N\

chun)) ATLAS

NS EXPERIMENT

Using High-Level C++ for HEP
Data Processing on Accelerators

Attila Krasznahorkay

AIME ‘21

Outline

Data processing software at the LHC
o And why it needs to worry about accelerators

An overview of current accelerators, and their programming languages
o With some information on how we are using / planning to use these features
o Putting some emphasis on memory management techniques with modern C++

An insight in the kind of software R&D happening in HEP and in ATLAS at the
moment

The Large Hadron Collider

The Large Hadron Collider

The Large Hadron Collider (

ATLAS And Its Offline Software

e ATLAS is one of the general-purpose
experiments at the Large Hadron

Collider

o Built/operated by the largest collaboration
for any physics experiment ever

e The software (atlas/athena,
atlassoftwaredocs) written for

processing its data is equally large
o ~4 million lines of C++ and ~2 million lines
of Python

https://atlas.cern/
https://home.cern/science/accelerators/large-hadron-collider
https://home.cern/science/accelerators/large-hadron-collider
https://gitlab.cern.ch/atlas/athena
https://atlassoftwaredocs.web.cern.ch/
https://gitlab.cern.ch/atlas/athena
http://atlas.cern/

Data Reconstruction in ATLAS

ATLAS

EXPERIMENT

https://cds.cern.ch/record/2682219

Data Reconstruction in ATLAS C\ER/W

Run: 336567
Event: 2327102923
2017-09-25 15:38:38 CEST

AI LAS Run: 310634
Event: 1515766987

EXPERIMENT 2016-10-1501:49:14 CEST

https://cds.cern.ch/record/2682219
https://cds.cern.ch/record/2667388

Data Reconstruction in ATLAS o

Run: 336567
Event: 2327102923
2017-09-25 15:38:38 CEST

QATLAS

EXPERIMENT
http://atlas.ch

Run: 204769
Event: 71902630
Date: 2012-06-10
Time: 13:24:31 CEST 9

https://cds.cern.ch/record/2682219
https://cds.cern.ch/record/2667388
https://cds.cern.ch/record/2254888

Why Accelerators?

(High Performance) Computing in 2021

“Classical” computer architecture

Computing has been getting more and cpU Main Memory
more complicated in the last decades — — o
o A modern CPU has a very complicated design, P —p— dni

mainly to make sure that (our!) imperfect Lol

programs would execute fast on it o
Complexity shows up both “inside of single | —— |
computers”, but also in the structure of |Disk:mve| [Disk Orive] IDislerivel
computing clusters

o A modern computing cluster has different
nodes connected to each other in a non-trivial o
network : i System

All the added complexity is there to
achieve the highest possible theoretical
throughput “for certain calculations” on

these machines o e en
Intel® Skylake™ Oak Ridge Summit 11

GBYs
HBM
6GB.
GPU
7TF
0
" ﬁ l

T (C
o
2 P —
6.0 GB/s Read
NVM |21 GBls Write
@
&8
@l o
LRIR

<—> X-Bus (SMP) <—» EDRIB
le Gend

https://www.olcf.ornl.gov/summit/
https://ark.intel.com/content/www/us/en/ark/products/codename/37572/skylake.html

(High Performance) Computing in 2021

e Supercomputers all use accelerators
< e Which come in many shapes and sizes
o NVidia GPUs are the most readily available in
general, used/will be in Summit, Perlmultter,

LEONARDO and MeluXina
nVI D I A o AMD GPUs are not used too widely in

comparison, but will be in Frontier, EI Capitan
and LUMI

o Intel GPUs are used even less at the moment,
but will get center stage in Aurora

o FPGAs are getting more and more attention,
and if anything, they are even more tricky to
write (good) code for

e Beside HPCs, commercial cloud providers
also offer an increasingly heterogeneous
infrastructure

12

https://www.olcf.ornl.gov/summit/
https://www.nersc.gov/systems/perlmutter/
https://eurohpc-ju.europa.eu/news/leonardo-new-eurohpc-world-class-pre-exascale-supercomputer-italy
https://eurohpc-ju.europa.eu/news/meluxina-new-eurohpc-world-class-supercomputer-luxembourg
https://www.olcf.ornl.gov/frontier/
https://www.hpe.com/us/en/compute/hpc/cray/doe-el-capitan-press-release.html
https://eurohpc-ju.europa.eu/news/lumi-new-eurohpc-world-class-supercomputer-finland
https://www.cray.com/customers/argonne-national-laboratory
https://www.cray.com/customers/argonne-national-laboratory
https://www.olcf.ornl.gov/frontier/
https://www.intel.com/
https://www.amd.com/
https://www.nvidia.com/

Luminosity [cm2s1]

-
P Year
-
-~ Run 3 5!

|
5 16 17,8 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 3536 37 38

4000

3500

[2020 Computing Model - CPU
F o Baseline

[4 Conservative R&D

E v Aggressive R&D

[— Sustained budget model
E (+10% +20% capacity/year)

— & LHCC common scenario
- (Conservative R&D, n=200)

~ATLASPreliminary 2

WS

As described in

CERN-LHCC-2020-015, being able to

Integrated luminosity [fb1]

process the data collected in LHC

Run 4 (and beyond) in ATLAS

requires major software developments
o Inorder to fit into our “CPU budget”, we
need to consider new approaches in our
data processing

One of these areas is to look at
non-CPU resources

13

http://cdsweb.cern.ch/record/2729668
https://lhc-commissioning.web.cern.ch/schedule/LHC-long-term.htm
https://lhc-commissioning.web.cern.ch/schedule/LHC-long-term.htm
https://atlas.cern/
https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/UPGRADE/CERN-LHCC-2020-015/
https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/UPGRADE/CERN-LHCC-2020-015/

HEP Software

Most (but not absolutely all) HEP software is written in C++ these days
o We even agreed on a single platform (Threading Building Blocks) for our multithreading

LHC experiments, mostly driven by their (our...) memory hungry applications, are

all migrating to multithreaded workflows by now
o ATLAS will use a multithreaded framework for triggering and reconstructing its data during LHC
Run-3
o However smaller HEP/NP experiments are still happily using multiprocessing to parallelise their data
processing

It is in this context that we are looking towards upgrading our software to use
non-x86 computing as well

14

https://github.com/oneapi-src/oneTBB

What Accelerators?

General Purpose GPUs (GPGPUs) are the
“most common” accelerators

They can achieve very high theoretical
FLOPs because they have a lot of units for
performing floating point calculations

But unlike CPUs, these cores are not

independent of each other
o Control units exist for large groups of computing
cores, forcing the cores to all do the same thing at
any given time
o Memory caching is implemented in a much
simpler way for these computing cores than for
CPUs

Coming even close to the theoretical limits of
accelerators is only possible with purpose
designed algorithms

Core
Core Core

Core
L1 Cache L1 Cache

L1 Cache L1 Cache

L2 Cache L2 Cache

L3 Cache

Thread

Block

Grd 0

Block (1. 0)

Block (1, 1)

Block (1 2)

Global memory

16

FPGAs / ASICs

e Will become important as well, but at
the moment are a bit less important

with “generic algorithms”

o They are normally suited better for
well-defined/understood data processing
steps. For instance decoding data coming
from the detector.

e The software projects to know about
with these are Intel’'s oneAPI and
various High Level Synthesis (HLS)
implementations

17

https://software.intel.com/content/www/us/en/develop/tools/oneapi.html
https://github.com/oneapi-src/oneAPI-samples/blob/master/DirectProgramming/DPC%2B%2BFPGA/Tutorials/GettingStarted/fpga_compile/src/fpga_compile.cpp

The Future of CPUs/GPUs (?)

Cores

FPGA

Socket TP

Socket

Scalability

PCH

Goaan
oan
-
S =

* Power for FPGA is drawn from socket & requires modified
Purley platform specs

= Platform Modifications include Stackup, Clock, Power
Delivery, Debug, Power up/down sequence, Misc IO pins
(see BOM cost section)

Memory

Intel” UPL

PCle”

High Speed
Ser;

e Is quite uncertain...

@)

These days even the future of x86 seems
to be in some jeopardy =

e Heterogeneous seems to be the key

(@)

Some CPUs already have different cores,
meant for different tasks
CPU+GPU combinations will likely become
more and more popular in HPCs
m Making it possible to manage the
memory of applications more easily
GPUs are not even the only game in town
m “FPGA inserts” may become a part of
future high-performance
CPUs/GPUs...

18

(Current) Programming
Languages

Just as with “CPU languages”, there is no single language for writing accelerator code with
o But while HEP settled on C++ for CPUs, at this point the whole community just can’t settle on a single
language for accelerators yet
However most of these languages are at least C/C++ based
o But unfortunately each of them have (slightly) different capabilities

ROCm/HIP CUDA oneAPI/SYCL
[AMD“.'} [@ZnVIDIA] [(intel") } Yg%e

Multiple projects exist / are actively developed for hiding this complexity from the
programmers (Kokkos, Alpaka, Thrust, Parallel STL, etc.)

Eventually the goal is to make heterogeneous programming part of the ISO C++ standard
o | will try to show the most interesting/important fronts on which this is happening

20

https://github.com/kokkos/kokkos
https://github.com/alpaka-group/alpaka
https://docs.nvidia.com/cuda/thrust/index.html
https://software.intel.com/content/www/us/en/develop/articles/get-started-with-parallel-stl.html
https://llvm.org/
https://software.intel.com/content/www/us/en/develop/tools/oneapi/base-toolkit.html
https://www.khronos.org/sycl/
https://www.intel.com
https://www.intel.com
https://www.intel.com
https://rocmdocs.amd.com
https://www.amd.com
https://www.amd.com
https://www.amd.com
https://developer.nvidia.com/CUDA-zone
https://www.nvidia.com
https://www.nvidia.com
https://www.nvidia.com

C++ / Host Code

e One of the first idea from everybody who starts working on this type of code is to

make it possible to run the exact same code on accelerators and on the host
o And for a good number of calculations this can be a good idea, especially for making certain parts of
debugging a little easier
e However many algorithms in HEP do not factorise well like this

o Any “combinatorial” code usually has to be implemented with a different logic for CPUs (where you
want to minimise FLOPs with conditionals) and GPUs (where you want to minimise conditionals,
while not caring about FLOPs all that much)

o Because of this, even when using oneAPI/SYCL, we still implement separate algorithms for CPUs
and GPUs for most things

21

https://software.intel.com/content/www/us/en/develop/tools/oneapi/base-toolkit.html
https://www.khronos.org/sycl/

Latest Language/Hardware News

e All accelerator languages are v

undergoing rapid development!
o NVIDIA held its own conference this week,
showing the latest developments with “all I(\BIB(\:/V”S HAPPENING
things GPU” Jein the onferencefor Al Innovators, Technlagst,and
o SC21 is happening next week, with C'Ai::..ow
amongst others, Intel holding a satellite

event this Sunday
e AMD announced its latest server

products at the beginning of this week
as well

22

https://www.nvidia.com/gtc/
https://sc21.supercomputing.org/
https://www.oneapi.io/events/oneapi-developer-summit-at-sc/
https://www.oneapi.io/events/oneapi-developer-summit-at-sc/
https://ir.amd.com/news-events/press-releases/detail/1032/new-amd-instinct-mi200-series-accelerators-bring
https://www.nvidia.com/gtc/
https://www.oneapi.io/events/oneapi-developer-summit-at-sc/

Al / ML Usage on GPUs in ATLAS

s s e ML usage has a long history in HEP data
W Updated onnxruntime to be able to build against LCG_101cuda, with CUDA support turned on. ferffoed | Gy

processing/analysis

peme L o Neural networks were first used for event/object
= classification in the ‘70s

& cmake Changed the include path convention used by Findonnxruntime.cmake. 1year ago

& patches ramping up anxruntime_1.11 t onmaruntime1.5.1 1 year ago ® | n the ea rly 20 1 OS we were Stl ” ertl ng M L

B CMakelLists.txt Updated onnxruntime to be able to build against LCG_101cuda, with C... 1 week ago

s README.md Added a README file for ONNX Runtime. 1year ago algorith mS Ou rselves (See TMVA)

B .md
o With this area blowing up in the last decade, we now
o]) Q: T4l S ATLAS Machine Learning Forum Q search & cittab

use “industry tools” (TensorFlow, ONNX Runtime, etc.)
almost exclusively

This package builds the

Note that the build ma ATLAS Machine Learning Forum ATLAS Machlne Leam\ﬂg |ﬂf0rmatl0ﬂ and Table of contents
should not cause an is¢ Home Introduction
fact that internally it us : ; . Resources f d f 13 H 7 H
S e All of them are used for “classical” operations
T Fiteaatiat Mailing Lists and
Communication
R at the moment

This repo is meant to collect information (directly or pointing to) on all aspects of machine Software Resources and
learning relevant to ATLAS. The full ATLAS Machine Learning Forum mandate is available as a Pedagogical Information
PDF.

o Categorising events/objects
o Calibrating the properties of objects

e Using them for more could be very
interesting, it is however very hard to do
that...

Training Setup

, . . . Dataset Production
Please do not hesitate to open Merge Requests to fill in/update information yourself. It s actively

encouraged! Read how in CONTRIBUTING.md. If you've already read the CONTRIBUTING.md and know
what to do, then feel free to head to the Issues and open one up to start a discussion!

Training
Legacy Support

Porting to
Analysis/Reconstruction

General Information GPU and Notebook Access
JupyterHub at CERN

Roles Other Jupyter Servers
GPU Queues
« Conveners: Daniel Whiteson and Johnny Raine Citing Software
> to be reached through: atlas-comp-ml-conveners@cern.ch
* AMG Contact: Lukas Heinrich

» Documentation Coordinator: Matthew Feickert

23

https://root.cern/manual/tmva/
https://www.tensorflow.org/
https://onnxruntime.ai/
https://gitlab.cern.ch/atlas/atlasexternals/-/tree/master/External/onnxruntime
https://atlasml.web.cern.ch/atlasml/

Memory Management (in C++)

Memory Management

Device
GPU

e Modern CPUs have a very complicated Wi
To Host ultiprocessor
memory management system N Multiprocessor
o Which we can in most cases avoid knowing Multipracesser
a bOU t Shared Memory
e GPUs have a complicated system of
their own

o However this we can not avoid knowing more
about to use GPUs efficiently =
o Most importantly, caching is much less

automated than on modern CPUs CPU CPU
1 1

e |n some cases however you can get ! ¢

away with not knowing everything |
Unified Memory
o For a performance penalty...

25

Memory (De-)Allocation

const std::vector< float >& input = ...;

e CUDA started by providing C-style
float *a = 1llptr, *b = 11lptr; . .
et e M sy memory allocation/deallocation

input.size() * sizeof(float))); f t
CUDA_CHECK(cudaMallocManaged(&b, unctions

input.size() * sizeof(float))); o Eventually every other language followed

for(std::size t i = @; i < input.size(); ++i) { this design as well

a[i] = input[i T; .
} e Allows for a precise management of
linearTransform<<< 1, input.size() >>>(a, b, ...); the memOry resources
CUDA_CHECK(cudaGetLastError()); .. .
CUDA_CHECK(cudaDeviceSynchornize()); e Butitis in stark contrast with modern
std::vector< float > output; C++ deSign gUidelineS
output.reserve(input.size());
for(std::size t i = @; 1 < input.size(); ++i) { o Modern C++ code should not even have
, ourput-pushbackCbL 4 s new/delete statements in it, let alone

malloc(...)/free(...)

CUDA_CHECK(cudaFree(a));
CUDA_CHECK(cudaFree(b));

26

https://en.cppreference.com/w/cpp/language/new
https://en.cppreference.com/w/cpp/language/delete
https://en.cppreference.com/w/cpp/memory/c/malloc
https://en.cppreference.com/w/cpp/memory/c/free

C++17 Dynamic Memory Management

STL-friendly “adapter code” has been
developed for a long time for this, Memory resources

Memory resources implement memory allocation strategies that can be used by std: :pmr: :polymorphic_allocator

Defined in header <memory resource>

using custom “container allocators”

memory_resource (C++17)

One important development came
fro m NVid ia , With Th ru St null_memory_resource (C++17)

get_default_resource (C++17)

o This was generalised to be part of C++17 cot defautt resourcetcain
as the “memory resource infrastructure” pool_options (c+-+17)

WhiCh iS Something that We have synchronized_pool_resource (C++17)
been Very active|y using in the unsynchronized_pool_resource (C++17)
VecMem project

monotonic_buffer_resource (C++17)

an abstract interface for classes that encapsulate memory resources
(class)

returns a static program-wide std: :pmr::memory resource that uses the
global operator new and operator delete to allocate and deallocate
memory

(function)

returns a static std: :pmr: :memory_resource that performs no allocation
(function)

gets the default std: :pmr: :memory resource

(function)

sets the default std: :pmr: :memory_resource

(function)

a set of constructor options for pool resources

(class)

a thread-safe std: :pmr: :memory resource for managing allocations in
pools of different block sizes

(class)

a thread-unsafe std: :pmr: :memory resource for managing allocations in
pools of different block sizes

(class)

a special-purpose std: :pmr::memory resource that releases the
allocated memory only when the resource is destroyed

(class)

27

https://docs.nvidia.com/cuda/thrust/index.html
https://en.cppreference.com/w/cpp/17
https://github.com/acts-project/vecmem
https://en.cppreference.com/w/cpp/memory

& acts-project/ vecmem

As part of a larger effort in the Acts
community, we are developing a
library that could help with using
containers of “simple” data in

heterogeneous code

o It provides a set of classes for use in host
and device code, for simplifying common
container access patterns

Dedicated presentations about this

project will be shown at:

o https://indico.cern.ch/event/855454/contrib
utions/4605054/
o https://indico.cern.ch/event/975017/

28

https://github.com/acts-project/
https://github.com/acts-project/
https://indico.cern.ch/event/855454/contributions/4605054/
https://indico.cern.ch/event/855454/contributions/4605054/
https://indico.cern.ch/event/975017/
https://github.com/acts-project/vecmem
https://github.com/acts-project/vecmem/blob/main/tests/sycl/test_sycl_jagged_containers.sycl

Atomic Memory Operations

e Many multi-threaded / GPU algorithms make use of atomic variables/operations
o GPU hardware allows for atomic updates to any variable in “global memory”. Which is unfortunately
not possible to express with the current C++ std::atomic interface.
o Projects like VecMem, and (very importantly!) Kokkos, had to work around this using their own

atomic types.
e One important new feature in C++20 is std::atomic_ref, pushed into the standard
by the Kokkos developers &5
o It provides an interface that is finally appropriate for “device code” as well
o Future versions of CUDA/HIP/SYCL shall be able to understand this type in “device code”, making
code sharing between different platforms even easier

29

https://en.cppreference.com/w/cpp/atomic/atomic
https://github.com/acts-project/vecmem/blob/main/core/include/vecmem/memory/atomic.hpp
https://github.com/kokkos/kokkos/blob/master/core/src/Kokkos_Atomic.hpp
https://en.cppreference.com/w/cpp/atomic/atomic_ref

Offloaded Code Execution

Formalism

o CUDA’ HIP and SYCL eaCh have their dim3 numBlocks(...), blockSize(...); NVIDIA
: : “ : ” size_t sharedMem = ...; .
own formalism for executing a “function” | &%= 0" e = CUDA
mySuperKernel<<< numBlocks, blockSize,
on many para”el threadS sharedMem, stream >>>(...);
o They all need to allow a detailed specification -
of how to launch the function on the hardware dim3 numBlocks(...), blockSize(...); gg
H : : : uint32_t sharedMem = ...;
e Since the concept is quite the same in e S
; hipLaunchKernelGGL(mySuperKernel, numBlocks,
all cases, a number of projects were T, ST, Geee . e s
written to create uniform interfaces on =
tOp Of them sycl::nd_range<3> range; E:
sycl::queue& q = ...; on:;P
o But while this can be very useful in some q.submit([&](sycl::handler& h) {
. . . . 1:: S
situations, having to launch a GPU kernel in Sygycl?fgizzcs);:target: local> a(..):
slightly different ways in the different h.parallel_for(range, . .
languages is rarely the difficult part in porting [=_]_$. sycl::nd_item<3> id) {
some code... })s
})s

31

https://docs.nvidia.com/cuda/
https://docs.nvidia.com/cuda/
https://rocmdocs.amd.com/en/latest/
https://rocmdocs.amd.com/en/latest/
https://www.oneapi.com/
https://www.oneapi.com/

2IMp le exam p les
Here are a few simple examples to get a feel for how the C++ Parallel Algorithms work.

From the early days of C++, sorting items stored in an appropriate container has been relatively easy using a single call
such as the following

std::sort(employees.begin(), employees.end(),
CompareByLastName()) ;

Assuming that the comparison class CompareByLastName is thread-safe, which is true for most comparison
functions, then parallelizing this sort is simple with C++ Parallel Algorithms. Include <execution> and add an
execution policy to the function call:

std::sort(std::execution: :par,
employees.begin(), employees.end(),
CompareByLastName()) ;

Calculating the sum of all the elements in a container is also simple with the std: :accumulate algorithm. Prior to
C++17, transforming the data in some way while taking the sum was somewhat awkward. For example, to compute the
average age of your employees, you might write the following code example:

int ave age =
std: :accunulate (employees.begin(), employees.end(), 0,
[1(int sum, const Employee& emp){
return sum + emp.age() ;
b

/ employees.size();

The std::transform_reduce algorithm introduced in C++17 makes it simple to parallelize this code. It also results
in cleaner code by separating the reduction operation, in this case std: : plus, from the transformation operation, in
this case emp . age:

int ave age =
std: :transform_reduce(std::execution: :par_unseq,
employees.begin(), employees.end(),
0, std::plus<int>(),
[1(const Employee& emp){
return emp.age() ;
H
/ employees.size();

Example:

Use the C++ Standard Execution Policies

#include <oneapi/dpl/execution>
#include <oneapi/dpl/algorithm>
#include <vector>

int main()
std::vector<int> data(1000);

std::fill(oneapi: :dpl::execution: :par_unseq, data.begin(), data.end(), 42);
return @;

}

Purely numerical calculations can be
expressed without writing any

accelerator code directly
o If your calculation can be expressed purely
through STL algorithms, it is likely that it can
be executed on an accelerator as well
It very much relies on compiler support
o Even more, while the NVidia HPC SDK allows
you to run “more-or-less-standard” C++17
code on your GPU, Intel oneAPI requires you
to use some Intel specific includes...

Still, it is one of the most platform
independent ways of writing accelerated
code at the moment

32

https://developer.nvidia.com/hpc-sdk
https://docs.oneapi.io/versions/latest/onedpl/pstl_main.html
https://developer.nvidia.com/blog/accelerating-standard-c-with-gpus-using-stdpar/
https://docs.oneapi.io/versions/latest/onedpl/pstl_main.html

C++23(?) Executors

executor auto ex = ...;
execute(ex, []{
cout << "Hello, executors!\n"; });

P0443R14 proposes a unified
interface for launching tasks on “some

backend”
o With a formalism a little reminiscent of
SYCL

The goal is of course to introduce a
formalism that could describe CPU
and accelerator multi-threading using

a single interface
o Allowing hardware makers to process code
(with their own compilers, at least initially)
that could look practically the same for all
types of accelerators

33

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2020/p0443r14.html

Code Sharing

Until the “device code launch”
formalism is standardized, we can still

organise our code in clever ways

o As much code as possible should be
delegated into “standard” functions, which
kernels can call on to perform some
task/calculation

o This mainly requires a unified handling of
memory in my opinion, which can already
be done in clever ways

We are currently experimenting with
exactly how far we can take this, in
acts-project/traccc

DEVICE_FUNCTION
float calculateSomething(const vecmem::device_vector<const float>& vec,
std::size_t index);

__global__

void cudaKernel(vecmem::vector_view<const float> vec_view, ...) {
const std::size_t i = blockIdx.x * blockDim.x + threadIdx.x;
vecmem: :device_vector<const float> vec(vec_view);
float foo = calculateSomething(vec, i);

}

__global__

void hipKernel(vecmem::vector_view<const float> vec_view, ...) {
const std::size_t i = hipBlockIdx_x * hipBlockDim_x + hipThreadIdx_x;
vecmem: :device_vector<const float> vec(vec_view);
float foo = calculateSomething(vec, i);

)

class SyclKernel {
public:
SyclKernel(vecmem_vector_view<const float> vec_view)
: m_vec_view(vec_view), ... {}
void operator()(sycl::id<1> id) {
vecmem: :device_vector<const float> vec(m_vec_view);
float foo = calculateSomething(vec, id);

private:
vecmem: :vector_view<const float> m_vec_view;

s

34

https://github.com/acts-project/traccc

Developments in ATLAS

Heterogeneous Computing and Accelerators Forum

(Updated on 14.1.2021)
Mandate:

The future of computing hardware is uncertain, but one global trend is towards
heterogeneous resources and more specifically towards “accelerators™ specialized
(non-CPU) hardware that enhances performance for certain computations. One of the most
obvious examples is the Graphics Processing Unit (GPU), which is adept at highly parallel,
low-accuracy computations. Other popular examples include FPGAs and TPUs.

Within ATLAS, discussion and overall planning of work on heterogeneous resources should
be within the Heterogeneous Computing and Accelerators Forum (HCAF) which includes
efforts from both offline software and TDAQ. The conveners of the forum should maintain a
list of high-level milestones towards the adoption of the technologies targeted by
development within ATLAS.

The forum should meet at least once a month.

Reporting and Liaisons:

The HCAF conveners report to the ATLAS Computing Coordinator and the TDAQ Project,
TDAQ Upgrade Project, and Upgrade Project Leaders. They may appoint liaisons or
contacts as needed. They should ensure ATLAS is represented in collaborative forums
focused on accelerators, like the HSF accelerators forum.

Term of Office:

The HCAF conveners are appointed by the ATLAS Computing Coordinator and TDAQ
Upgrade Project Leader with a renewable one year term normally starting October 1st. At
least two conveners are appointed. Between them, responsibilities are split; however,
knowledge should be shared such that they can represent each other in case one is
unavailable.

To organise/oversee the developments in
this area, the Heterogeneous Computing
and Accelerators Forum (HCAF) was
formed in 2021

o Built on top of the previous separate
groups overseeing the offline and TDAQ
efforts in this area

It is in this group that we try to organise all
of these types of developments in
ATLAS...
HEP on a wider scale is discussing about
large scale projects in the HEP Software
Foundation

o https://hepsoftwarefoundation.org

36

https://hepsoftwarefoundation.org/
https://twiki.cern.ch/twiki/pub/AtlasComputing/AtlasComputing/Mandate_for_the_Accelerators_and_Heterogeneous_Computing_Forum.pdf
https://twiki.cern.ch/twiki/pub/AtlasComputing/AtlasComputing/Mandate_for_the_Accelerators_and_Heterogeneous_Computing_Forum.pdf

Current Studies/Developments

8 acts-project/ traccc

e R&D is happening in many areas of &
the ATLAS offline software R o

3 stephenswat Merge pull request #99 from stephenswat/bug/fix_compiler

o (Charged) track reconstruction
o Calorimetry
o Core Software

e Probably the most “public”
development at the moment is
happening in acts-project/traccc

o Where we intend to demonstrate a

“realistic setup” for performing charged
track reconstruction on accelerators

37

https://github.com/acts-project/traccc
https://github.com/acts-project/traccc

Summary

After a calm period of homogeneous x86 computing, HEP will once again have to

use a wide variety of heterogeneous hardware for a while

o | believe there is a periodicity to this. Current accelerator technologies will inevitably become more
homogeneous after a while.

C++ will stay the “main” programming language of HEP for a long time to come

o If things are done correctly, it shall event allow us to efficiently program all the emerging hardware
variants by itself

C++2X (C++3X?) will not have all the capabilities that the LHC experiments require
by the start of HL-LHC

o We need to make sure in the next few years that we choose a programming method that will be as
close to the eventual C++ standard as possible

There is a lot of work to be done! If you're interested, ATLAS is certainly welcoming
enthusiastic software developers! (=

38

Cﬁw
\
N/ A

http://home.cern

http://home.cern

Previous Studies (1)

. 20 1 2 : I D Trigge r prototype 20 EveRr:t:r:Zessing rate vs. number of AthenaMP clients, ID -only test
(ATL-DAQ-PROC-2012-006) . [E— —

o Complete Level2 ID Trigger on GPU (ByteStream to tracks)
o GPU (Tesla C2050) gave x12 speedup* c.f. 1 CPU core

e 2015: Trigger GPU Demonstrator s
(ATL-COM-DAQ-2019-059) acrncry

o Athena integration using client-server technology (APE) MC tt-bar + PU(46) # Athenas

Event Rate (Hz)

o Calo topo-clustering & cluster splitting: x3.6 speedup* on ot N e 7
Pascal GTX1080 GPU
e 2019: GPU ID pattern-matching prototype M E— (er} ‘1

N threads
Kepler K80 GPU
o Pix & SCT clustering + ID seed-maker: x28 speed-up* on
_-)
o Overall trigger server throughput x1.4 throughput with b s . o
GPU c.f. Cpu-only trock following S
s R R ST
(ATL-COM-DAQ-2019-173) *
0 FTK-like pattern matching on GPU

40
*speedup = time on 1 CPU core / time on GPU

https://cds.cern.ch/record/1450130
https://cds.cern.ch/record/2671881
https://www.nvidia.com/en-gb/data-center/tesla-k80/
https://www.nvidia.com/en-sg/geforce/products/10series/geforce-gtx-1080/
https://cds.cern.ch/record/2693094

Previous Studies (2)

6

5 -~ CPU only
=4 CPU+GPU

IS

Event Rate (Hz)

-

=]

2020 Results

0 5 10 15 20 25 30
N threads
%18 | ——— Intel® Core™ i7-9900k GPU (original C++)
= —o—
£ 1] —— Intel® UHD Graphics 630 (SYCL)
= ——
S, 7| ——+—— NVIDIA® GeForce® RTX 2060 (SYCL)
14 -
E —o—
12 e —-—
10— o e
- -0 e
8i —3—_0_ ==
6— —o— -
F = —0—+
4 N
- - -
- —O— ——
2 —o— o e
. —— = e e A—A—A—h
o F = o= cnan e il
—aA
o O ok
E [-
S [& PR S g P .
T g=e=% | i i : ; , ! x10
0 20 40 60 80 100 120 140 160 180 200

Seeds

2020: GPU trigger algorithm integration in
AthenaMT

o AthenaMT integration using acceleration service
o ID seed-maker algorithm implemented on GPU
o Calorimeter reconstruction under development

Acts

o Seed finding implemented using both CUDA and SYCL
m https://github.com/acts-project/acts/tree/master/Plugins/Cuda
m hitps://github.com/acts-project/acts/tree/master/Plugins/Sycl

o Kalman filter demonstrator

FCS: Parametrized Calorimeter Simulation
o First developed in CUDA, but then used as a software
portability testbed
o ATL-COM-SOFT-2020-069
o oneMKL cuRAND Support Development (GitHub Code)

Studies with GNNs for tracking (presentation)

41

https://github.com/acts-project/acts/tree/master/Plugins/Cuda
https://github.com/acts-project/acts/tree/master/Plugins/Sycl
https://cds.cern.ch/record/2743910
https://github.com/vrpascuzzi/oneMKL/tree/add-curand-support
https://indico.cern.ch/event/986284/contributions/4152726/attachments/2162810/3650837/ExaTrkX-LBNL-Tuesday-Meeting.pdf

