
Using High-Level C++ for HEP
Data Processing on Accelerators

Attila Krasznahorkay

AIME ‘21

Outline

● Data processing software at the LHC
○ And why it needs to worry about accelerators

● An overview of current accelerators, and their programming languages
○ With some information on how we are using / planning to use these features
○ Putting some emphasis on memory management techniques with modern C++

● An insight in the kind of software R&D happening in HEP and in ATLAS at the
moment

2

3

The Large Hadron Collider

4

The Large Hadron Collider

5

The Large Hadron Collider

ATLAS And Its Offline Software

● ATLAS is one of the general-purpose
experiments at the Large Hadron
Collider

○ Built/operated by the largest collaboration
for any physics experiment ever

● The software (atlas/athena,
atlassoftwaredocs) written for
processing its data is equally large

○ ~4 million lines of C++ and ~2 million lines
of Python

6

https://atlas.cern/
https://home.cern/science/accelerators/large-hadron-collider
https://home.cern/science/accelerators/large-hadron-collider
https://gitlab.cern.ch/atlas/athena
https://atlassoftwaredocs.web.cern.ch/
https://gitlab.cern.ch/atlas/athena
http://atlas.cern/

7

Data Reconstruction in ATLAS

https://cds.cern.ch/record/2682219

8

Data Reconstruction in ATLAS

https://cds.cern.ch/record/2682219
https://cds.cern.ch/record/2667388

9

Data Reconstruction in ATLAS

https://cds.cern.ch/record/2682219
https://cds.cern.ch/record/2667388
https://cds.cern.ch/record/2254888

Why Accelerators?

10

(High Performance) Computing in 2021

● Computing has been getting more and
more complicated in the last decades

○ A modern CPU has a very complicated design,
mainly to make sure that (our!) imperfect
programs would execute fast on it

● Complexity shows up both “inside of single
computers”, but also in the structure of
computing clusters

○ A modern computing cluster has different
nodes connected to each other in a non-trivial
network

● All the added complexity is there to
achieve the highest possible theoretical
throughput “for certain calculations” on
these machines

11Intel® Skylake™ Oak Ridge Summit

“Classical” computer architecture

https://www.olcf.ornl.gov/summit/
https://ark.intel.com/content/www/us/en/ark/products/codename/37572/skylake.html

(High Performance) Computing in 2021

● Supercomputers all use accelerators
● Which come in many shapes and sizes

○ NVidia GPUs are the most readily available in
general, used/will be in Summit, Perlmutter,
LEONARDO and MeluXina

○ AMD GPUs are not used too widely in
comparison, but will be in Frontier, El Capitan
and LUMI

○ Intel GPUs are used even less at the moment,
but will get center stage in Aurora

○ FPGAs are getting more and more attention,
and if anything, they are even more tricky to
write (good) code for

● Beside HPCs, commercial cloud providers
also offer an increasingly heterogeneous
infrastructure 12

https://www.olcf.ornl.gov/summit/
https://www.nersc.gov/systems/perlmutter/
https://eurohpc-ju.europa.eu/news/leonardo-new-eurohpc-world-class-pre-exascale-supercomputer-italy
https://eurohpc-ju.europa.eu/news/meluxina-new-eurohpc-world-class-supercomputer-luxembourg
https://www.olcf.ornl.gov/frontier/
https://www.hpe.com/us/en/compute/hpc/cray/doe-el-capitan-press-release.html
https://eurohpc-ju.europa.eu/news/lumi-new-eurohpc-world-class-supercomputer-finland
https://www.cray.com/customers/argonne-national-laboratory
https://www.cray.com/customers/argonne-national-laboratory
https://www.olcf.ornl.gov/frontier/
https://www.intel.com/
https://www.amd.com/
https://www.nvidia.com/

Why HEP/ATLAS Cares About Accelerators

● As described in
CERN-LHCC-2020-015, being able to
process the data collected in LHC
Run 4 (and beyond) in ATLAS
requires major software developments

○ In order to fit into our “CPU budget”, we
need to consider new approaches in our
data processing

● One of these areas is to look at
non-CPU resources

13

http://cdsweb.cern.ch/record/2729668
https://lhc-commissioning.web.cern.ch/schedule/LHC-long-term.htm
https://lhc-commissioning.web.cern.ch/schedule/LHC-long-term.htm
https://atlas.cern/
https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/UPGRADE/CERN-LHCC-2020-015/
https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/UPGRADE/CERN-LHCC-2020-015/

HEP Software

● Most (but not absolutely all) HEP software is written in C++ these days
○ We even agreed on a single platform (Threading Building Blocks) for our multithreading

● LHC experiments, mostly driven by their (our…) memory hungry applications, are
all migrating to multithreaded workflows by now

○ ATLAS will use a multithreaded framework for triggering and reconstructing its data during LHC
Run-3

○ However smaller HEP/NP experiments are still happily using multiprocessing to parallelise their data
processing

● It is in this context that we are looking towards upgrading our software to use
non-x86 computing as well

14

https://github.com/oneapi-src/oneTBB

What Accelerators?

15

GPGPUs

● General Purpose GPUs (GPGPUs) are the
“most common” accelerators

● They can achieve very high theoretical
FLOPs because they have a lot of units for
performing floating point calculations

● But unlike CPUs, these cores are not
independent of each other

○ Control units exist for large groups of computing
cores, forcing the cores to all do the same thing at
any given time

○ Memory caching is implemented in a much
simpler way for these computing cores than for
CPUs

● Coming even close to the theoretical limits of
accelerators is only possible with purpose
designed algorithms 16

FPGAs / ASICs

● Will become important as well, but at
the moment are a bit less important
with “generic algorithms”

○ They are normally suited better for
well-defined/understood data processing
steps. For instance decoding data coming
from the detector. 😉

● The software projects to know about
with these are Intel’s oneAPI and
various High Level Synthesis (HLS)
implementations

17

https://software.intel.com/content/www/us/en/develop/tools/oneapi.html
https://github.com/oneapi-src/oneAPI-samples/blob/master/DirectProgramming/DPC%2B%2BFPGA/Tutorials/GettingStarted/fpga_compile/src/fpga_compile.cpp

The Future of CPUs/GPUs (?)

● Is quite uncertain…
○ These days even the future of x86 seems

to be in some jeopardy 🤔
● Heterogeneous seems to be the key

○ Some CPUs already have different cores,
meant for different tasks

○ CPU+GPU combinations will likely become
more and more popular in HPCs

■ Making it possible to manage the
memory of applications more easily

○ GPUs are not even the only game in town
■ “FPGA inserts” may become a part of

future high-performance
CPUs/GPUs…

18

(Current) Programming
Languages

19

● Just as with “CPU languages”, there is no single language for writing accelerator code with
○ But while HEP settled on C++ for CPUs, at this point the whole community just can’t settle on a single

language for accelerators yet
● However most of these languages are at least C/C++ based

○ But unfortunately each of them have (slightly) different capabilities

● Multiple projects exist / are actively developed for hiding this complexity from the
programmers (Kokkos, Alpaka, Thrust, Parallel STL, etc.)

● Eventually the goal is to make heterogeneous programming part of the ISO C++ standard
○ I will try to show the most interesting/important fronts on which this is happening

C++...?

20

oneAPI/SYCLROCm/HIP CUDA

https://github.com/kokkos/kokkos
https://github.com/alpaka-group/alpaka
https://docs.nvidia.com/cuda/thrust/index.html
https://software.intel.com/content/www/us/en/develop/articles/get-started-with-parallel-stl.html
https://llvm.org/
https://software.intel.com/content/www/us/en/develop/tools/oneapi/base-toolkit.html
https://www.khronos.org/sycl/
https://www.intel.com
https://www.intel.com
https://www.intel.com
https://rocmdocs.amd.com
https://www.amd.com
https://www.amd.com
https://www.amd.com
https://developer.nvidia.com/CUDA-zone
https://www.nvidia.com
https://www.nvidia.com
https://www.nvidia.com

C++ / Host Code

● One of the first idea from everybody who starts working on this type of code is to
make it possible to run the exact same code on accelerators and on the host

○ And for a good number of calculations this can be a good idea, especially for making certain parts of
debugging a little easier

● However many algorithms in HEP do not factorise well like this
○ Any “combinatorial” code usually has to be implemented with a different logic for CPUs (where you

want to minimise FLOPs with conditionals) and GPUs (where you want to minimise conditionals,
while not caring about FLOPs all that much)

○ Because of this, even when using oneAPI/SYCL, we still implement separate algorithms for CPUs
and GPUs for most things

21

https://software.intel.com/content/www/us/en/develop/tools/oneapi/base-toolkit.html
https://www.khronos.org/sycl/

Latest Language/Hardware News

● All accelerator languages are
undergoing rapid development!

○ NVIDIA held its own conference this week,
showing the latest developments with “all
things GPU”

○ SC21 is happening next week, with
amongst others, Intel holding a satellite
event this Sunday

● AMD announced its latest server
products at the beginning of this week
as well

22

https://www.nvidia.com/gtc/
https://sc21.supercomputing.org/
https://www.oneapi.io/events/oneapi-developer-summit-at-sc/
https://www.oneapi.io/events/oneapi-developer-summit-at-sc/
https://ir.amd.com/news-events/press-releases/detail/1032/new-amd-instinct-mi200-series-accelerators-bring
https://www.nvidia.com/gtc/
https://www.oneapi.io/events/oneapi-developer-summit-at-sc/

AI / ML Usage on GPUs in ATLAS

● ML usage has a long history in HEP data
processing/analysis

○ Neural networks were first used for event/object
classification in the ‘70s

● In the early 2010s we were still writing ML
algorithms ourselves (see TMVA)

○ With this area blowing up in the last decade, we now
use “industry tools” (TensorFlow, ONNX Runtime, etc.)
almost exclusively

● All of them are used for “classical” operations
at the moment

○ Categorising events/objects
○ Calibrating the properties of objects

● Using them for more could be very
interesting, it is however very hard to do
that...

23

https://root.cern/manual/tmva/
https://www.tensorflow.org/
https://onnxruntime.ai/
https://gitlab.cern.ch/atlas/atlasexternals/-/tree/master/External/onnxruntime
https://atlasml.web.cern.ch/atlasml/

Memory Management (in C++)

24

Memory Management

● Modern CPUs have a very complicated
memory management system

○ Which we can in most cases avoid knowing
about

● GPUs have a complicated system of
their own

○ However this we can not avoid knowing more
about to use GPUs efficiently ☹

○ Most importantly, caching is much less
automated than on modern CPUs

● In some cases however you can get
away with not knowing everything

○ For a performance penalty...

25

Memory (De-)Allocation

● CUDA started by providing C-style
memory allocation/deallocation
functions

○ Eventually every other language followed
this design as well

● Allows for a precise management of
the memory resources

● But it is in stark contrast with modern
C++ design guidelines

○ Modern C++ code should not even have
new/delete statements in it, let alone
malloc(...)/free(...)

26

const std::vector< float >& input = …;

float *a = nullptr, *b = nullptr;
CUDA_CHECK(cudaMallocManaged(&a,
 input.size() * sizeof(float)));
CUDA_CHECK(cudaMallocManaged(&b,
 input.size() * sizeof(float)));

for(std::size_t i = 0; i < input.size(); ++i) {
 a[i] = input[i];
}

linearTransform<<< 1, input.size() >>>(a, b, …);
CUDA_CHECK(cudaGetLastError());
CUDA_CHECK(cudaDeviceSynchornize());

std::vector< float > output;
output.reserve(input.size());
for(std::size_t i = 0; i < input.size(); ++i) {
 output.push_back(b[i]);
}

CUDA_CHECK(cudaFree(a));
CUDA_CHECK(cudaFree(b));

https://en.cppreference.com/w/cpp/language/new
https://en.cppreference.com/w/cpp/language/delete
https://en.cppreference.com/w/cpp/memory/c/malloc
https://en.cppreference.com/w/cpp/memory/c/free

C++17 Dynamic Memory Management

● STL-friendly “adapter code” has been
developed for a long time for this,
using custom “container allocators”

● One important development came
from NVidia, with Thrust

○ This was generalised to be part of C++17
as the “memory resource infrastructure”

● Which is something that we have
been very actively using in the
VecMem project

27

https://docs.nvidia.com/cuda/thrust/index.html
https://en.cppreference.com/w/cpp/17
https://github.com/acts-project/vecmem
https://en.cppreference.com/w/cpp/memory

VecMem

● As part of a larger effort in the Acts
community, we are developing a
library that could help with using
containers of “simple” data in
heterogeneous code

○ It provides a set of classes for use in host
and device code, for simplifying common
container access patterns

● Dedicated presentations about this
project will be shown at:

○ https://indico.cern.ch/event/855454/contrib
utions/4605054/

○ https://indico.cern.ch/event/975017/
28

https://github.com/acts-project/
https://github.com/acts-project/
https://indico.cern.ch/event/855454/contributions/4605054/
https://indico.cern.ch/event/855454/contributions/4605054/
https://indico.cern.ch/event/975017/
https://github.com/acts-project/vecmem
https://github.com/acts-project/vecmem/blob/main/tests/sycl/test_sycl_jagged_containers.sycl

Atomic Memory Operations

● Many multi-threaded / GPU algorithms make use of atomic variables/operations
○ GPU hardware allows for atomic updates to any variable in “global memory”. Which is unfortunately

not possible to express with the current C++ std::atomic interface.
○ Projects like VecMem, and (very importantly!) Kokkos, had to work around this using their own

atomic types.

● One important new feature in C++20 is std::atomic_ref, pushed into the standard
by the Kokkos developers 🥳

○ It provides an interface that is finally appropriate for “device code” as well
○ Future versions of CUDA/HIP/SYCL shall be able to understand this type in “device code”, making

code sharing between different platforms even easier

29

https://en.cppreference.com/w/cpp/atomic/atomic
https://github.com/acts-project/vecmem/blob/main/core/include/vecmem/memory/atomic.hpp
https://github.com/kokkos/kokkos/blob/master/core/src/Kokkos_Atomic.hpp
https://en.cppreference.com/w/cpp/atomic/atomic_ref

Offloaded Code Execution

30

Formalism

● CUDA, HIP and SYCL each have their
own formalism for executing a “function”
on many parallel threads

○ They all need to allow a detailed specification
of how to launch the function on the hardware

● Since the concept is quite the same in
all cases, a number of projects were
written to create uniform interfaces on
top of them

○ But while this can be very useful in some
situations, having to launch a GPU kernel in
slightly different ways in the different
languages is rarely the difficult part in porting
some code...

31

dim3 numBlocks(…), blockSize(…);
size_t sharedMem = …;
cudaStream_t stream = …;
mySuperKernel<<< numBlocks, blockSize,
 sharedMem, stream >>>(…);

dim3 numBlocks(…), blockSize(…);
uint32_t sharedMem = …;
hipStream_t stream = …;
hipLaunchKernelGGL(mySuperKernel, numBlocks,
 blockSize, sharedMem, stream, …);

sycl::nd_range<3> range;
sycl::queue& q = …;
q.submit([&](sycl::handler& h) {
 sycl::accessor<…,
 sycl::access::target::local> a(…);
 h.parallel_for(range,
 [=](sycl::nd_item<3> id) {
 …;
 });
});

https://docs.nvidia.com/cuda/
https://docs.nvidia.com/cuda/
https://rocmdocs.amd.com/en/latest/
https://rocmdocs.amd.com/en/latest/
https://www.oneapi.com/
https://www.oneapi.com/

C++17 Parallel STL Algorithms

● Purely numerical calculations can be
expressed without writing any
accelerator code directly

○ If your calculation can be expressed purely
through STL algorithms, it is likely that it can
be executed on an accelerator as well

● It very much relies on compiler support
○ Even more, while the NVidia HPC SDK allows

you to run “more-or-less-standard” C++17
code on your GPU, Intel oneAPI requires you
to use some Intel specific includes…

● Still, it is one of the most platform
independent ways of writing accelerated
code at the moment

32

https://developer.nvidia.com/hpc-sdk
https://docs.oneapi.io/versions/latest/onedpl/pstl_main.html
https://developer.nvidia.com/blog/accelerating-standard-c-with-gpus-using-stdpar/
https://docs.oneapi.io/versions/latest/onedpl/pstl_main.html

C++23(?) Executors

● P0443R14 proposes a unified
interface for launching tasks on “some
backend”

○ With a formalism a little reminiscent of
SYCL

● The goal is of course to introduce a
formalism that could describe CPU
and accelerator multi-threading using
a single interface

○ Allowing hardware makers to process code
(with their own compilers, at least initially)
that could look practically the same for all
types of accelerators

33

executor auto ex = ...;
execute(ex, []{
 cout << "Hello, executors!\n"; });

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2020/p0443r14.html

Code Sharing

● Until the “device code launch”
formalism is standardized, we can still
organise our code in clever ways

○ As much code as possible should be
delegated into “standard” functions, which
kernels can call on to perform some
task/calculation

○ This mainly requires a unified handling of
memory in my opinion, which can already
be done in clever ways

● We are currently experimenting with
exactly how far we can take this, in
acts-project/traccc

34

DEVICE_FUNCTION
float calculateSomething(const vecmem::device_vector<const float>& vec,
 std::size_t index);

__global__
void cudaKernel(vecmem::vector_view<const float> vec_view, …) {
 const std::size_t i = blockIdx.x * blockDim.x + threadIdx.x;
 vecmem::device_vector<const float> vec(vec_view);
 float foo = calculateSomething(vec, i);
 …
}

__global__
void hipKernel(vecmem::vector_view<const float> vec_view, …) {
 const std::size_t i = hipBlockIdx_x * hipBlockDim_x + hipThreadIdx_x;
 vecmem::device_vector<const float> vec(vec_view);
 float foo = calculateSomething(vec, i);
 …
}

class SyclKernel {
public:
 SyclKernel(vecmem_vector_view<const float> vec_view)
 : m_vec_view(vec_view), … {}
 void operator()(sycl::id<1> id) {
 vecmem::device_vector<const float> vec(m_vec_view);
 float foo = calculateSomething(vec, id);
 …
 }
private:
 vecmem::vector_view<const float> m_vec_view;
};

https://github.com/acts-project/traccc

Developments in ATLAS

35

Heterogeneous Computing and Accelerators Forum

● To organise/oversee the developments in
this area, the Heterogeneous Computing
and Accelerators Forum (HCAF) was
formed in 2021

○ Built on top of the previous separate
groups overseeing the offline and TDAQ
efforts in this area

● It is in this group that we try to organise all
of these types of developments in
ATLAS…

● HEP on a wider scale is discussing about
large scale projects in the HEP Software
Foundation
○ https://hepsoftwarefoundation.org

36

https://hepsoftwarefoundation.org/
https://twiki.cern.ch/twiki/pub/AtlasComputing/AtlasComputing/Mandate_for_the_Accelerators_and_Heterogeneous_Computing_Forum.pdf
https://twiki.cern.ch/twiki/pub/AtlasComputing/AtlasComputing/Mandate_for_the_Accelerators_and_Heterogeneous_Computing_Forum.pdf

Current Studies/Developments

● R&D is happening in many areas of
the ATLAS offline software

○ (Charged) track reconstruction
○ Calorimetry
○ Core Software

● Probably the most “public”
development at the moment is
happening in acts-project/traccc

○ Where we intend to demonstrate a
“realistic setup” for performing charged
track reconstruction on accelerators

37

https://github.com/acts-project/traccc
https://github.com/acts-project/traccc

Summary

● After a calm period of homogeneous x86 computing, HEP will once again have to
use a wide variety of heterogeneous hardware for a while

○ I believe there is a periodicity to this. Current accelerator technologies will inevitably become more
homogeneous after a while.

● C++ will stay the “main” programming language of HEP for a long time to come
○ If things are done correctly, it shall event allow us to efficiently program all the emerging hardware

variants by itself

● C++2X (C++3X?) will not have all the capabilities that the LHC experiments require
by the start of HL-LHC

○ We need to make sure in the next few years that we choose a programming method that will be as
close to the eventual C++ standard as possible

● There is a lot of work to be done! If you’re interested, ATLAS is certainly welcoming
enthusiastic software developers! 😉

38

http://home.cern

39

http://home.cern

Previous Studies (1)

● 2012: ID Trigger prototype
(ATL-DAQ-PROC-2012-006)

○ Complete Level2 ID Trigger on GPU (ByteStream to tracks)
○ GPU (Tesla C2050) gave x12 speedup* c.f. 1 CPU core

● 2015: Trigger GPU Demonstrator
(ATL-COM-DAQ-2019-059)

○ Athena integration using client-server technology (APE)
○ Calo topo-clustering & cluster splitting: x3.6 speedup* on

Kepler K80 GPU
○ Pix & SCT clustering + ID seed-maker: x28 speed-up* on

Pascal GTX1080 GPU
○ Overall trigger server throughput x1.4 throughput with

GPU c.f. Cpu-only

● 2019: GPU ID pattern-matching prototype
(ATL-COM-DAQ-2019-173)

○ FTK-like pattern matching on GPU

*speedup = time on 1 CPU core / time on GPU
40

N threads

E
ve

nt
 R

at
e

(H
z)

https://cds.cern.ch/record/1450130
https://cds.cern.ch/record/2671881
https://www.nvidia.com/en-gb/data-center/tesla-k80/
https://www.nvidia.com/en-sg/geforce/products/10series/geforce-gtx-1080/
https://cds.cern.ch/record/2693094

Previous Studies (2)

● 2020: GPU trigger algorithm integration in
AthenaMT

○ AthenaMT integration using acceleration service
○ ID seed-maker algorithm implemented on GPU
○ Calorimeter reconstruction under development

● Acts
○ Seed finding implemented using both CUDA and SYCL

■ https://github.com/acts-project/acts/tree/master/Plugins/Cuda
■ https://github.com/acts-project/acts/tree/master/Plugins/Sycl

○ Kalman filter demonstrator

● FCS: Parametrized Calorimeter Simulation
○ First developed in CUDA, but then used as a software

portability testbed
○ ATL-COM-SOFT-2020-069
○ oneMKL cuRAND Support Development (GitHub Code)

● Studies with GNNs for tracking (presentation)

41

2020 Results

E
ve

nt
 R

at
e

(H
z)

N threads

https://github.com/acts-project/acts/tree/master/Plugins/Cuda
https://github.com/acts-project/acts/tree/master/Plugins/Sycl
https://cds.cern.ch/record/2743910
https://github.com/vrpascuzzi/oneMKL/tree/add-curand-support
https://indico.cern.ch/event/986284/contributions/4152726/attachments/2162810/3650837/ExaTrkX-LBNL-Tuesday-Meeting.pdf

