Algorithmic Differentiation of Structured Mesh Applications J

Gabor Daniel Balogh
Supervisor: dr. Istvan Reguly

Pazmany Péter Catholic University
Faculty of Information Technology and Bionics

October 20, 2020

G. D. Balogh (PPCU - ITK) October 20, 2020 1/18

|
Algorithmic Differentiation - AD

@ Algorithmic Differentiation is used to evaluate derivatives of the function which defined by
a computer program

G. D. Balogh (PPCU - ITK) October 20, 2020 2/18

|
Algorithmic Differentiation - AD

@ Algorithmic Differentiation is used to evaluate derivatives of the function which defined by
a computer program

Why AD?
@ Numerical methods require derivatives

@ There are three main ways of automating computation of derivatives

e Finite differentiation - slow for high dimension, lower accuracy
e Symbolic differentiation - cannot handle some programming constructs
e Algorithmic Differentiatoin - exact solution, fast

G. D. Balogh (PPCU - ITK) October 20, 2020 2/18

|
Algorithmic Differentiation - AD

Our program: f : R” — R™, from som input u € R" generates some output w € R™”

G. D. Balogh (PPCU - ITK) October 20, 2020 3/18

|
Algorithmic Differentiation - AD

Our program: f : R” — R™, from som input u € R" generates some output w € R™”

Our goal is to get the Jacobian J (or a part of it):

of;

G. D. Balogh (PPCU - ITK) October 20, 2020 3/18

|
Algorithmic Differentiation - AD

Our program: f : R” — R™, from som input u € R" generates some output w € R™”
Our goal is to get the Jacobian J (or a part of it):

of;

But how to get there?

G. D. Balogh (PPCU - ITK) October 20, 2020 3/18

|
Algorithmic Differentiation - AD

Assume that we can write f as a composite of K functions:

f=fKofK-1o. . . of!

G. D. Balogh (PPCU - ITK) October 20, 2020 4/18

|
Algorithmic Differentiation - AD

Assume that we can write f as a composite of K functions:

f=fKofK-1o. . . of!

Then we can write the Jacobian as:

J=J-Ji1-...- K

G. D. Balogh (PPCU - ITK) October 20, 2020 4/18

|
Algorithmic Differentiation - AD

Assume that we can write f as a composite of K functions:

f=fKofK-1o. . . of!
Then we can write the Jacobian as:
J=J1-Ji_1-...- K

There are two mode of AD:

e Forward (tangent) mode computes J-u=J; - Jy 1+ J1-u, for ue R"”
e Backward (adjoint) mode computes JT -w = J -4 - ST - w, for w € R

G. D. Balogh (PPCU - ITK)

October 20, 2020 4/18

-
Adjoint mode AD

Backward (adjoint) mode computes JT -w = J - J - JL - w, for w € R™

Use w such that the it" element of w is 1, and the others are 0.

o JT . w will produce the i*" row of J

G. D. Balogh (PPCU - ITK) October 20, 2020 5/18

-
Adjoint mode AD

Backward (adjoint) mode computes JT -w = J - J - JL - w, for w € R™

Use w such that the it" element of w is 1, and the others are 0.

o JT . w will produce the i*" row of J

Evaluate it one step at a time
@ Only need the derivative of one function of the chain

o If we choose the f; decomposition carefully, we can implement AD efficiently

G. D. Balogh (PPCU - ITK) October 20, 2020 5/18

-
Adjoint mode AD

Backward (adjoint) mode computes JT -w = J - J - JL - w, for w € R™

Use w such that the it" element of w is 1, and the others are 0.

o JT . w will produce the i*" row of J

Evaluate it one step at a time
@ Only need the derivative of one function of the chain
o If we choose the f; decomposition carefully, we can implement AD efficiently

@ But to get J; we need the state of the program at #;

G. D. Balogh (PPCU - ITK) October 20, 2020 5/18

-
Adjoint mode AD

Backward (adjoint) mode computes JT -w = J - J - ST - w, for w € R™

Commonly implemented with operator overloading
e f; is an elementary operation, easy to compute J;” - w’

@ But we produce enormous chains, and need to store every state of every variable

G. D. Balogh (PPCU - ITK) October 20, 2020 6/18

.
DSLs for future proof HPC applications

o Fast-changing hardware
e infeasible to maintain code to support all of them

e Embedded Domain Specific Languages (eDSL) can hide platform specific details
o future proof, perforamnce portable solutions for application developers

G. D. Balogh (PPCU - ITK) October 20, 2020 7/18

Oxford Parallel library for Structured mesh solvers

OPS (Oxford Parallel library for Structured mesh solvers)

@ C+-+ library with high-level API calls for
structured mesh applications

@ High level concepts

e grids
e data on grids
o loops over subgrid accessing data

@ generate parallel implementations of loops for
all hardware

G. D. Balogh (PPCU - ITK) October 20, 2020 8/18

-
OPS + AD

@ Each loop that performs computation must be a call of ops_par_loop

o takes the loop body as a function
o descriptors of datasets: access type, stencil of access

@ OPS generates the implementation for all ops_par_loop

G. D. Balogh (PPCU - ITK) October 20, 2020 9/18

-
OPS + AD

@ Each loop that performs computation must be a call of ops_par_loop

o takes the loop body as a function
o descriptors of datasets: access type, stencil of access

@ OPS generates the implementation for all ops_par_loop

If we have all these information, can we do AD?

G. D. Balogh (PPCU - ITK) October 20, 2020 9/18

-
OPS + AD

If we have all these information, can we do AD?

@ OPS already has control over the sequence of parallel loops.

o If we have derivatives of these loops instead of the elementary operations we can evaluate
the chain rule on the loop level.

o We assume that either the user will supply the derivative or we can use source transformation
to get it

G. D. Balogh (PPCU - ITK) October 20, 2020 10/18

-
OPS + AD

If we have all these information, can we do AD?

@ OPS already has control over the sequence of parallel loops.

o If we have derivatives of these loops instead of the elementary operations we can evaluate
the chain rule on the loop level.

o We assume that either the user will supply the derivative or we can use source transformation
to get it

@ Features missing to perform the backward sweep:

e store intermediate states
e reversing data flow inside loops

G. D. Balogh (PPCU - ITK) October 20, 2020 10/18

Intermediate state storage - tape

@ Generated code registers loops and create
copies of overwritten data to a data
structure (tape).

@ In the backward sweep we can execute the
adjoints of each loop and load
intermediate states of datasets.

G. D. Balogh (PPCU - ITK)

Initilise OPS and
variables Wiite
checkpoints

Finish

checkpoints

ops_par_loop_1
ops_par_loop_2
ops_par_loop_3

ops_par_loop_N-1
ops_par_loop_N

OPS tape

ops_par_loop_1_ats

ops_par_loop_2_ats

ops_par_loop_3_ats

ops_par_loop_N-1_ats

ops_par_loop_N_ais

ops_interpret_adjoints

October 20, 2020

11/18

Reversing data flow

The second problem is that we need to parallelise the adjoints of the stencil loops as well.

Figure 1: Example computational step in OPS given by the user (a) for compute results and (b) to compute the derivatives
backwards

1 inline void mean_kernel_adjoint (

2 const OPS_ACC<double> &u,

3 OPS_ACC<double> &u_als,

4 const OPS_ACC<double> &u_2,
5 OPS_ACC<double> &u_2_als) {
6
7
8

1 inline void mean_kernel (

2 const OPS_ACC<double> &u,

3 OPS_ACC<double> &u_2) {

4 u_2(0, 0) = (u(-1, 0) + u(, 0) u_als(-1,0) += 0.25 = u_2_als(0, 0);
3 u_als(l, 0) += 0.25 % u_2_als(0, 0);
6 u_als(0,-1) += 0.25 u_2_als(0, 0);
. 9 u_als(0, 1) += 0.25 % u_2_als(0, 0);
a: Compute the mean of neighbours for each 0} o

grid point

+ u(0, -1) + u(0, 1)) % 0.25;
}

b: The corresponding adjoint kernel

G. D. Balogh (PPCU - ITK) October 20, 2020 12/18

Reversing data flow

Writing pattern in forward code. Reversed stencil for adjoints. Race conditions
No race condition allowed. on each adjoint.
1 ~
¢ ¢ ¢ ® ®
& - (—)

G. D. Balogh (PPCU - ITK) October 20, 2020 13/18

Avoiding race conditions

@ CPU: Red black colouring creating red and black stripes for each thread

Thr O Thr1l

A
@ 8]

o CUDA: overloading operators to use atomics for adjoints

G. D. Balogh (PPCU - ITK) October 20, 2020 14 /18

N
Performance: CPU

Our best performance on example apps produce derivatives under less then 6x of the primal
code, which is close to the theoretical optimum on a representative code from finance.

25000

20000

15000
3
=" 10000 = AD

W Primal
5000
0 I
512%256 1024x512 1024x1024
problem size

G. D. Balogh (PPCU - ITK) October 20, 2020 15/18

N
Performance: V100

Naive GPU implementation of the adjoint loops on typical problem sizes takes 10 — 25X of the
primal.

25

cost of backward sweep

512x256 1024x512 1024x1024
G. D. Balogh (PPCU - ITK) October 20, 2020 16 /18

Current solution: Memory

Another problem of the current implementation is that checkpointing requires too much
memory.

Memory (GB) | With checkpointing (GB)
iteration count
Grid Size primal 10 100 200
512 x 256 0.025 0.292 | 1.788 3.792
1024 x 512 0.094 0.892 | 6.902 12.90
1024 x 1024 0.188 1.946 | 13.04 26.04

G. D. Balogh (PPCU - ITK) October 20, 2020

17/18

Conclusions

We extended the OPS library with adjoint aware API.
@ Successfully parallelised the computations of adjoints for CPUs and GPUs

@ Showed promising runtime performance
@ But the current implementation requires too much memory
o Currently working on an implementation for recomputing loops

Supported by the UNKP-19-3-1 New National Excellence Program of the Ministry for
Innovation and Technology

G. D. Balogh (PPCU - ITK) October 20, 2020 18/18

