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Algorithmic Differentiation - AD

Algorithmic Differentiation is used to evaluate derivatives of the function which defined by
a computer program

Why AD?
Numerical methods require derivatives
There are three main ways of automating computation of derivatives

Finite differentiation - slow for high dimension, lower accuracy
Symbolic differentiation - cannot handle some programming constructs
Algorithmic Differentiatoin - exact solution, fast
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Algorithmic Differentiation - AD

Our program: f : Rn → Rm, from som input u ∈ Rn generates some output w ∈ Rm

Our goal is to get the Jacobian J (or a part of it):

Jij = ∂fi
∂xj

But how to get there?
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Algorithmic Differentiation - AD

Assume that we can write f as a composite of K functions:

f = f K ◦ f K−1 ◦ . . . ◦ f 1

Then we can write the Jacobian as:

J = JL · JL−1 · . . . · J1

There are two mode of AD:
Forward (tangent) mode computes J · u = JL · JL−1 · · · · · J1 · u, for u ∈ Rn

Backward (adjoint) mode computes JT · w = JT
1 · JT

2 · · · · · JT
K · w , for w ∈ Rm
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Adjoint mode AD

Backward (adjoint) mode computes JT · w = JT
1 · JT

2 · · · · · JT
K · w , for w ∈ Rm

Use w such that the i th element of w is 1, and the others are 0.
JT · w will produce the i th row of J

Evaluate it one step at a time
Only need the derivative of one function of the chain
If we choose the fi decomposition carefully, we can implement AD efficiently
But to get Ji we need the state of the program at fi
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Adjoint mode AD

Backward (adjoint) mode computes JT · w = JT
1 · JT

2 · · · · · JT
K · w , for w ∈ Rm

Commonly implemented with operator overloading
fi is an elementary operation, easy to compute JT

i · w ′

But we produce enormous chains, and need to store every state of every variable
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DSLs for future proof HPC applications

Fast-changing hardware
infeasible to maintain code to support all of them

Embedded Domain Specific Languages (eDSL) can hide platform specific details
future proof, perforamnce portable solutions for application developers
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Oxford Parallel library for Structured mesh solvers

OPS (Oxford Parallel library for Structured mesh solvers)

C++ library with high-level API calls for
structured mesh applications
High level concepts

grids
data on grids
loops over subgrid accessing data

generate parallel implementations of loops for
all hardware
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OPS + AD

Each loop that performs computation must be a call of ops par loop
takes the loop body as a function
descriptors of datasets: access type, stencil of access

OPS generates the implementation for all ops par loop

If we have all these information, can we do AD?
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OPS + AD

If we have all these information, can we do AD?
OPS already has control over the sequence of parallel loops.

If we have derivatives of these loops instead of the elementary operations we can evaluate
the chain rule on the loop level.

We assume that either the user will supply the derivative or we can use source transformation
to get it

Features missing to perform the backward sweep:
store intermediate states
reversing data flow inside loops
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Intermediate state storage - tape

Generated code registers loops and create
copies of overwritten data to a data
structure (tape).

In the backward sweep we can execute the
adjoints of each loop and load
intermediate states of datasets.

OPS tape

Initilise OPS and
variables

ops_par_loop_1

ops_par_loop_2

ops_par_loop_N-1

ops_par_loop_3

ops_par_loop_N

Init
adjoints

ops_par_loop_N_a1s

ops_par_loop_N-1_a1s

ops_par_loop_1_a1s

Finish

ops_par_loop_2_a1s

ops_par_loop_3_a1s

ops_interpret_adjoints

Write
checkpoints

Load
checkpoints

G. D. Balogh (PPCU – ITK) October 20, 2020 11 / 18



Reversing data flow

The second problem is that we need to parallelise the adjoints of the stencil loops as well.

Figure 1: Example computational step in OPS given by the user (a) for compute results and (b) to compute the derivatives
backwards

1 inline void mean_kernel(

2 const OPS_ACC<double> &u,

3 OPS_ACC<double> &u_2) {

4 u_2(0, 0) = (u(-1, 0) + u(1, 0)
5 + u(0, -1) + u(0, 1)) * 0.25;

6 }

a: Compute the mean of neighbours for each
grid point

1 inline void mean_kernel_adjoint(
2 const OPS_ACC<double> &u,

3 OPS_ACC<double> &u_a1s,

4 const OPS_ACC<double> &u_2,

5 OPS_ACC<double> &u_2_a1s) {
6 u_a1s(-1,0) += 0.25 * u_2_a1s(0, 0);

7 u_a1s(1, 0) += 0.25 * u_2_a1s(0, 0);

8 u_a1s(0,-1) += 0.25 * u_2_a1s(0, 0);

9 u_a1s(0, 1) += 0.25 * u_2_a1s(0, 0);
10 }

b: The corresponding adjoint kernel
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Reversing data flow

Writing pattern in forward code.
No race condition allowed.

Reversed stencil for adjoints. Race conditions
on each adjoint.
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Avoiding race conditions

CPU: Red black colouring creating red and black stripes for each thread
Thr 0 Thr 1

CUDA: overloading operators to use atomics for adjoints

G. D. Balogh (PPCU – ITK) October 20, 2020 14 / 18



Performance: CPU
Our best performance on example apps produce derivatives under less then 6× of the primal
code, which is close to the theoretical optimum on a representative code from finance.
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Performance: V100
Naive GPU implementation of the adjoint loops on typical problem sizes takes 10− 25× of the
primal.
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Current solution: Memory

Another problem of the current implementation is that checkpointing requires too much
memory.

Memory (GB) With checkpointing (GB)
iteration count

Grid Size primal 10 100 200
512× 256 0.025 0.292 1.788 3.792

1024× 512 0.094 0.892 6.902 12.90
1024× 1024 0.188 1.946 13.04 26.04
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Conclusions

We extended the OPS library with adjoint aware API.
Successfully parallelised the computations of adjoints for CPUs and GPUs
Showed promising runtime performance
But the current implementation requires too much memory

Currently working on an implementation for recomputing loops

Supported by the ÚNKP-19-3-I New National Excellence Program of the Ministry for
Innovation and Technology
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