Hastlayer - Implementing on Xilinx Alveo Accelerator Cards

Zoltán Lehóczky @ Lombiq Ernő Dávid @ Wigner

GPU Day 2020

20.10.2020

HASTLAY

be the hardware

Let's talk about you!

You're doing some number crunching.

Number crunching like in...

- Artificial intelligence, machine learning
- Image and video processing, computer vision
- Algorithmic trading
- Data compression
- Scientific computations and physics problems

- Profile and optimize it \checkmark
- Parallelize it \checkmark
- Use faster and/or more hardware \checkmark

- Profile and optimize it \checkmark
- Parallelize it \checkmark
- Use faster and/or more hardware \checkmark

- Profile and optimize it \checkmark
- Parallelize it \checkmark
- Use faster and/or more hardware \checkmark

- Profile and optimize it \checkmark
- Parallelize it \checkmark
- Use faster and/or more hardware \checkmark

- Profile and optimize it \checkmark
- Parallelize it \checkmark

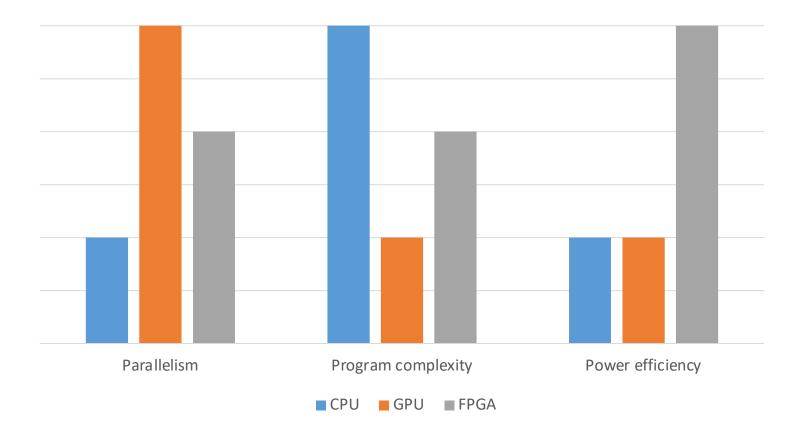
• ...


• Use faster and/or more hardware \checkmark

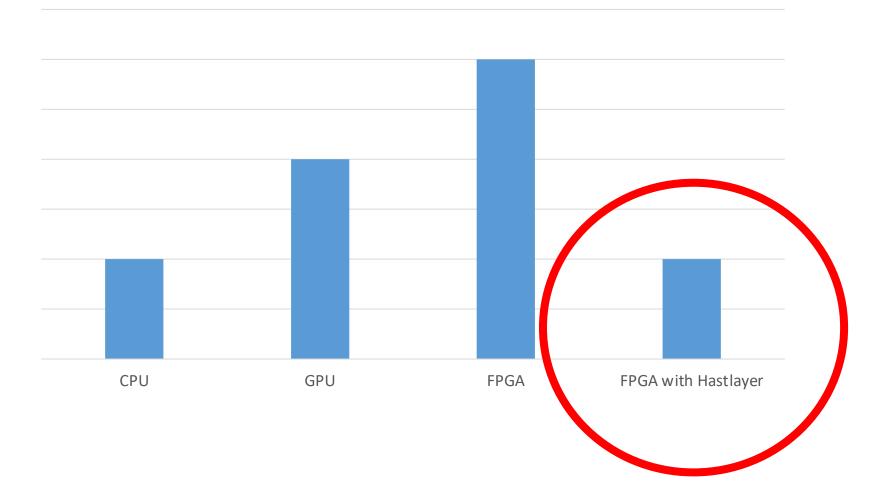
- Profile and optimize it \checkmark
- Parallelize it \checkmark
- Use faster and/or more hardware \checkmark
- Use heterogeneous computing: GPUs, FPGAs...

Let's explore the last part a bit.

FPGAs?


- Field-Programmable Gate Array
- Can behave like any other chip (with limitations)
- Can dynamically be "re-wired"

FPGAs!


- If you use Bing or Azure, you've used them!
- Found in routers, X-ray machines, self-driving cars...
- You need to be a hardware engineer to utilize them

CPU vs GPU vs FPGA

But!

How hard to learn?

What's Hastlayer?

computer program \rightarrow FPGA logic

computer program \rightarrow computer chip

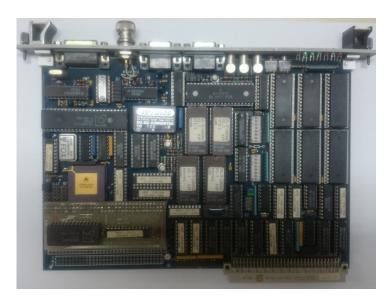
logic expressed as software \rightarrow logic expressed as hardware

.NET (C#, VB, C++, F#, Python, PHP, JavaScript...) → FPGA logic

The benefits of FPGAs for us all

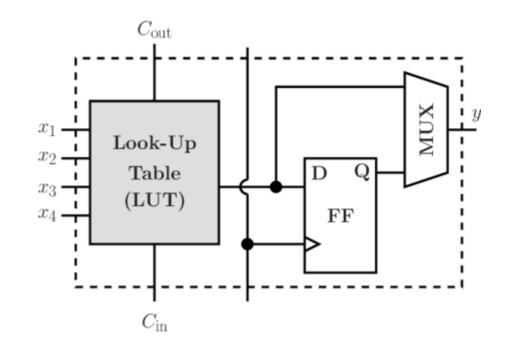
- Performance increase for parallel compute-bound algorithms
- Higher power efficiency
- Still only software development

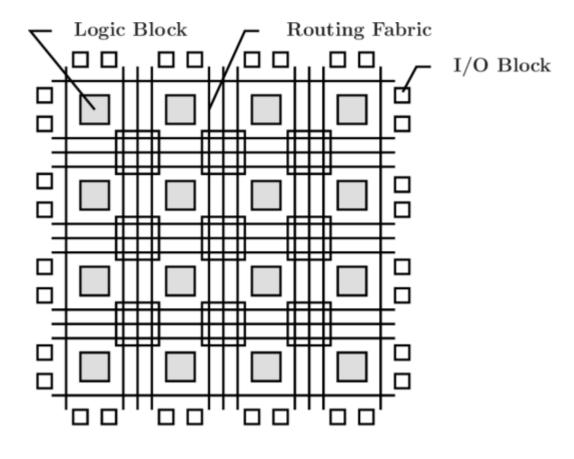
Benchmarks


Algorithm	Nexys speed advantage	Nexys power advantage	Alveo speed advantage	Alveo power advantage
ImageContrastModifier	1% (net)	4700%	1486%	569%
MonteCarloPiEstimator	15%	5233%	189%	22%
ParallelAlgorithm	391%	23600%	421%	120%

Demo: Hands-on Hastlayer

What's under the hood?


FPGAs in the Wigner

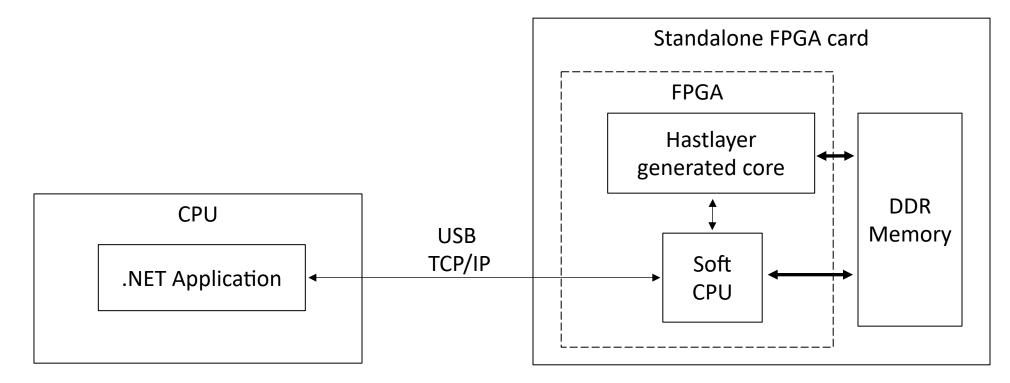

- Wigner RC DAQ (Data Acquisition) laboratory
- HW and FW for physical experiments (e.g. CERN ALICE)

Inside the FPGA

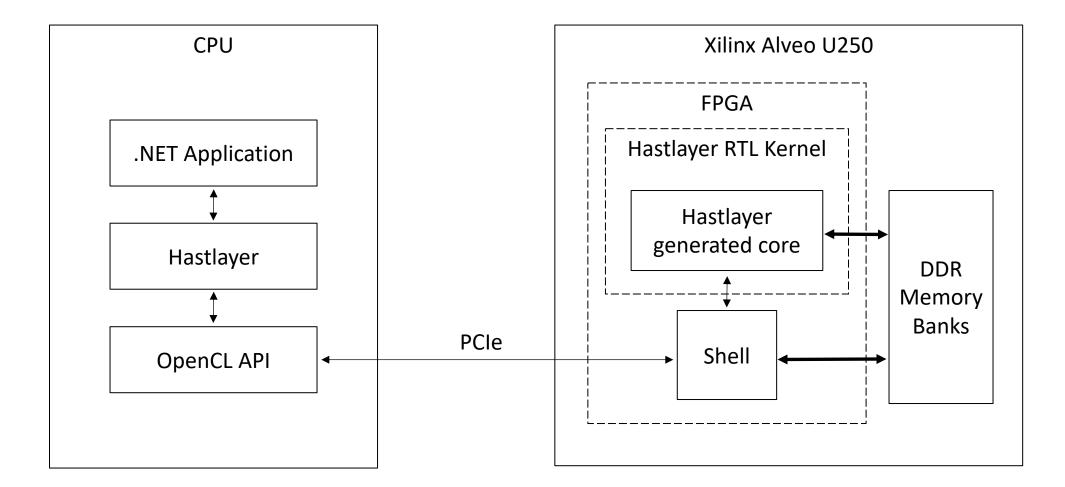
Logic Block

FPGA Fabric

Xilinx Alveo Product Lineup


ALVEO. U50	CALVEO. U200	E ALVEO. U250	E ALVEO. U280
UltraScale+ Architecture	UltraScale+ Architecture	UltraScale+ Architecture	UltraScale+ Architecture
872k LUTs	1,182k LUTs	1,728k LUTs	1,304k LUTs
Single slot, half height	Dual slot, full height	Dual slot, full height	Dual slot, full height
8GB HBM2, 460GB/sec	64GB DDR, 77GB/sec	64GB DDR, 77GB/sec	8GB HBM2, 460GB/sec
PCle Gen3, Gen4, CCIX	PCIe Gen3	PCle Gen3	PCIe Gen3, Gen4, CCIX
1x QSFP 28 (100GbE)	2x QSFP 28 (100GbE)	2x QSFP 28 (100GbE)	2x QSFP 28 (100GbE)
< 75W	< 225W	< 225W	< 225W

FPGA Tools Evolution


- Early days: by hand, schematic
- Now: VHDL, (System)Verilog
- Future?: High Level Synthesis
 - Xilinx / IntelFPGA OpenCL
 - Hastlayer
 - ...
- Wigner GPU Lab and Lombiq collaboration since 2018

Let's Build an Accelerator with Hastlayer

 Hastlayer generated core – VHDL module generated from .NET assembly by the Hastlayer SDK



Xilinx Alveo Card Execution Model

Challenging areas – Memory Access

- Hastlayer generated core 32-bit memory access
- Early stage: 32-bit external memory access
- Now: 512-bit external memory access + local cache

Challenging areas – Memory Access

• ImageProcessingAlgorithms sample runtimes:

AXI and Cache Width [bit]	DDR Memory [ms]	HBM Memory [ms]
32	80,4	71,5
64	44,5	40,2
512	12,6	11,9
1024	10,3	10,0

Challenging Areas – Kernel Frequency

- Higher parallelization → Bigger combinational logic → Longer propagation delay → Slower kernel frequency
- Target frequency: 300 MHz (3.33 ns between two flip-flops)
- Ongoing work: Inject more pipeline registers → Split the combinational logic to smaller parts → Higher kernel frequency

Challenging Areas – Build Time

- Not a Hastlayer issue but an Alveo card development feature
- Simplest design: 3-4 hours to build
- The whole system is rebuilt every time
- (existing FPGA configuration can be loaded immediately)
- Xilix: promises that FPGA partial reconfiguration will be supported in the future (when only the kernel is replaced)

Further plans – Embedded FPGA Support

- Support Xilinx Zynq family (FPGA fabric + ARM CPU)
- Aerospace industry, on board of drones and satellites (image processing)
- Requires AMBA AXI bus support we already have for the Alveo system

Are you ready to *be* the hardware?

- crew@hastlayer.com
- https://hastlayer.com
- https://github.com/Lombiq/Hastlayer-SDK/
- https://lombiq.com