
Software Environments for
Quantum Machine Learning

Dániel Nagy

Types of machine learning

Need a lot of
labeled data

Learning from
unlabeled data

Learning from
interactions

with an
environment

Why
quantum
machine
learning?

•ML is linear algebra + nonlinearities
• QM is linear algebra + measurements
•ML deals with probability distributions,

which naturally appear in QM.

Why
quantum
machine
learning?

• The dimensionality of the Hilbert-
space scales exponentially with the
number of qubits.
• Quantum circuits can generate

probability distributions that are
impossible to generate with classical
computers.
• They may be able to learn distributions

that would be infeasible on classical
computers.

• CC: every classical ML
algorithm

• CQ: variational quantum
regression, variational
quantum classification e.g. q-
SVM [arxiv]

• QC: ML assisted quantum
error correction [arxiv]

• QQ: Quantum Autoencoders
to Denoise Quantum Data
[PRL], VQC for state
tomography [arxiv]

Classifying QML algorithms by quantumness

https://arxiv.org/abs/1307.0471
https://arxiv.org/abs/1705.07855
https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.124.130502
https://arxiv.org/abs/1912.07286

Supervised Learning – Gradient descent

𝑥

𝑦!"#$

𝑦%"$& = 𝑓 𝑥; 𝜃

𝐿 = ℒ(𝑦%"$& , 𝑦!"#$)

The model is represented by an
almost everywhere differentiable
function, 𝑓(𝑥; 𝜃)

𝜃!'(= 𝜃! − 𝜂!
𝜕𝐿
𝜕𝜃

Quantum Supervised Learning – Gradient
descent

𝑥

𝑦!"#$

𝑦%"$& = 𝑓 𝑥; 𝜃 = ⟨𝜓 𝑈 𝜃 𝜓⟩

𝐿 = ℒ(𝑦%"$& , 𝑦!"#$)

𝜃!'(= 𝜃! − 𝜂!
𝜕𝐿
𝜕𝜃

|𝜓⟩
embedding

The model is represented by a unitary, 𝑈 𝜃 .

Performance
depends heavily on
proper embedding Actually, estimates

of the expval

How to calculate the gradient of a quantum
node?
• Parameter-shift rule:
• If 𝑓 𝜇 is a quantum node, then

𝜕!𝑓 𝜇 = 𝑐 𝑓 𝜇 + 𝑠 − 𝑓 𝜇 − 𝑠
(c and s are finite parameters from a lookup table)

• Finite difference method
• If 𝑓 𝜇 is a quantum node, then

𝜕!𝑓 𝜇 ≈
𝑓 𝜇 + 12Δ𝜇 − 𝑓(𝜇 − 12Δ𝜇)

Δ𝜇

What do we
have now?
Hybrid devices

• High performance classical
computers
• Small and noisy quantum

devices
• => Build hybrid quantum-

classical algorithms
• Compose models from both

quantum and classical nodes

Software packages for QML

From QOS foundation

https://twitter.com/qosfoundation/status/1256720099018489857?s=20

Defining a quantum node in PennyLane

Interfacing with Pytorch

Calculating Jacobians

Using quantum layers in Pytorch models

Example: Quantum Convolutional
networks on the MNIST dataset

Challenges
and open
questions

Available hardware devices are small and noisy, simulation is
slow and computationally heavy

Strategies for guessing the right ansatz circuit?

Can we prove that QML is better than ML?

The power of ML relies on nonlinearities between linear
layers, buy quantum layers are always linear only (even if the
Hilbert space is very high dimensional). Should we find a way
to add nonlinearites?

Thank You for Your
attention!

