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Finite-level system coupled to harmonic oscillator

\
— harmonic
. S part
_— )
N-level ® harmonlc -
system oscillator
.
anharmonic
part
— /

uisner



Finite-level system coupled to harmonic oscillator
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@ high-enough excitation, spectrum always has harmonic subsets ]
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Prototype: Jaynes-Cummings spectrum
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Photon-blockade breakdown

the phases
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Photon-blockade breakdown

the bistable behaviour
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Phase transition without approaching macroscopic system in thermodynamic limit
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Photon-blockade breakdown

the jump-induced switchings
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Photon-blockade breakdown
the phase diagram
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Transition from dim to bright phase in the bistable region through the
bistable domain via the filling factor
= “coextistence of phases” with varying composition
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Photon-blockade breakdown

vs. long-lived bistability

Long-lived bistability not unknown in quantum optics
— e.g. electron-shelving (Dehmelt, 1986) — single Ba™ ion
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Blinking timescale remains determined by atomic timescale ]
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Photon-blockade breakdown

the thermodynamic limit

The proof of the phase transition is the existence of a thermo-
dynamic limit (both the photon scale and the timescale become
macroscopic, independent of microscopic timescales)
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[Vukics, Dombi, Fink, Domokos, Quantum 3:150 (2019)]

Thermodynamic limit is a
strong-coupling limit
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Photon-blockade breakdown
the experiment — Andreas Wallraff & Johannes Fink @ ETH Ziirich & IST Austria
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1-3 artificial atoms capacitively coupled to mode of stripline resonator
Prototype: Cooper-pair box = several more advanced designs
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Circuit Quantum Electrodynamics (CCQED)

Basically microwave electronic devices, but

» superconductivity (T ~ mK)
=> quantum behaviour
» low input powers (P, ~ aW...fw)

Linearity broken by Josephson-junction
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Circuit Quantum Electrodynamics (CCQED)

Basically microwave electronic devices, but
» superconductivity (T ~ mK)
=> quantum behaviour
» low input powers (P, ~ aW...fw)

Linearity broken by Josephson-junction

Positives when compared to cavity QED

» Larger light-matter coupling strength
» Stripline resonators easily cascaded

P scalability for quantum-information processing
P photonic Bose-Hubbard model

P Artifical atoms are immobile

P No Doppler-effect, no inhomogeneous broadening
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Circuit Quantum Electrodynamics (CCQED)

Basically microwave electronic devices, but
» superconductivity (T ~ mK)
=> quantum behaviour
» low input powers (P, ~ aW...fw)

Linearity broken by Josephson-junction

Positives when compared to cavity QED

» Larger light-matter coupling strength
» Stripline resonators easily cascaded

P scalability for quantum-information processing
P photonic Bose-Hubbard model

P Artifical atoms are immobile

P No Doppler-effect, no inhomogeneous broadening

» No microscopic theory — J-C model used phenomenologically

P Artificial atoms not identical (only with ~ 10-6G-9) precision)
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Photon-blockade breakdown

the experiment — Johannes Fink @ IST Austria
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The Monte-Carlo wave function method

apply Ho evolution
(ODE step and/or exact propagator)

[Znn(t)) ¥ =t+0t

jump rates:

randomize:

ve (0,67

perform jump #M:

[W()) = Jar [nn(t))

o jump:

[9(t)) = [Wan(t)

[Kornyik and Vukics, Comp. Phys. Comm. 238:88-101 (2019)]

Probability distro (amplitudes)
conditioned on observation
results.

Possible to resolve individual
quantum jumps, yet simulate
long times

Evolve with non-Hermitian
Hamiltonian to describe
continuous information leak to
the environment

From time to time (important
problem: when? how often?)
probe for jumps
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The Monte-Carlo wave function method

current state of trajectory
(8tyy obtained from step before [0 pex]):
[ (), t € [m AL, (m+ 1) At)

Sty = Min (Stay, (m + 1) At — t)

apply Hy evolution
(ODE step and/or exact propagator)
renormalize state vector

|Won(t)) , Otdid, Otnexts t' =t + Otdia

jump rates:

P = (Vo (t)| T}, T | W (1))

randomize:

€ [0,0tg4)

[Kornyik and Vukics, Comp. Phys. Comm. 238:88-101 (2019)]

perform jump #M:

reject step - try again with
Ap
X Tm

False

Otnea =

adjust timestep for next step
according to Liouvillean:

: Ap
Stne = min (Atnm.
ZmTm

[W()) = Jar [nn(t))

[9(t")) = [Wan(t)

Probability distro (amplitudes)
conditioned on observation
results.

Possible to resolve individual
quantum jumps, yet simulate
long times

Evolve with non-Hermitian
Hamiltonian to describe
continuous information leak to
the environment

From time to time (important
problem: when? how often?)
probe for jumps
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MCWF method

some typical and some weird trajectories

initial state: |1)
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Ensemble average converges to solution of quantum Master equation
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MCWF method

some typical and some weird trajectories

initial state: (|0) + [1))/v2
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On half of the trajectories, no jump ever occurs
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MCWF method

some typical and some weird trajectories

initial state: |9)
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MCWF method

some typical and some weird trajectories

initial state: |a) coherent state
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Photon escape leaves the state unaffected
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MCWF method

some typical and some weird trajectories

initial state: |0) + €2)
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MCWF method

some typical and some weird trajectories

initial state: |0) + €2)
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Photon escape (very rare event) increases the number of photons!

Quisner



Simulation tool: C++QED

a C++ framework for simulating fully quantum open dynamics

» Developed since 2006

» Defines elementary physical systems as building blocks of complex
systems

» Uses C++ compile-time algorithms to optimize runtime

> Uses adaptive MCWF algorithm governed by maximal allowed jump
probability
» Since spring 2020: update to C++17 in progress

http://github.com/vukics/cppged

For more details cf. also my talk from last year’s GPU Day
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Computational infrastructure

Virtual computer cluster defined within the Wigner Cloud
8 x 8 VCPUs with SLURM workload manager

For the PBB thermodynamic limit project
— ca. half a year data-collection campaign
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