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2 OO 1 Computer Systems Laboratory Colloquium

4:15PM, Wednesday, May 2nd, 2001
NEC Auditorium, Gates Computer Science Building B03

Computing with FPGAs

Oskar Mencer
Lucent / Bell Labs, and Imperial College, London

About the talk:

Field-Programmable Gate Arrays (FPGAs) can outperform microprocessors on certain tasks by many orders of magnitude. The open
research problems of computing with FPGAs are: (1) understanding the limitations of FPGAs when competing with
microprocessors, and (2) providing a useful programming methodology.

First, I will show how FPGAs can be utilized to accelerate certain algorithms by up to three orders of magnitude. Examples for
methods achieving the speedups are:

a. exploring parallelism and pipelining on the bit-level,
b. optimizing the encoding of data values (number representation), and/or
C. reducing the required memory bandwidth by implementing data-structures and algorithms directly on the FPGA.

In addition, the speedup could be translated into savings in power consumption.

Second, I suggest a programming methodology for FPGAs based on Domain Specific Compilers. Domain specific compilers
implement a divide-and-conquer, bottom-up approach to programming FPGAs. The vast space of possible architectures fragments
into architecture families, which indirectly defines application domains. A domain specific compiler targets one architecture family
and thus focuses on a single application domain. The StReAm compiler, under development at Bell Labs and Imperial College
targets pipelined data-flow graphs mapped directly from object-oriented C++ to hardware. The goal is to provide a simple
abstraction for programming FPGAs analogous to the abstraction of a microprocessor provided by the C programming language.



Euclids Elements, Representing a?+b?=c?
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The Intel 4004 microprocessor, which was introduced in 1971.
The 4004 contained 2300 transistors and performed 60,000
calculations per second. Courtesy: Intel.
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Wires getting much bigger in size than transistors

LAYER 5

LAYER 4

LAVER T (R

LAYER2 RIS

LAYER

10°

&1 10nm CMOS
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2003: The Maxeler Static Dataflow Model

let’s create a computing structure to fit the problem

& Data moves continuously (flow) and drive computation
& Compute in Space — arrange operations in 2D

& Find optimal solution for any specific flow problem
¢ No wasted silicon — maximum performance density
¢ No wasted clock cycles — data rate = clock rate

¢ Predictable throughput & latency, MIN ENERGY for moving data

Dataflow Dataflow Dataflow
Kernel Kernel Kernel

Dataflow Dataflow
Kernel Kernel

MAXEL,ER Stanford EE382A







a warning from history...l did not listen...

26 AUGUST 1946

A PARALLEL CHANNEL CGIPUTING :iACHINE

Lecture DYy
J. F, Eckexrt, Jr,
Electronic Control Company

. s s Again I wish to reiterate the point that all the arguments
for parallel operation are only valid provided one applies them to

the steps which the built in or wired in progranming of the machine

operatecs, Any steps which are progra.med by the operator, who sets
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up the machine, should be set up only in a serial fashion., It has
e

been showvn over and overxr again that any departure from this procedure
S .

results in a system which is much too complicated to use,

Credit: Prof. Paul H.J. Kelly - J. P, Eckert, Jr (Co-Inventor of ENIAC)
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Fast and Slow

John von Neumann, 1946:

= “We are forced to recognize the possibility of
constructing a hierarchy of memories, each of

which has greater capacity than the preceding,
but which is less quickly accessible.”

So, clearly what matters is the location of data!!

MAXELER



| As a result of the von Neumann hierarchy:

latency. txt Assembly Instruction

MAXELER

Latency Comparison Numbers

L1 cache reference

Branch mispredict

L2 cache reference

Mutex lock/unlock

Main memory reference

Compress 1K bytes with Zippy

Send 1K bytes over 1 Gbps network
Read 4K randomly from SSD*

Read 1 MB sequentially from memory
Round trip within same datacenter
Read 1 MB sequentially from SSD*
Disk seek

Read 1 MB sequentially from disk
Send packet CA->Netherlands->CA

SQL Database Transactions

: LD A, (B) at 2 GHz

9.

5
7

25

100

3,000
18,000
158,000
250,000
500, 099
1,000,000
10,000,000
20,000,000
150,008,000

5 ns
ns
ns
ns
ns
ns 3
ns 10
ns 150
ns 250
ns 500
ns 1,000
ns 190,000
ns 20,000
ns 150,000
> 150,000 us

us

us

us

us

us

us 1 ms

us 18 ms

us 20 ms

us 158 ms
> 150ms
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S =

running so:

Duration: 114.239367 seconds

Running Python: H
Duration: ©.952739 seconds ;

speedup(p, s)

Speedup: 119.9x

MAXELER



il Kolmogorov Complexity, 1965

Definition (Kolmogorov):
“If a description of string s, d(s),

88" the length of d(s), [...] is the Kolmogorov complexity of s,
= written K(s), where K(s) = [d(s)|”

Of course K(s) depends heavily on the Language L
used to describe actions in K
(e.g., Java, Esperanto, an Executable file, etc).

Kolmogorov, A.N. (1965). "Three Approaches to the Quantitative Definition of Information". Problems Inform. Transmission 1 (1): 1-7.
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First Large Scale
Static Dataflow
4,866 ALUs
for a time step RN ety (=)

solving the "Hffgiggu}g_f?:ge;gJ §;fﬁJﬁ

Acoustic Wave i
Equation : 25

o




Impossible”? or merely hard?
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MaxdJ: A Dataflow Programming Model

Syntax based on Java, and Semantics for static dataflow

| C3~ J LA © O |tutorial-chap03-example3... » Simulation H =@ 4~ J

~ | [J) cpuStreamKernel.maxj [J) MovingAverageWeightedKernel. maxj 2

5 s

8=

DFEVar prevWeighted prev*weightO;
DFEVar nextWeighted next*weight2;
DFEVar xWeighted = x*weightl;

DFEVar result sum / divisor;

io.output("y", result, dfeFloat(8, 24));

DFEVar divisor = withinBounds ? constant.\

DFEVar sum = prevWeighted + xWeighted + n¢

a | w 1

D

[»)

I MovingAverageWeighted_MovingAverageWeightedKernel_original.pxg 53 _

MaxCompiler - MovingAverageWeighted_MovingAverageWeightedKernel_original.pxg - MaxIDE
File Edit Navigate Search Project Run Window Help

o G

0 C C () o8 e 2
B A UL Bate A

Navigation

MovingAverageWeightedMan
MovingAverageWeightedKern|

(€ T D)

Selected Node Properties |\

NodeMul
24
a : hwFloat(8, 24)

b : hwFloat(8, 24)

(0 I T [*)

\ | MAXEEER | & =5 ®

Making DATAFLOW programming fun,

“Easy, Desirable, and Affordable” [Terry Leahy, former CEO of TESCO]

I IVAI\)(Eéggfag

ecnno




Ludwig Wittgenstein

Born: Vienna, Austria 1889
Died: Cambridge, England, 1951

The limits of my language mean
the limits of my world

Dataflow Corollary:
The limits of my programming language mean
the limits of what | can optimize...

MAXELER



A Dataflow Kernel
Every line of code corresponds to a resource

4 class Movingfweragekemsl extends Karnel |

15

= Movingfweragekemsl(KernelParameters parameters) | : il
17 super(oarameters); i =
18 .!l': cnit }___.--i"

19 i Inpurt I e e |

20 DFEVar x = loinput{™x*, cfeFloat{s, 24)); —T 7 1 I +
ES| 1

22 DFEVar size = ie_scalarinput] “size”, diellini(32)); l d | | h” | -‘I'

23 .." L

24 4 Data 'r‘(l /l :

25 DFEVar pravOriginal = stream.offselx, —1); > </

28 DFEVar nexICriginal = stream.ollsel|{x, 1) i

27 J ]

28 A Comtral |

29 DFEVar count = control count.simpleCounteri32, sine); T t

an | -

a1 DFEVar abovel owerBound = eaunt = 0; ) T

az DFEVar bedowUpperBound = count < size — 1; el :

a3 oy :

34 DFEVar withinBourds = abovelowerBound & belowlUpperBound;, =~ . |

35 -

a6 DFEVar prev = abovelowerBownd 7 prevOriginal | 0; — f: -
ar DFEVar next = belowlUpperBouwnd 7 nexiCriginal © O; | _
a8 P

ki DFEVar divisor = withinBounds 7 constant vardfeFloat(g, 24), 3) : &~ |

a0 . ;
41 DFEVar sum = prev + x + mexi; e i

42 DFEVar result = sum [ divisor ; ——" :

43 |

jg :. io.output["y", result, disFloal(d, 24)); control | data
48 )

MAXEL ER Stanford EE382A




Dataflow can be annotated back into code

every line of dataflow code takes a certain space

LUTs
727
0.24%
71.41%
94.29%

139
401

FF's
871
0.15%
61.82%
97.21%

145
541

BRAMs
1.0
0.09%
100.00%
100.00%

DSPs

2

0.10%
100.00%
100.00%

: MyKernel.java

resources used by this file
% of available

% of total used

of user resources

o°

: public class MyKernel extends Kernel ({

public MyKernel (KernelParameters parameters) {
super (parameters) ;

DFEVar p = io.input ("p", dfeFloat (8,24)):;

DFEVar g = io.input ("g", dfeUInt(8));
DFEVar offset = io.scalarInput ("offset", dfeUInt(8));
DFEVar addr = offset + qg;
DFEVar v = mem.romMapped ("table", addr,
dfeFloat (8,24), 256);
p=pP *p;
p=p+tv;

io.output("r", p, dfeFloat(8,24));




Putting it all together:
A Dataflow System Architecture

/ Host application

MaxCompilerRT Static Dataflow Kernels

Maxel :
axeler0> Dataflow Engine

PCI Express I m I

or

Infiniband \

Dataflow Manager




Kalman Filter as a State Machine in MaxJ

class TrackFitKernel extends Kernel {

protected TrackFitKernel (KernelParameters p) {
super (p) ;
Stub stubIn = Stub.input(this, “stubIn”);
State kStateIn = State.input (this,“statelIn”);

: KF kfWorker = new KF (this,kStateIn,stubln);

| k-1 _ FI;:—lck—le'Z:—l + Qj._1 State kStateUp = KF.update();

kStateUp.output (“stateOut”) ;

_1 - .
“I'l.' - Flst—l'l'l;!—l

7‘2_1 = Mg — H;,.,:z:i:_l }
R s }
MR '=V,+H,C; 'H,
o lass KF extends KernellLib{
k—1pyT (pk—1y—1 °©
I(k =:(3k Iik (I{k ) public KF (Kernel owner,State state,Stub stub) {
T = | P | Vector x = state.x();
Tr = % *_I<klkz Matrix pxx = state.pxx() ;
Gl =1, El: (jku—l Matrix h = H(stub);
k. ( . A) k Matrix pxd = pxx * H.transpose();
2 k—1T (pk—1\"1 k-1 :
/ — ‘M
X+ Ly (I{k ) "k Vector residual = d - hx;
'Y% =:—Y% 1_+—Y3_ Vector xUp = x + K * residual;
7 - F 4 Y — 7
return new State (xUp, pxxUp);
}

MAXEL,ER Stanford EE382A
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Parallel Loop with Dependency

4 Accumulators in 1 pipelined unit

Adder_(Accun'quE{tor) Ip2.ndone
assuming 4 pipeline stages
interleaved(4) stream_in

—_—

interleaved(4) result

CPU code, cpu.h: get loop size:
mget_loopLength()
returns 4

|p2.done

lp2.feedback

for j=1 to 4: out[j]=0.0; DFEParLoop Ip2 = new DFEParLoop(this, “Ip2”);
fori=1to N: //sequential loop

_ DFEVar in = io.input("in", dfeFloat(8, 24), Ip2.ndone);
for j=110 4: // data parallel loop Ip2.set_input(dfeFloat(8,24), 0.0);

out[j] = out[j]+stream_in[i];
DFEVar result = in + Ip2.feedback;

Of course j could be a lot larger, but Ip2.set_output(result);
we do 4 at a time here since we

. io.output(”result", result, dfeFloat(8, 24), Ip2.done);
assume 4 stagesin a
MAXEILER

Stanford EE382A




Prof Mike Flynn, Stanford

https://www.youtube.com/watch?v=ybnOul9|NgE
from 4’50

“The parallel approach to computing does require
that some original thinking be done about numerical
analysis and data managementin order to secure
efficient use.

In an environment which has represented the
absence of the need to think as the highest virtue
this is a decided disadvantage.”

-Daniel Slotnick



Maxeler Dataflow Engines (DFEs)

MPC MPC
C Series X Series

High Density DFEs The Dataflow Appliance The Low Latency Appliance
Intel Xeon CPU cores and up to 6 Dense compute with 8 DFEs, Intel Xeon CPUs and 1-2 DFEs with
DFEs with 576GB of RAM 768GB of RAM and dynamic direct links to up to six 10Gbit
allocation of DFEs to CPU servers Ethernet connections

with zero-copy RDMA access

MaxRack Dataflow Engines
MaxWorkstation | 10, 20 or 40 node rack systems integrating 48GB DDR3, high-speed
Desktop compute, networking & storage connectivity and dense
dataflow MaxCloud configurable logic

development system | Hosted, on-demand, scalable accelerated

compute M‘XHKER

frechnologies




s@* 2013 ... getting another 10-20x of speedup if you
‘ e,.‘ «’¢/ optimize Flow of data with Maxeler hardware

[A Navier-Stokes Deep
i Simulating the Atmosphere

BN via the Shallow Water Equation

¢ [L. Gan, H. Fu, W. Luk, C. Yang, W. Xue, X. Huang, Y. Zhang, and G. Yang, Accelerating solvers for global
atmospheric equations through mixed-precision data flow engine, FPL Conference 2013]

Platform Performance Speedup Efficiency Energy
Improvement
6-core CPU 4.66K 1 20.71 1
g—
Tianhe-1A node 110.38K (2389|3066
MaxWorkstation 468.1K 100x 2.52K 121.6x |9x
Maxeler MPG-X 1.54M 330 3K

MAXELER 25



How is it possible
to beat the worlds fastest computer S

by 14x on speed and 9x on energy

=
]
-
=
>
(¥ )
(-
(-
o
(=4
T
x
=

Paraphrased: In theory, computing units

can be constructed which use no energy. FEYNMAN
LECTURES ON

COMPUTATION

Energy is only needed when information is lost.

Reordering of information does not require energy
from a pure physics perspective.

Of course, moving information takes Energy...

Dataflow minimizes Data Movement!

MAXELER 26



2015: First Maxeler Dataflow Supercomputer
installed at UK Government Laboratory

20-50x increased compute capabillity
per cubic-foot of data center space

MAXELER



Remote
users

Pilot system deployed in Oct 17
- one 1U MPC-X with 8 MAX5 DFEs

- one 1UAMD EPYC based server [J_Head/Build node % MAXS DFE
- one 1U login head node 10 GIpS Supermicro EPYC nodgl il EPYC CPU
& ™1
- mm I )
small case big case 56 GBps  2x Infiniband @ 56 @b
Applications  [~7< 1sec) | ETS [oWh] | TTS [sec) | ETS [oWh] !l 3 ; ';"'la".(‘i = ps
BacD 105 044] 170400 43 g =
W BQCD (Ref: 1 rack Blue GenelQ) 2,311.00 375 X MPC-X node
NEMO (DFE) ] 388[ 0.164|  1,945.00 38 7
NEMO (Ref: 8,192 cores Cray XC30) 1,942.00 28.0 X
QUANTUM ESPRESSO| %) 0013 321000 8 g
QUANTUM ESPRESSO (Ref: 2 racks BlueGene/Q) 3,200.00 364 X
SPECFEM3D [ 22| 0096 5150.00 12 ,
SPECFEM3D (Ref: 468 nodes Curie cluster) 15,500.00 2975 X

Energy Efficiency Improvements

w  SPECFEM3D 120MH2 large band

NEMO [ MRERER

Quantum Espresso e SPECFEM3D




How do we migrate applications to Static Dataflow

Self-consistent Field Loop

¢ Update potential »

Diagonalization Loop

FFT
¥ 1’. Start With d Loop
= Maxeler

Loop Flow Graph

Mix density
Update basis set

Davidson
Eigensolver

MAXELER



Convert the Loop Flow Graph into an Architecture

CPU DFE

Dataflow Chip '""
m IfftKernelZ

LMem

IW\

IFFT
Buffer

MiddleKernel

KernelWrite

IZW\
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Buffer

FftKernelZ
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Example: Quantum Chromodynamics

MAXELER

init_clover; d over bsa
mre_get2 over d e

gauges, clovers, spinors

spinor

LMEM




Exponent Bucket

Numerical Analysis: Maxeler Value Profiling

We had to change how we implement (represent) numbers in computers, and manage numerics

Evolution of 'r' values through iterations

iaN
inf
inf
d [ N R S S S D S S S S S N S —

TN \\\\\ ;

10.95%

0%

Q O o O O (\) O
L S . S S

Data snapshots

Changing the way we represent numbers in computers

MAXELER

43.81%

Percentage of Vector Elements in a Bucket



1PUtng

1 Performance Con
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AccuKernel 2 [SLRO)

. Accukernel 3 [SLRO)

AcculnputAG [SLRO)

TheKernel 2 2 [SLR2)
InputDatakernel [SLRO)
THeKernel 2 1 [SLR2)

. AccuKernel 0 [SLRO)
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THeKernel_0_4 [SLRO)
TileKernel_0_3 [SLRO)

TheKernel_2_4 [SLR2)
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Speedup per 1U Node
N w H
o o o

—_
o

0

<

624

schlumherger

-~ GREEOA
-2 1new01

/ SPEEDUP is 20x-40x per 1U at 200MHz
o 1 2 3 4 5 & 7 &8 9

10

> Maxeler Domain Specific Address and Data Encoding
published in IEEE Micro in 2011.



Think Big

MAXELER

WREML OB ] MG

Loment | Monte carl,

B (- e 2 .‘1‘1_;_,.,”

Computation

Data.ﬂow
Technology



2020: Inspired over 1,000 publication

= Google Scholar  Maxeler

& Articles About 1,270 results (0.03 sec)
Any time Sorting networks on Maxeler dataflow supercomputing systems
Since 2020 A Kos, V Rankovi¢, S Tomazi¢ - Advances in computers, 2015 - Elsevier
Since 2019 The primary contribution of this study is the implementation and evaluation of network
Since 2016 sorting algorithms on a Maxeler dataflow computer. Sorting is extensively used in numerous

applications. We discuss sequential, parallel, and network sorting algorithms. The major part ...

Custom range...
! g v 99 Citedby29 Related articles

C (@ Not Secure

maxeler.com/publications/

MAXERER

T -
Mnxenrnfx:mhpcrr‘fm%:}ncon (%'m:pgt::g Platforms Products Technology About Us

Leadership  Publications Newsroom Careers Contact us

Publications

Maxeler's work with academic and industry researchers has resulted in frequent publication by our scientists and engineers in academic journals
and conference presentations. Below is a selection of recent publications.
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2020: Static Dataflow inspiring modern Chips

The Groq Architecture, see: Think Fast, A Tensor Streaming Processor
for accelerating Deep Learning Networks, ISCA 2020.

Memory Functional “slice”

On-chip confroller Mawix . . _ "
natwork Unit | Net | LoadStors Unit Load'Store Un
MxMm | sxae| o MEM XM MHI

g

BOoO000:

DDDDQ@

ﬂ
£
H
(1}

-l-‘d ,

I I ; =g f —’l ||q
FOHHHHS ‘@@-9@ m.@m.h

[ _mstr dispatch | Integer ALU instruction

ﬁ‘— imad l“e|:ne|l H o —|oo|{ex|1ex|{ |
INT FP canomcal S-stage plpelnne pip

m [IF ]-[m Hex }{M M}-[ wB Memory (load/store)

p l - instruction pipeline

(a) (b)

Fig. 1. Conventional 2D mesh of cores (a) reorganized into a functionally
sliced arrangement of tiles (b).




“The hallmark of [Data]flow is a feeling of spontaneous joy”

High

Control

Challenge level

Boredom Relaxation

happiness

Low

Low Skill level High
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