

ði;j;kÞ
ðeiΦPijk þ H:c:Þ; ð2Þ

where the sum over ði; j; kÞ runs over all triangular
plaquettes, and Pij and Pijk are circular permutation
operators. To second order, the amplitude of the pairwise
permutation is simply given by J¼ 2t2=U, while the 3-site
permutation appears at third order in perturbation theory
with K3 ¼ 6t3=U2. The cases Φ ¼ 0 and Φ ¼ π with
purely real positive [32] and negative [33] three-site
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in realistic models of strongly correlated systems has been
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Mott insulating phases in which charge degrees of freedom
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families of quantum spin liquids ranging from resonating
valence bond Z2 quantum spin liquids [1–3] to U(1)
algebraic spin liquids [4–6] and chiral spin liquids (CSLs)
[7–15]. The topological properties of these phases have
attracted a lot of attention due to their potential impact on
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particular, alkaline rare earths allow one to realize SUðNÞ
Mott phases with N as large as 10 [17–24], and if a chiral
phase can be stabilized, its low-energy theory is expected
to be the SUðNÞ level k¼ 1 Chern-Simons theory. The
possibility to destroy long-range order in SUðNÞ general-
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has long been known [4,25], but the first proposal of a
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showed that a mean-field approach leads to the stabilization
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honeycomb lattice with one particle per site has also led to
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suggested the stabilization of SUðNÞ CSLs on the square
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rotor mean-field approach. In all theses cases, the results
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If the phases ϕij are chosen in a such a way that the (gauge-
invariant) flux through each triangular plaquette is equal
to Φ, then, at a filling of one particle per site, and for large
enough U=t, the effective model is an SUðNÞ Heisenberg
model with local spins in the fundamental representation
of SUðNÞ endowed with real pairwise permutations and
complex three-site permutations. The Hamiltonian is a
generalization of the SU(2) model with scalar chirality
[30,31] and is defined by
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rotor mean-field approach. In all theses cases, the results

call for further investigation with methods that go beyond
mean-field theory.
In this Letter, we show that the ground state of the Mott

phase of N-color fermions on the triangular lattice with one
particle per site is a SUðNÞ CSL in a large parameter range
if the system is subject to a static artificial gauge field with
flux π=2 per triangular plaquette. The starting point is the
SUðNÞ Hubbard Hamiltonian

H ¼ −t
X

hi;ji

XN

α¼ 1

ðeϕijc†i;αcj;α þ H:c:Þ þ U
X

i;α<β

ni;αniβ : ð1Þ

If the phases ϕij are chosen in a such a way that the (gauge-
invariant) flux through each triangular plaquette is equal
to Φ, then, at a filling of one particle per site, and for large
enough U=t, the effective model is an SUðNÞ Heisenberg
model with local spins in the fundamental representation
of SUðNÞ endowed with real pairwise permutations and
complex three-site permutations. The Hamiltonian is a
generalization of the SU(2) model with scalar chirality
[30,31] and is defined by

H ¼ J
X

hi;ji
Pij þ K3

X

ði;j;kÞ
ðeiΦPijk þ H:c:Þ; ð2Þ

where the sum over ði; j; kÞ runs over all triangular
plaquettes, and Pij and Pijk are circular permutation
operators. To second order, the amplitude of the pairwise
permutation is simply given by J¼ 2t2=U, while the 3-site
permutation appears at third order in perturbation theory
with K3 ¼ 6t3=U2. The cases Φ ¼ 0 and Φ ¼ π with
purely real positive [32] and negative [33] three-site
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Hubbard model with artificial flux:

the effective low energy model includes ring exchange:

The model

The ground state is chiral: a gaped featureless liquid which breaks 
time reversal invariance
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Finally we also measure the gapΔsinglet from the absolute
ground state to the first singlet level that is not part of the
expected ground state manifold. This is a measure for the
excitation gap in the gapped CSL states. In Fig. 1(d), one
observes an approximate dome-shaped behavior of this gap
for all N, and furthermore this gap seems to depend only
weakly on N. The approximate region in θ where the
N-fold ground state degeneracy splitting is small compared
to the excitation gap (for large N) is indicated as a shaded
region in all the panels, and indicates a rough stability
region for the SUðNÞ CSLs on the triangular lattice. One
should note, however, that the precise extent of the CSLs
for small N is an open question at this point.
Variational parton approach.—An appealing way to

describe the SUðNÞ CSLs is to use a parton-based mean
field approach [26,27,49–54], complemented with a
Gutzwiller projection. The idea is to fractionalize the
elementary spin degree of freedom into fermionic spinons
(partons) with N colors. For an exact description, a
dynamical gauge field needs to enforce the physical
constraint of one fermion per site. At the mean-field level,
however, it is sufficient to specify the band structure and
filling of the fermionic spinons. In the SUðNÞ CSLs of
interest here, the spinon band structure consists of N bands,
where the lowest band is completely filled for all N colors
and separated by a gap from the other bands. In addition,
this band is required to have Chern number # 1. For the
triangular lattice we use a Hofstadter-type tight-binding
Hamiltonian with a uniform flux of π=N per triangular
plaquette [55], fulfilling the requirements on the band
structure. This mean-field state can now be turned into a
valid spin wave function by the application of an exact
Gutzwiller projection, enforcing the presence of exactly
one fermionic spinon per site. Such a wave function can
be handled by variational Monte Carlo (VMC) techniques,
and in particular one can easily calculate the energy
of the Hamiltonian Eq. (3) on rather large lattices. The
VMC energies displayed in Figs. 1(a) and 1(b) have been
obtained this way [37].
The next question is how the VMC approach is able to

account for the nontrivial ground state degeneracy on the
torus. It turns out that by threading flux through the
noncontractible loops around the torus, one is able to span
an N-dimensional subspace of Gutzwiller projected wave
functions, with almost identical local properties on finite
lattices. From the viewpoint of topological order, this
corresponds to a charge pumping procedure, where one
cycles through the N different ground states by threading a
different anyonic flux through the interior of the torus.
These concepts have recently been explored in the context
of SU(2) CSL on several lattices [56–58]. We have checked
in Fig. 2 that the subspace of wave functions spanned by
using 30 different boundary conditions at the mean-field
level leads to a robust rank-N overlap matrix, therefore
corroborating the expectation of an N-fold degenerate

ground state manifold in the thermodynamic limit also at
the VMC level.
Since the variational energies for SU(3) turned out not to

be very competitive, as shown in Figs. 1(a) and 1(b), we
explicitly calculated the overlaps of individual ED eigen-
states of the Hamiltonian Eq. (3) with the three orthogonal
Gutzwiller wave functions obtained on the same system
size. In Fig. 3 we plot the summed squared overlap of all
three wave functions (area of filled circles) with the ED
eigenstates (crosses) as a function of θ. Here we consider a
Ns ¼ 12 site system, where the momenta of the three ED
ground states in the CSL phase are at the zone center (one)
and at the corners of the Brillouin zone (twofold
degenerate). Around θ ¼ 0, the SU(3) triangular lattice
Heisenberg model is in a three-sublattice color ordered state
[59,60]; however, in the region around θ=π ∼ 0.25, the
three lowest ED eigenstates indeed have sizeable overlap
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FIG. 2. VMC ground space degeneracy: ordered sequence of
eigenvalues of the overlap matrix of Gutzwiller projected wave
functions with 30 random values of threaded flux. The overlap
matrix has precisely N large eigenvalues for an SUðNÞ CSL.

FIG. 3. Summed squared overlaps of the VMC model wave
functions with ED eigenstates for N ¼ 3 and Ns ¼ 12. The blue
crosses denote ED eigenstates, while the area of the filled red
circles denotes the total squared overlap on those eigenstates.
Around θ=π ≈ 0.25, the summed overlaps on the lowest three ED
eigenstates (degeneracy 1 þ 2) account for over 75% of the total
weight, while the ground state alone is at 90%.
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Exact diagonalization vs. variational Monte Carlo

permutation have been addressed earlier. In this Letter, we
concentrate on the case of a purely imaginary three-site
permutation Φ ¼ π=2 described by the Hamiltonian

H ¼ cos θ
X

hi;ji
Pij þ sin θ

X

ði;j;kÞ
ðiPijkþ H:c:Þ; ð3Þ

with the parametrization J¼ cos θ and K3 ¼ sin θ. We
will discuss the experimental prospects of realizing this
Hamiltonian towards the end of the Letter. It is interesting to
note that parent Hamiltonians for SUðNÞ chiral spin liquids
have been proposed recently [34,35]. While there are some
structural similarities, it is not obvious that the spatially
compact and physically more realistic Hamiltonian Eq. (3)
features CSL phases. It is the goal of this Letter to provide
compelling numerical evidence, based on large-scale exact
diagonalizations (EDs) and Gutzwiller projected parton
wave functions, that the above Heisenberg Hamiltonian
indeed features extended regions of SUðNÞ CSLs for all
values of N ¼ 3 to 9 considered here.
Exact diagonalizations.—We start by investigating finite

periodic triangular lattice clusters as a function of θ for
various values of N. We focus on the range θ ∈ ½0; π=2&
in the following. θ > π=2 is likely to be dominated by
ferromagnetism, while θ < 0 yields the time-reversed, but
otherwise identical physics as −θ. For small values of
N ¼ 3, 4 we used the standard ED approach employing all
the space group symmetries, while only considering the
individual color conservation, corresponding to an Abelian
subgroup of SUðNÞ. For all other N a recently developed
ED approach by two of the authors [36], exploiting the
SUðNÞ symmetry at the expense of spatial symmetries, is
currently the only way to address these systems within ED.
Depending on N, the largest system sizes Ns range from 21
to 27 lattice sites.
In Fig. 1(a) we plot the ED results for the energy per site

of the ground state as a function of θ for all considered N

(open symbols). While the curves for N ≲ 5 look rather
smooth at first sight, it is visible that the energy per site
displays kinks around θ=π ∼ 0.05 − 0.1 and at θ=π ∼
0.35 − 0.4 for N ¼ 6 to 9. For comparison we plot the
energy expectation value of parameter-free Gutzwiller
projected CSL model wave functions for all values of N
(full lines). We will discuss the properties of these wave
functions in a moment. Interestingly, these model wave
functions have very competitive energies, especially in the
θ region slightly above the first kink. For a quantitative
comparison we show in Fig. 1(b) the ratio of the variational
energy divided by the ED ground state energy. It is
impressive that for N beyond 3 the best ratio exceeds
0.98 for the system sizes considered. So the picture so far is
that the small and large θ regimes for all considered N are
most likely other phases, while the intermediate region
could harbor CSLs.
SUðNÞ CSLs are intrinsically topologically ordered:

They exhibit a nontrivial ground state degeneracy on the
torus [27,37] and fractional excitations. The ground state
degeneracy on the torus is expected to be N for these
particular states with N different Abelian anyons [26,27].
In our numerical simulations, we can detect this degen-
eracy by investigating the low-energy spectrum on sam-
ples with a total number of lattice sitesNs that is an integer
multiple of N. In Fig. 1(c) we display the energy spread
ΔGS of these N expected ground states for different N as a
function of θ. As a general trend we observe that the
splitting reduces significantly as we increase N. On the
other hand, several samples still show a substantial
splitting. Naively one would expect a simple exponential
suppression of the splitting with system size; however, in
the related context of fractional Chern insulators a more
subtle dependence of the ground space splitting on the
actual shape of the clusters has been observed and
rationalized [48]. We think that similar considerations
apply here as well.

(a) (b) (c) (d)

FIG. 1. Panel (a) Ground state energy per site as a function of θ for various N and Ns. Open symbols (full lines) denote ED (VMC)
results. (b) Quality of the VMC wave function as measured by the ratio EVMC=EED. (c) Energy splitting among the expected N singlet
states forming the ground space manifold of a SUðNÞ CSL. (d) Energy gap from the ground state to the first excited singlet state which is
not part of the expected ground space manifold.
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Finally we also measure the gapΔsinglet from the absolute
ground state to the first singlet level that is not part of the
expected ground state manifold. This is a measure for the
excitation gap in the gapped CSL states. In Fig. 1(d), one
observes an approximate dome-shaped behavior of this gap
for all N, and furthermore this gap seems to depend only
weakly on N. The approximate region in θ where the
N-fold ground state degeneracy splitting is small compared
to the excitation gap (for large N) is indicated as a shaded
region in all the panels, and indicates a rough stability
region for the SUðNÞ CSLs on the triangular lattice. One
should note, however, that the precise extent of the CSLs
for small N is an open question at this point.
Variational parton approach.—An appealing way to

describe the SUðNÞ CSLs is to use a parton-based mean
field approach [26,27,49–54], complemented with a
Gutzwiller projection. The idea is to fractionalize the
elementary spin degree of freedom into fermionic spinons
(partons) with N colors. For an exact description, a
dynamical gauge field needs to enforce the physical
constraint of one fermion per site. At the mean-field level,
however, it is sufficient to specify the band structure and
filling of the fermionic spinons. In the SUðNÞ CSLs of
interest here, the spinon band structure consists of N bands,
where the lowest band is completely filled for all N colors
and separated by a gap from the other bands. In addition,
this band is required to have Chern number # 1. For the
triangular lattice we use a Hofstadter-type tight-binding
Hamiltonian with a uniform flux of π=N per triangular
plaquette [55], fulfilling the requirements on the band
structure. This mean-field state can now be turned into a
valid spin wave function by the application of an exact
Gutzwiller projection, enforcing the presence of exactly
one fermionic spinon per site. Such a wave function can
be handled by variational Monte Carlo (VMC) techniques,
and in particular one can easily calculate the energy
of the Hamiltonian Eq. (3) on rather large lattices. The
VMC energies displayed in Figs. 1(a) and 1(b) have been
obtained this way [37].
The next question is how the VMC approach is able to

account for the nontrivial ground state degeneracy on the
torus. It turns out that by threading flux through the
noncontractible loops around the torus, one is able to span
an N-dimensional subspace of Gutzwiller projected wave
functions, with almost identical local properties on finite
lattices. From the viewpoint of topological order, this
corresponds to a charge pumping procedure, where one
cycles through the N different ground states by threading a
different anyonic flux through the interior of the torus.
These concepts have recently been explored in the context
of SU(2) CSL on several lattices [56–58]. We have checked
in Fig. 2 that the subspace of wave functions spanned by
using 30 different boundary conditions at the mean-field
level leads to a robust rank-N overlap matrix, therefore
corroborating the expectation of an N-fold degenerate

ground state manifold in the thermodynamic limit also at
the VMC level.
Since the variational energies for SU(3) turned out not to

be very competitive, as shown in Figs. 1(a) and 1(b), we
explicitly calculated the overlaps of individual ED eigen-
states of the Hamiltonian Eq. (3) with the three orthogonal
Gutzwiller wave functions obtained on the same system
size. In Fig. 3 we plot the summed squared overlap of all
three wave functions (area of filled circles) with the ED
eigenstates (crosses) as a function of θ. Here we consider a
Ns ¼ 12 site system, where the momenta of the three ED
ground states in the CSL phase are at the zone center (one)
and at the corners of the Brillouin zone (twofold
degenerate). Around θ ¼ 0, the SU(3) triangular lattice
Heisenberg model is in a three-sublattice color ordered state
[59,60]; however, in the region around θ=π ∼ 0.25, the
three lowest ED eigenstates indeed have sizeable overlap
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FIG. 2. VMC ground space degeneracy: ordered sequence of
eigenvalues of the overlap matrix of Gutzwiller projected wave
functions with 30 random values of threaded flux. The overlap
matrix has precisely N large eigenvalues for an SUðNÞ CSL.

FIG. 3. Summed squared overlaps of the VMC model wave
functions with ED eigenstates for N ¼ 3 and Ns ¼ 12. The blue
crosses denote ED eigenstates, while the area of the filled red
circles denotes the total squared overlap on those eigenstates.
Around θ=π ≈ 0.25, the summed overlaps on the lowest three ED
eigenstates (degeneracy 1 þ 2) account for over 75% of the total
weight, while the ground state alone is at 90%.
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with the VMC model wave functions, thereby underlining
the presence of an SU(3) CSL for sufficiently large values
of θ also for N ¼ 3.
Edge states.—Another hallmark of chiral topological

phases is the presence of chiral edge modes in the energy
spectrum of systems with a boundary. It has been under-
stood that the characteristic energy level structure of the
edge excitations as a function of the momentum along the
boundary serves as a fingerprint of the type of topological
order realised in the bulk [61]. The SUðNÞ CSLs consid-
ered here are expected to exhibit a chiral edge energy
spectrum described by the SUðNÞ1 Wess-Zumino-
Novikov-Witten (WZNW) conformal field theory (CFT)
[27]. This is the same CFT that governs the low-energy
spectrum of well-studied one-dimensional critical SUðNÞ
spin chains [34,35,62,63].
In order to test this hypothesis numerically we choose

to emulate a disk geometry by considering the specific
Ns ¼ 19 site triangular lattice with open boundary con-
ditions depicted in the left panel of Fig. 4. Such a lattice
might actually be built in future ultracold atom experiments
with optical lattices and a tight confining potential. This
sample still has a sixfold rotation axis about the central site,
yielding an angular momentum quantum number which we
use to plot the energy spectrum. The energy spectrum of
the disc has no topological ground state degeneracy, but
features gapless edge modes which typically propagate
only in one direction. The precise multiplet structure of the
edge modes depends on the anyonic sector. In our setup,
this sector can be simply labeled as a ¼ ðNs mod NÞ.
In Table I of the Supplemental Material [37], we have
compiled the SUðNÞ1 WZNW CFT predictions for the
different irreducible representations of SUðNÞ which
appear at a given excitation energy, here qualitatively

labeled by the excess angular momentum l − l0. In the
remaining panels of Fig. 4 we display the actual ED energy
spectrum of the Hamiltonian Eq. (3) for a fixed value of
θ=π ¼ 0.25 for N ¼ 3 up to 8 as a function of the angular
momentum l − l0. For all N one can clearly identify a
branch of chiral excitations propagating to the right. The
analytical predictions are indicated by the dimensions of
the SUðNÞ irreducible representations. For allN the numeri-
cal data for the first three sectors (l − l0 ¼ 0, 1, 2) are in full
agreement with the analytical predictions. The splitting
between the multiplets at a given value of l is expected to
vanish as Ns grows, and the spectrum should become linear
with a certain edge state velocity. The observed structure of
the edge excitations confirms the SUðNÞ1 WZNW CFT
predictions and thus strengthens the case for Abelian
SUðNÞ CSLs in the model Hamiltonian Eq. (3).
Experimental considerations.—With the recent realiza-

tion of the Mott-crossover regime in 3D optical lattices with
fermionic Ytterbium atoms [64,65] the future for strongly
correlated SUðNÞ quantum magnetism is shining bright.
Our proposal for triangular lattices builds on ingredients
that have been demonstrated separately: the possibility to
realize Mott insulators in optical lattices, and to create
static artificial gauge fields in an optical lattice (for alkaline
atoms) [66,67]. Besides, working with the triangular lattice
is a big advantage because the 3-site permutation term is the
first and only term to appear to third order in perturbation
theory starting from the Hubbard model with one particle
per site, by contrast to, e.g., the square and honeycomb
lattice, where they appear at order 4 and 6, respectively, and
are not the first corrections. The chiral phase typically
appears for θ≃ 0.3, which, using the perturbation expres-
sions of J ¼ 2t2=U and K3 ¼ 6t3=U2, corresponds to
t=U ≃ 0.1. This might be small enough to be still in the

FIG. 4. Edge states in SUðNÞ CSLs: the leftmost panel displays the Ns ¼ 19 site triangular cluster with open boundary conditions
used. In the various other panels we exhibit the low energy spectrum as a function of the angular momentum around the central site (l0
denotes the ground state angular momentum). The chiral edge states are clearly visible, with a characteristic SUðNÞ multiplet structure,
which corresponds to a particular sector of a chiral SUðNÞ1 Wess-Zumino-Novikov-Witten conformal field theory. The analytical
predictions are indicated by the dimensions of the SUðNÞ multiplets and can be found in Table I of the Supplemental Material [37].
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