
20 Years of Static Dataflow

Oskar Mencer
Founder

Maxeler Technologies

Nov	2021

2001	

Euclids	Elements,	Represen1ng	a²+b²=c²	

1971

Wires getting much bigger in size than transistors

32nm CMOS
10-9

1 µm CMOS
10-6

10nm CMOS
10-9

2003:	The	Maxeler	Sta1c	Dataflow	Model	

⬥ 	Data	moves	con/nuously	(flow)	and	drive	computa/on	
⬥ 	Compute	in	Space	–	arrange	opera/ons	in	2D	
⬥ 	Find	op/mal	solu/on	for	any	specific	flow	problem	

⬥ No	wasted	silicon	–	maximum	performance	density	
⬥ No	wasted	clock	cycles	–	data	rate	=	clock	rate	
⬥ Predictable	throughput	&	latency,	MIN	ENERGY	for	moving	data	

let’s	create	a	compu1ng	structure	to	fit	the	problem	

Stanford	EE382A	

7	

a	different	way	to	compute?	

- J. P, Eckert, Jr (Co-Inventor of ENIAC) Credit: Prof. Paul H.J. Kelly

a	warning	from	history...I	did	not	listen...	

Stanford	EE382A	

Fast and Slow

John von Neumann, 1946:

“We are forced to recognize the possibility of
constructing a hierarchy of memories, each of
which has greater capacity than the preceding,
but which is less quickly accessible.”

So, clearly what matters is the location of data!!

10	

As a result of the von Neumann hierarchy:

SQL Database Transactions > 150,000 us > 150ms

Assembly Instruction: LD A, (B) at 2 GHz

PYTHON vs SQL: Real Customer Project

Kolmogorov	Complexity,	1965	

Definition (Kolmogorov):
“If a description of string s, d(s),
is of minimal length, […]
it is called a minimal description of s.

the length of d(s), […] is the Kolmogorov complexity of s,
written K(s), where K(s) = |d(s)|”

Of course K(s) depends heavily on the Language L
used to describe actions in K
(e.g., Java, Esperanto, an Executable file, etc).

	Kolmogorov,	A.N.	(1965).	"Three	Approaches	to	the	Quantitative	Definition	of	Information".	Problems	Inform.	Transmission	1	(1):	1–7.	
	

Stanford	EE382A	

First	Large	Scale		
Sta/c	Dataflow	
4,866	ALUs		

for	a	/me	step	
solving	the	

Acous/c	Wave	
Equa/on	

Impossible? or merely hard?

Syntax	based	on	Java,	and	Seman1cs	for	sta/c	dataflow	

	
•  SLiC	Interface	–	CPU	integra/on	
•  MaxelerOS	–	op/mized	DFE	<->	CPU	link	
•  Seamless	simula1on	environment	

MaxJ: A Dataflow Programming Model

15	

Making	DATAFLOW	programming	fun,	
	
“Easy,	Desirable,	and	Affordable”	[Terry	Leahy,	former	CEO	of	TESCO]	
	

16	

	

The	limits	of	my	language	mean		
the	limits	of	my	world	

Born: Vienna, Austria 1889
Died: Cambridge, England, 1951

Ludwig Wittgenstein

Dataflow Corollary:
The limits of my programming language mean
the limits of what I can optimize...

A Dataflow Kernel
Every line of code corresponds to a resource

Stanford	EE382A	

every	line	of	dataflow	code	takes	a	certain	space	

18	

Dataflow can be annotated back into code

 LUTs FFs BRAMs DSPs : MyKernel.java
 727 871 1.0 2 : resources used by this file
 0.24% 0.15% 0.09% 0.10% : % of available
 71.41% 61.82% 100.00% 100.00% : % of total used
 94.29% 97.21% 100.00% 100.00% : % of user resources
 :
 : public class MyKernel extends Kernel {
 : public MyKernel (KernelParameters parameters) {
 : super(parameters);
 1 31 0.0 0 : DFEVar p = io.input("p", dfeFloat(8,24));
 2 9 0.0 0 : DFEVar q = io.input("q", dfeUInt(8));
 : DFEVar offset = io.scalarInput("offset", dfeUInt(8));
 8 8 0.0 0 : DFEVar addr = offset + q;
 18 40 1.0 0 : DFEVar v = mem.romMapped("table", addr,
 : dfeFloat(8,24), 256);
 139 145 0.0 2 : p = p * p;
 401 541 0.0 0 : p = p + v;
 : io.output("r", p, dfeFloat(8,24));
 : }
 : }

Putting it all together:
 A Dataflow System Architecture

19	

MaxCompilerRT	
MaxelerOS	

Memory

CPU - Linux

Dataflow Engine

M
em

ory

PCI Express
or
Infiniband

Static Dataflow Kernels

*+

+

Dataflow Manager

Host application

Kalman	Filter	as	a	State	Machine	in	MaxJ	

Stanford	EE382A	

class TrackFitKernel extends Kernel{
 protected TrackFitKernel(KernelParameters p){
 super(p);
 Stub stubIn = Stub.input(this, “stubIn”);
 State kStateIn = State.input(this,“stateIn”);
 KF kfWorker = new KF(this,kStateIn,stubIn);
 State kStateUp = KF.update();
 kStateUp.output(“stateOut”);
 }
}

class KF extends KernelLib{
 public KF(Kernel owner,State state,Stub stub){
 Vector x = state.x();
 Matrix pxx = state.pxx();
 Matrix h = H(stub);
 Matrix pxd = pxx * H.transpose();
 …
 Vector residual = d – hx;
 Vector xUp = x + K * residual;
 return new State(xUp, pxxUp);
 }
}

Kalman	Filter	in	MaxJ	

Stanford	EE382A,	Spring	2020,	slide	21	Stanford	EE382A	

Kalman
Filter

Kernel

Parallel	Loop	with	Dependency	
4	Accumulators	in	1	pipelined	unit	

DFEParLoop	lp2	=	new	DFEParLoop(this,	“lp2”);	
				DFEVar	in	=	io.input("in",	dfeFloat(8,	24),	lp2.ndone);					
				lp2.set_input(dfeFloat(8,24),	0.0);	
							DFEVar	result	=	in	+	lp2.feedback;	
				lp2.set_output(result);	
				io.output(”result",	result,	dfeFloat(8,	24),	lp2.done);	

for	j=1	to	4:	out[j]=0.0;	
for	i=1	to	N:				//	sequen/al	loop	
			for	j=1	to	4:	//	data	parallel	loop						
									out[j]	=	out[j]+stream_in[i];	

interleaved(4)	stream_in	

Adder	(Accumulator)	
assuming	4	pipeline	stages	

Of	course	j	could	be	a	lot	larger,	but	
we	do	4	at	a	1me	here	since	we	
assume	4	stages	in	a			

interleaved(4)	result	

lp2.feedback	

lp2.ndone

lp2.done CPU code, cpu.h: get loop size:
mget_loopLength()
returns 4

Stanford	EE382A	

23	

https://www.youtube.com/watch?v=ybnOul9jNgE
from 4’50’’

Prof Mike Flynn, Stanford

from the great debate with Gene Amdahl, 1967

Maxeler Dataflow Engines (DFEs)

High	Density	DFEs	
Intel	Xeon	CPU	cores	and	up	to	6	

DFEs	with	576GB	of	RAM	

The	Dataflow	Appliance	
Dense	compute	with	8	DFEs,	
768GB	of	RAM	and	dynamic	

alloca/on	of	DFEs	to	CPU	servers	
with	zero-copy	RDMA	access	

The	Low	Latency	Appliance	
Intel	Xeon	CPUs	and	1-2	DFEs	with	
direct	links	to	up	to	six	10Gbit	

Ethernet	connec/ons	

MaxWorksta1on	
Desktop		
dataflow	
development	system	

Dataflow	Engines	
48GB	DDR3,	high-speed	
connec/vity	and	dense	
configurable	logic	

MaxRack	
10,	20	or	40	node	rack	systems	integra/ng	
compute,	networking	&	storage	

MaxCloud	
Hosted,	on-demand,	scalable	accelerated		
compute	

25	

Simulating the Atmosphere
via the Shallow Water Equation

2013 ... getting another 10-20x of speedup if you
optimize Flow of data with Maxeler hardware

[L. Gan, H. Fu, W. Luk, C. Yang, W. Xue, X. Huang, Y. Zhang, and G. Yang, Accelerating solvers for global
atmospheric equations through mixed-precision data flow engine, FPL Conference 2013]

Platform Performance Speedup

6-core CPU 4.66K 1

Tianhe-1A node 110.38K 23x

MaxWorkstation 468.1K 100x

Maxeler MPC-X 1.54M 330x

Efficiency Energy
Improvement

20.71 1

306.6 14.8x

2.52K 121.6x

3K 144.9x

14x

9x

How	is	it	possible		
to	beat	the	worlds	fastest	computer	
by	14x	on	speed	and	9x	on	energy		
	

26		

Paraphrased: In theory, computing units
can be constructed which use no energy.

Energy is only needed when information is lost.

Reordering of information does not require energy
from a pure physics perspective.

Of course, moving information takes Energy…

Dataflow minimizes Data Movement!

2015: First Maxeler Dataflow Supercomputer
installed at UK Government Laboratory

20-50x increased compute capability
 per cubic-foot of data center space

28	

Pilot system deployed in Oct ’17
•  one 1U MPC-X with 8 MAX5 DFEs
•  one 1U AMD EPYC based server
•  one 1U login head node

MPC-X node

Remote
users

MAX5 DFE

EPYC CPU
1TB
DDR

4

Head/Build node

ipmi

56 Gbps 2x Infiniband @ 56 Gbps

10 Gbps

10 Gbps

Supermicro EPYC node

2017: Maxeler Dataflow Machine at Jülich in Germany

Energy Efficiency Improvements

Berlin Quantum Chromo Dynamics

Quantum Espresso

NEMO

SPECFEM3D

How	do	we	migrate	applica1ons	to	Sta1c	Dataflow	
	
	
	
	
Start	with	a		
Maxeler	
Loop	Flow	Graph	

Convert	the	Loop	Flow	Graph	into	an	Architecture	

Example:	Quantum	Chromodynamics	
	

CG kernel 0

CG kernel 1

CG kernel 2

CG kernel 3

init gauge

init_clover;
mre_get2

gauges, clovers, spinors spinor

dsf_sum, clover_bsa,
clover_d_w, rest

LMEM

Numerical	Analysis:	Maxeler	Value	Profiling	
	

We	had	to	change	how	we	implement	(represent)	numbers	in	computers,	and	manage	numerics	

Changing the way we represent numbers in computers

Aerial View of a Neural Network on FPGA

Sparse	Matrix	Dataflow	–	can’t	be	done?	

0

10

20

30

40

50

60

0 1 2 3 4 5 6 7 8 9 10

Compression Ratio

Sp
ee

du
p

pe
r 1

U
No

de

GREE0A
1new01

624

624 Maxeler Domain Specific Address and Data Encoding
published in IEEE Micro in 2011.

SPEEDUP is 20x-40x per 1U at 200MHz

35	

Think Big	

2020: Inspired over 1,000 publication

2020: Static Dataflow inspiring modern Chips
The Groq Architecture, see: Think Fast, A Tensor Streaming Processor
for accelerating Deep Learning Networks, ISCA 2020.

Data

“The hallmark of [Data]flow is a feeling of spontaneous joy”

