
Bitwise Reproducible Execution of
Unstructured Mesh Applications

Bálint Siklósi, István Reguly, Gihan R Mudalige

Pázmány Péter Catholic University
Faculty of Information Technology and Bionics

Oct, 2020

B. Siklósi (PPCU – FIT) Oct, 2020 1 / 17

Overview

Introduction
OP2-DSL
Reproducible strategies
Results

B. Siklósi (PPCU – FIT) Oct, 2020 2 / 17

Introduction

Problem:
IEEE-754 standard for floating point representation
Correct behaviour, but comes with roundings. → non-associativity
The order of calculations, usually relaxed in a parallel environment, affects the results

According to google’s built in calculator:

((((((((((1000000000 + 0.001) + 0.001) + 0.001) + 0.001)+0.001)
+0.001) + 0.001) + 0.001) + 0.001) + 0.001) = 1000000000.0100005

1000000000 + (0.001 + 0.001 + 0.001 + 0.001 + 0.001+0.001
+0.001 + 0.001 + 0.001 + 0.001) = 1000000000.01

B. Siklósi (PPCU – FIT) Oct, 2020 3 / 17

Motivation

In some industries exact reproducibility is very important, due to regulatory requirements:
aircraft turbine design
algorithmic trading, checked by regulators

Debugging
Reproduce errors
Compare outputs

B. Siklósi (PPCU – FIT) Oct, 2020 4 / 17

Approaches

Other solutions:
ReproBLAS project’s binned representation → 5n to 9n floating point operations overhead
Lulesh → only for boundary/halo values

Our solution:
Reproducible ordering for indirect increments
Reproducible reductions
Reproducibility even when running on different numbers of MPI processes

B. Siklósi (PPCU – FIT) Oct, 2020 5 / 17

PDEs on structured and unstructured grids

Structured grids
Logical indexing with implicit connectivity
Easy to parallelise, including on GPUs

Unstructured grids
A collection of nodes, edges, etc., with explicit connections - e.g. mapping tables define
connections from edges to nodes
Much harder to parallelise
For many interesting cases, unstructured meshes are the only tool capable of delivering
correct

B. Siklósi (PPCU – FIT) Oct, 2020 6 / 17

One approach to develop future proof HPC applications is the use of domain specific high-level
abstractions (HLAs)

Provide the application developer with a domain specific
abstraction

To declare the problem to be computed
Without specifying its implementation
Use domain specific constructs in the declaration

Create a lower implementation level
To apply automated techniques for translating the
specification to different implementations
Target different hardware and software platforms
Exploit domain knowledge for better optimisations on each
hardware system

B. Siklósi (PPCU – FIT) Oct, 2020 7 / 17

OP2

Open Source project

OP2 based on OPlus (Oxford Parallel Library for Unstructured Solvers), developed for
CFD codes on distributed memory clusters

Separate high level description from parallel implementation

Looks like a conventional library, but uses code transformations (source to source
translator) to generate parallel codes

Support application codes written in C++ or FORTRAN

B. Siklósi (PPCU – FIT) Oct, 2020 8 / 17

OP2 loop over edges

void res(double * edge ,
double * cell0 ,
double * cell1){

*cell0 += *edge;
*cell1 += *edge;

}

op_par_loop (res ," residual_calculation ", edges ,
op_arg (dedges , -1, OP ID, 1, " double ", %OP READ),
op_arg (dcells , 0, pecell , 1, " double ", OP_INC),
op_arg (dcells , 1, pecell , 1, " double ", OP_INC));

B. Siklósi (PPCU – FIT) Oct, 2020 9 / 17

Generated code for the example loop

void res(double* edge,double* cell0,double* cell1) {
*cell0 += *edge; *cell1 += *edge; }

void op_par_loop_res(char const *name, op_set set,
 op_arg arg0, op_arg arg1,

op_arg arg2) {

 int nargs = 3; op_arg args[3] = {arg0, arg1, arg2};
 int exec_size = op_mpi_halo_exchanges(set, nargs, args);

 for (int n = 0; n < exec_size; n++){
 if (n == set->core_size) op_mpi_wait_all(nargs, args);

 int map0idx = arg0.map_data[n * arg0.map->dim + 0];
 int map1idx = arg0.map_data[n * arg0.map->dim + 1];

res(&((double *)arg0.data),
&((double *)arg1.data)[2 * map0idx],
&((double *)arg1.data)[2 * map1idx]);

 }
 // …
}

Number of
arguments

Static
code

Prepare
indirect
accesses

Set up
pointers,
call kernel

Kernel
function

Static
code

B. Siklósi (PPCU – FIT) Oct, 2020 10 / 17

Nonreproducible indirect increments

The associative laws of algebra do not necessarily hold for floating-point numbers
→ e0 + e1 + e2 + e3 6= e1 + e3 + e0 + e2

B. Siklósi (PPCU – FIT) Oct, 2020 11 / 17

Reproducible indirect increments - temporary array method

1 Iterate through the edges, calculate increments and store them in temporary array
2 Iterate through the cells and collect the increments using the global indexing of the

neighbouring edges
B. Siklósi (PPCU – FIT) Oct, 2020 12 / 17

Reproducible reduce over MPI

B. Siklósi (PPCU – FIT) Oct, 2020 13 / 17

Reproducible reduce over MPI

B. Siklósi (PPCU – FIT) Oct, 2020 13 / 17

Reproducible indirect increments - coloring method

There are applications, with RW access, not just increment → the kernel must be
executed, temporary storage is not enough
We apply a regular coloring scheme to define order
Problem: how to achieve same color orders each time?
Solution 1: Color the full mesh on one process, save it, and next time distribute it during
loading. → DONE
Solution 2: Develop an algorithm which generates same colors in a distributed graph.
→ TODO

Trivial solution exists. Is there a better one?

B. Siklósi (PPCU – FIT) Oct, 2020 14 / 17

Experimental setup

CPU related environment
Intel Xeon Gold 6226R CPU@2.90GHz 16 processes per core

GPU related environment
dgx-station with 4 Nvidia V100 GPUs

Test applications
Airfoil, a standard finite volume CFD benchmark code

Mesh sizes: 45k, 720k, 2.8M
Aero, a finite element 2D nonlinear steady potential flow simulation.

Mesh sizes: 180k, 1.6M, 6M
MG-CFD, a multigrid, finite-volume CFD mini-app

Mesh sizes: 1M, 8M

B. Siklósi (PPCU – FIT) Oct, 2020 15 / 17

0.00

0.50

1.00

1.50

2.00

airfoil 45k airfoil 720k airfoil 2.8M aero 180k aero 1.6M aero 6M MG-CFD 1M MG-CFD 8M

temp_array/orig color/orig

Figure: Measured slowdown effect of the generated sequential reproducible MPI version compared to the original non-reproducible

0.00

1.00

2.00

3.00

4.00

5.00

airfoil 45k airfoil 720k airfoil 2.8M aero 180k aero 1.6M aero 6M

temp_array/orig np1 temp_array/orig np4

Figure: Measured slowdown effect of the generated cuda reproducible MPI version compared to the original non-reproducible

B. Siklósi (PPCU – FIT) Oct, 2020 16 / 17

Contact

OP-DSLs: https://op-dsl.github.io/

OP2: https://github.com/OP-DSL/OP2-Common

siklosi.balint@itk.ppke.hu

Project no. PD 124905 has been implemented with the support provided from the National Research, Development and Innovation Fund of Hungary, financed
under the PD 17 funding scheme. The research has been supported by the European Union, co-financed by the European Social Fund
(EFOP-3.6.2-16-2017-00013, Thematic Fundamental Research Collaborations Grounding Innovation in Informatics and Infocommunications) and by the Thematic
Excellence Program of the Hungarian Ministry for Innovation and Technology.

B. Siklósi (PPCU – FIT) Oct, 2020 17 / 17

https://op-dsl.github.io/
https://github.com/OP-DSL/OP2-Common

