Critical synchronization dynamics of the Kuramoto model on a large human connectome

Géza Ódor EK-MFA Complex Systems Department, Budapest Jeffrey Kelling HZDR Dresden, Gustavo Deco UPF Barcelona

Theoretical research and experiments suggest that the brain operates at or near a **critical state** between sustained activity and an inactive phase, exhibiting optimal computational properties (see: *Beggs & Plenz J. Neurosci. 2003; Chialvo Nat. Phys. 2010; Haimovici et al. PRL 2013*)

Individual neurons emit periodic signals: (Y. Penn et al PNAS 113 (2016) 3341)

→ Criticality at the **synchronization transition point ?**

Kuramoto oscillator model (1975) on a large human connectome

$$\dot{\theta}_i(t) = \omega_{i,0} + K \sum_j W_{ij} \sin[\theta_j(t) - \theta_i(t)]$$

phases $\theta_i(t)$

global coupling K is the control parameter weighted adjacency matrix W_{ij}

 $\omega_{i,0}$ is the intrinsic frequency of the *i*-th oscillator,

Order parameter : average phase:

Exhibits an initial growth:

 $R(t) = \frac{1}{N} \left| \sum_{i=1}^{N} e^{i\theta_j(t)} \right|$

 $R(t \rightarrow \infty) > 0$ for $K > K_c$, $R(t \rightarrow \infty) = 0$ for $K \le K_c$ as $R \propto (1/N)^{1/2}$ $R(t,N) = N^{-1/2} t^{\eta} f_{\uparrow}(t/N^{\tilde{z}})$ from incoherent initial states

The *KKI-18* is a structural graph of $N \sim 8 \times 10^5$ nodes and $\sim 4 \times 10^7$ power-law distributed weighted links see : Michael T. Gastner and Géza Ódor, Scientific Reports 6 (2016) 27249

Dynamical scaling and frustrated synchronization sub-critically, see:

Géza Ódor and Jeffrey Kelling : Critical synchronization dynamics of the Kuramoto model on connectome and small world graphs Scientific Reports 9 (2019) 19621

Determination of the characteristic time exponent τ_t

Measure characteristic times t_x of first 10^{-2} dip below: $R_c = (1/N)^{1/2}$ R(t) 10^{-3} average over ~10.000 independent ω_i distribution realizations 10^{-4} Histogramming of t_x at the transition point 10 Critical exponent: $\tau_t = 1.2$ (1) at $K_c \approx 1.6$ 10^{-1} Below the transition point : K < 1.6 10^{-2} p(t_x) non-universal power laws in the range of experiments of activity durations : 10-3 10^{-4} $1.5 < \tau_t < 2.4$ (Palva et al 2013)

The effect of additive stochastic noise

Brain experiments: $\omega_i > 0$, distributions are narrow: $\sigma_i \sim 0.02$ and have mean value: $\langle \omega_i \rangle \sim 0.05$

 $<\omega_i>\neq 0$ can be gauged out by a rotating coordinate system

Rescaling of ω_i as : $\omega_i \rightarrow a \omega_i' t \rightarrow (1/a) t' K \rightarrow a K'$

Existing results can be transformed for later times and weaker couplings, thanks to Galilean invariace of the Kuramoto eq. Gaussian distributed annealed noise is added:

$$\dot{\theta}_i(t) = \omega_{i,0} + K \sum_j W_{ij} \sin[\theta_j(t) - \theta_i(t)] + s\xi(i)$$

Negligible effect of the weak noise

G. Ódor, J.Kelling, G. Deco: To appear in J. Neuroscience arXiv:1912.06018

Kuramoto equation solution on connectome

$$\frac{\partial \phi_j(t)}{\partial t} = \omega_j + \sum_{k \text{ NN of } j} \lambda_{jk} \cdot \sin\left[\phi_k(t) - \phi_j(t)\right]$$

sparse, random graph

- requires explicit storage network topology
 - i.e. sparse representation, neighbor lists
- random neighbor sums
- ⇒ techniques for SIMT vectorization by tuned operation and memory ordering

Implementation

boost::numeric::odeint odeint.com

- template library of ODE solvers
- boost::numeric supports various vector backends for accelerators: e.g. Thust (CUDA), VexCL (CUDA/OpenCL)

VexCL

- library for offloading vector expressions via CUDA or OpenCL
- direct support for custom kernels
- we use 4th order Runge-Kutta form odeint
- \Rightarrow computing derivates reamins and is the most time-consuming part

Efficiency

$$\frac{\partial \phi_j(t)}{\partial t} = \omega_j + \sum_{k \text{ NN of } j} \lambda_{jk} \cdot \sin \left[\phi_k(t) - \phi_j(t) \right]$$

- profile on tesla P100
 - global load efficiency: ~ 47 % saturating gross load bandwidth to ~ 70 %
 - \blacksquare data requests dominant stall reason $\sim 50\,\%$
- ⇒ remains memory-latency bound, due to random accesses to neighbors
- efficient implementation for integration on random graphs $\sim 20 \times$ improved throughput over single CPU socket.
- easily adaptable to other models: we use it for 2nd order Kuramoto, too

Summary

Jeffrey Kelling implemented Kruramoto ODE solver running efficiently on GPUeven in case of sparse random graphs

My experience on Marenostrum-4 BSC Barcelona Configuration:

2 x IBM Power9 8335-GTH @ 2.4GHz (3.0GHz on turbo, 20 cores and 4 threads/core, total 160 threads per node)
4 x GPU NVIDIA V100 (Volta) with 16GB HBM2

Abut a speedup of factor x100 with respect 3GHz CPU-s

Allowed showing lack of effects of weak thermal fluctuations in 2 weeks.

Support from HPC-Europa3 programme and OTKA is acknowledged Publication in J. Neuroscience is scheduled, a texnical paper to be written Continuation to study on exact fruit-fly connectome is founded