

Playing detective

Dissecting silent failures of Deep Learning models for 3D Point Clouds

Robert-Zsolt Kabai

Team Lead, Deep Learning for Point Cloud Machine Learning Methods Deep Learning Competence Center - Continental

Chassis & Safety | Advanced Driver Assistance Systems

Agenda

- Continental Advanced Driver Assistance Systems
- **2** Artificial Intelligence in ADAS
- **3** Point cloud requirements and model failures
- 4 Case study: Dissecting a model and drawing conclusions

Continental ADAS Products History

> Continental is much more than tires!

BU ADAS Public

Continental ADAS Products History

> Continental is much more than tires!

🙆 ntinental 🏂

Continental ADAS Products History

> Continental is much more than tires!

Competence Center Deep Machine Learning

BU ADAS Public

On the Way to Automated Driving

Ontinental 🏂

BU ADAS Public

Sense Plan Act

Comprehensive Environment Model

- Multiple types of sensors
- Plan and act based on our understanding of the environment

BU ADAS Public

ADAS Fusion & Perception What is CEM?

<u>Comprehensive</u> <u>Environment</u> <u>Model</u>

A basic requirement for Automated Driving is to perceive and evaluate its environment

Real world Deep Learning challenges

- The real world is often too complicated to model it completely
- Deep Learning is an approach to deal with that

🗿 ntinental 🏂

BU ADAS Public

Popular 3D Data Representation Methods

No standard approach for working with 3D

• E.g. for 2-D computer vision the de facto "to-go" approach are ConvNets.

2D projection

Learn 2D image depth map.

Fallback to 2D methods.

Volumetric

Voxelize and use 3D convolutions.

Marrying 2D methods to approximate 3D.

Mesh Set of points with structural information.

Point cloud Use real 3D data as is. *True 3D, but hard problem.*

Point Cloud challenges

Varying amounts of detail seen in real life point clouds

Impressive

Point Cloud challenges

Varying amounts of detail seen in real life point clouds

Point Cloud challenges

Varying amounts of detail seen in real life point clouds

Required Properties for Ideal 3D Models

Extra invariance criteria needed compared to 2D images.

- 1. Invariance to permutations (n!)
 - Point set is unordered by nature

$$f(x_1, x_2, \dots, x_n) \equiv f(x_{\pi_1}, x_{\pi_2}, \dots, x_{\pi_n}), \ x_i \in \mathbb{R}^D$$

2. Invariance under rotations

- Different viewing angles of a motorcycle is still a motorcycle.
- Rare orientations in data also usual in automotive applications (intersections, unexpected traffic situations, special terrain conditions, ...)

PointNet^[1] **Approach for Invariance Properties**

 $f(x_1, x_2, \dots, x_n) = \gamma \circ g(h(x_1), \dots, h(x_n))$ is symmetric if g is symmetric

- h(): affine transformation (by fully connected)
- g(): symmetry function (by max fn)
- γ(): affine transformation (by fully connected)

PointNet Extended Architecture

- T-Net is a mini Point-Net predicting a rotation matrix
 - Claims to add extra invariance under rotations.

- Questions
 - Is PointNet really rotation invariant?
 - What does T-Net learn? A canonical orientation or a perspective where it works well?

PointNet Extended Architecture

- T-Net extensions add a lot of parameters with minimal accuracy gain!
- Automotive needs:
 - · safety-critical
 - embedded (small compute)
 - real time

	#params	FLOPs/sample
PointNet (vanilla)	0.8M	148M
PointNet	3.5M	440M

Transform	accuracy
none	87.1
input (3x3)	87.9
feature (64x64)	86.9
feature $(64x64) + reg.$	87.4
both	89.2

Black-box model assumptions

We need to test all assumptions in safety-critical systems!

Can we just assume we an recognize the same object in different orientations?

- Create a truly canonical orientation of the data.
 - The tool: Singular Value Decomposition

 $A = U\Sigma V^{T}$ $A_{canonical} = \Sigma V^{T}$

- Orientation alignment used both training and test/prediction time.
- Intuitively for 3D shapes: do an SVD on the tensor containing the input shapes and undo the data's observed orientation leaving the inherent variance-based orientation.

• How would a network with explicit canonical orientation behave compared to the basic ones?

• How would a network with explicit canonical orientation behave compared to the basic ones?

 How would a network with explicit canonical orientation behave compared to the basic ones?

What is a rigorous evaluation? 3D uniform rotations.

Original evaluation with typical orientations

0.0

0.5

z

1

٧

Evaluation Results: Rotation Invariance

Is PointNet really rotation invariant (paper's claim)?

- Based on experiments: no, far from it.
- Both Basic and T-Net versions collapse for 3D random viewing angles.

How does our SVD canonical orientation perform?

- Results slightly below PointNet on unrotated test data.
- Virtually no degradation in accuracy when test data is rotated randomly – strongly outperforms PointNet baselines.

0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0 PointNet Basic PointNet T-Net Our canonical oriented PointNet

Performance (accuracy)

ModelNet40 test set (as-is)

ModelNet40 test set (with uniform random 3D rotations applied)

Adding data augmentation for Rotation Invariance

Can we handle cases where test time canonical rotation is not an option?

- Possible with well designed data augmentation
- For this use case we used 3D uniform rotated data augmentation for training
- Slight decrease in accuracy compared to our Canonical oriented one
- Important use case: well designed data augmentation is an option for scenes

3D object classification (ModelNet40)

Conclusions

Our study shows

- One of the most popular approaches is *not rotation invariant* for 3D.
 - Model fails with more general orientations.
 - We need to be careful with model design in 3D, e.g. fallen pedestrians, bikes, motorcycles.
- PointNet's T-Net addon still does not fix this, but increases the #params by > 4x
- We need to dissect models and re-design evaluations to be rigorous and explicitly test all assumptions.
- Our proposals offer robust 3D rotation invariance outperforming basic PointNet variants by a large margin.

Safe and Dynamic Driving towards Vision Zero

Continental 3

http://www.continental-jobs.com

SensePlanAct