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P and NP

Integrability often provides exact, non-perturbative answers
for observables in QFT. However, in generic situations we still
use perturbative series to obtain asymptotic expansions:

E(g) ™~ Z ang"

n>0

On top of this perturbative piece, observables often involve
non-perturbative corrections. They are typically
exponentially small in the coupling constant:



We then expect something like
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observable series small corrections

This is in fact the answer suggested by the saddle-point
method applied to the path integral

E(g) ™ Z angn + Cg_be_A/g 1 + Z Cngn + -

n>0 n>1



This formal object combining perturbative series with
exponentially small terms is called a trans=-series.

Making sense of a trans-series is however very subtle, since all
the series in g appearing there are factorially divergent
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There are however resummation methods, developed in the so-
called theory of resurgence, which make it possible to
resum trans-series into actual numbers, under mild conditions.



A conjecture

We conjecture that, in a quantum theory, observables with an
asymptotic expansion can be computed exactly by an
appropriate resummation of a trans-series. The trans-series is
obtained by adding appropriate exponentially small terms (non-
perturbative effects) to the asymptotic expansion.

This was called the (weak) resurgence conjecture in
[Di Pietro-M.M.-Sberveglieri-Serone]. It gives a generalized
semiclassical picture of observables in quantum theories,
and it holds in e.g. one-dimensional quantum mechanics.

To test this conjecture, we need the ingredients.VWe know
how to obtain perturbative series, but what about
exponentially small corrections!?



The origin of non-perturbative
corrections

What is the physical origin of exponentially small corrections
in quantum theories!?

One obvious source are instantons, i.e. non-trivial classical
configurations leading to additional saddle-points in the path
integral.

Historically, instantons were regarded as the natural building
blocks of trans-series, and they actually do the job in
quantum mechanics and in some SUSY theories.



Renormalons

However, in the 1970s-1980s a new and mysterious source of
exponentially small corrections was found in many QFTs:
renormalons

Parisi and 't Hooft conjectured that in
asymptotically free (AF) theories at
infinite volume, renormalons lead to

exponentially small corrections of the

form




Renormalons vs. instantons

Exponential corrections due to renormalons are generically
more important than would-be instanton corrections, and they
survive in the large N limit (in contrast to instanton
corrections)
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In addition, renormalons do not have a known semi-classical
realization. They are corrections to the trivial saddle-point in
the path integral with no saddle-point description!



How do you detect a renormalon?

Since they do not have a semiclassical description, how do you
detect renormalons!?

The key idea comes from the theory of resurgence: the large
order behavior of the perturbative series predicts some of
the exponentially small corrections in the trans-series
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How do you obtain information on the perturbative series at
very large number of loops!?

You can try to produce a finite but large number of
coefficients and extract A, b numerically [Bauer-Bali-Pineda]

Or you can work at large N, where the perturbative series is
dominated by “bubble-like” diagrams

Both techniques have been used to produce some (limited)
information on renormalon corrections



Enter integrability

Many asymptotically free QFTs in 2d are integrable, i.e. their $-
matrix is exactly known (O(n) sigma model, Gross-Neveu,...).
Can we use these models to obtain information on renormalons?

One should “decode” the exact answers provided by
integrability in terms of a trans-series. This is not easy! Even
perturbative series are hard to extract from the Bethe ansatz.
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It is interesting to note that the
exact equation for e(y) is so pathological at y=0 that
it was an effort to find even the zeroth-order term for
e(7), while perturbation theory gives the first two terms
by elementary quadrature.



Choosing the observable

We will focus on the ground state energy of 2d integrable
models, once they are coupled to a “chemical potential” h
through a global conserved charge Q

1
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Thanks to asymptotic freedom, this observable can be
computed in perturbation theory when h > A and leads to
a perturbative series in the running coupling constant g=g(h)

at the scale set by h:

F(h) ~ Z ang"



Exact solution

This free energy can be also calculated by using the exact S-
matrix and the Bethe ansatz [Polyakov-Wiegmann]. The Fermi density
of Bethe roots satisfies an integral equation
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The kernel can be computed from the S-matrix, plus an ansatz on
the types of particles which appear by turning on h. Then, one has

(B
F(h) = i df cosh Oe(0)



How do you detect renormalons in F(h)?

Thanks to the work of D.Volin, it is now possible to extract very
long perturbative series for F(h) directly from the Bethe ansatz.
This leads to numerical results on renormalons [M.M.-Reis, Bajnok-

Balog-Hegedus et al.] Which confirm a first correction
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However, higher order exponential corrections are harder
to obtain in this way

One can also work at large N, either diagramatically [M.M.-

Miravitllas-Reis] OF in the Bethe ansatz [Fateev-Kazakov-Wiegmann, Zarembo,
Di Pietro-M.M.-Sberveglieri-Serone]



Analytic results at finite N

However, we can do better [M.M.-Miravitallas-Reis] : we analyze the
integral equations with the Wiener-Hopf method, as in old work
[Wiegmann, Hasenfratz, Niedermayer, Balog, Weisz...], but Incorporating
exponentially small corrections that were previously neglected
(generalizing work of [Al. B. Zamolodchikov] on sine-Gordon).

This leads to fully analytic results for the trans-series. For
the O(3) sigma model we find for example
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This result has been confirmed and extended by the Budapest
group [Bajnok-Balog-Hegedus-Vona]



This new approach gives all exponentially small corrections.
Perhaps the most striking consequence is the existence of
corrections which are not of the form predicted by Parisi and

't Hooft:
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The Parisi-'t Hooft conjecture is recovered in the large N limit,
but fails at finite N



We obtain as well instanton-like corrections. For
example, in the O(N) non-linear sigma model we find, on top
of the leading renormalon singularity, corrections of the form

exp( d(N_Q)) 1-19 ...
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One can verify that the corrections obtained with this method
control the large order behavior of the perturbative series, as
expected from resurgence. This is a strong check that the result
IS correct.

In addition, all available evidence indicates that exact results
from integrability can be recovered by resumming the
resulting trans-series, in agreement with the resurgence
conjecture.

These are very likely the only available analytic results on
exponentially small corrections at finite N in non-SUSY QFTs.



Conclusions

Conventional perturbation theory should be replaced by
“resurgent perturbation theory”, in which perturbative series
are replaced by trans-series. This framework seems to be
powerful enough to include realistic QFTs.

We do not really know how to compute exponential
corrections to perturbative series in QFT, in general. Instanton
calculus was developed to supply this, but it is difficult and
subtle, and some times it breaks down due to IR problems.

Renormalons are even more subtle since they are not
described by saddles of the path integral. There is no
“renormalon calculus” for F(h), for example.



Integrability makes a difference. We have now
explicit and analytic results for exponentially small
corrections in asymptotically free theories (and in some
integrable condensed matter models). They vindicate the
renormalon picture...

... but they also make it more complicated: the Parisi-'t Hooft
conjecture turns out to be a large N approximation. Is there a
more general conjecture describing all exponentially small
corrections!?

Most important open problem: the calculation from first
principles of trans-series associated to renormalons. These
are largely unexplored new sectors of physical theories!
The results from integrability give a signpost for any future
theory of renormalon calculus.
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