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Integrability often provides exact, non-perturbative answers 
for observables in QFT. However, in generic situations we still 

use perturbative series to obtain asymptotic expansions:

P and NP

On top of this perturbative piece, observables often involve 
non-perturbative corrections. They are typically 

exponentially small in the coupling constant:

e�A/g
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This is in fact the answer suggested by the saddle-point 
method applied to the path integral

physical
observable

perturbative
series

exponentially
small corrections

=
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We then expect something like



Making sense of a trans-series is however very subtle, since all 
the series in g appearing there are factorially divergent

This formal object combining perturbative series with 
exponentially small terms is called a trans-series.
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an ⇠ n!
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There are however resummation methods, developed in the so-
called theory of resurgence, which make it possible to 

resum trans-series into actual numbers, under mild conditions. 



A conjecture
We conjecture that, in a quantum theory, observables with an 

asymptotic expansion can be computed exactly by an 
appropriate resummation of a trans-series. The trans-series is 

obtained by adding appropriate exponentially small terms (non-
perturbative effects) to the asymptotic expansion.

This was called the (weak) resurgence conjecture in 
[Di Pietro-M.M.-Sberveglieri-Serone]. It gives a generalized 

semiclassical picture of observables in quantum theories, 
and it holds in e.g. one-dimensional quantum mechanics. 

To test this conjecture, we need the ingredients. We know 
how to obtain perturbative series, but what about 

exponentially small corrections?  



The origin of non-perturbative 
corrections 

One obvious source are instantons, i.e. non-trivial classical 
configurations leading to additional saddle-points in the path 

integral.

What is the physical origin of exponentially small corrections 
in quantum theories? 

Historically, instantons were regarded as the natural building 
blocks of trans-series, and they actually do the job in 

quantum mechanics and in some SUSY theories. 



However, in the 1970s-1980s a new and mysterious source of 
exponentially small corrections was found in many QFTs: 

renormalons

Renormalons

Parisi and ’t Hooft conjectured that in 
asymptotically free (AF) theories at 
infinite volume, renormalons lead to 

exponentially small corrections of the 
form
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d = 1, 2, . . .
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Exponential corrections due to renormalons are generically 
more important than would-be instanton corrections, and they 

survive in the large N limit (in contrast to instanton 
corrections)
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Renormalons vs. instantons

In addition, renormalons do not have a known semi-classical 
realization. They are corrections to the trivial saddle-point in 

the path integral with no saddle-point description!



How do you detect a renormalon?

Since they do not have a semiclassical description, how do you 
detect renormalons?

The key idea comes from the theory of resurgence: the large 
order behavior of the perturbative series predicts some of 

the exponentially small corrections in the trans-series
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How do you obtain information on the perturbative series at 
very large number of loops?

You can try to produce a finite but large number of 
coefficients and extract A, b numerically [Bauer-Bali-Pineda]

Or you can work at large N, where the perturbative series is 
dominated by “bubble-like” diagrams

Both techniques have been used to produce some (limited) 
information on renormalon corrections 



Enter integrability

Many asymptotically free QFTs in 2d are integrable, i.e. their S-
matrix is exactly known (O(n) sigma model, Gross-Neveu, …). 

Can we use these models to obtain information on renormalons?

One should “decode” the exact answers provided by 
integrability in terms of a trans-series. This is not easy! Even 

perturbative series are hard to extract from the Bethe ansatz.
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leads (for large y) to

1 7 7X=—(y+2), e=-',m', E=n. p,y+2 y+2
37+2

p= pe,
y+2

p e)
y+2

7 2
t= p'e.
p+2

(3.32)

These results are accurate to 1% for y as small as 10.
Seal/ y. As we show in Appendix B, as X—+0 the

factor 2~ on the right side of Eq. (3.18) becomes an
eigenvalue of the integral equation. Consequently,
g(x,X) has a singularity at X=O. In addition to this
di%culty, the kernel of the integral equation also be-
comes quite pathological. It will be recognized that as
) —+ 0 the kernel becomes a well-known representation
for 2~8(x—y) so that in this limit Eq. (3.18) reads:
27rg(x)=2~g(x)+1. It is clear, therefore, that in this
limit g becomes unbounded —a statement borne out by
the limits on g given in Appendix B.
There does not seem to be any simple way to get a

systematic, reliable expansion of g as X—+0. We can,
however, guess the zeroth order form for g:

g(x,X)- (1—x')'", () —& 0)
2mA

(3.33)

and one can then show, using bounding arguments
similar to those in Appendix B, that the correction to
(3.33) is of higher order in X for all x, and is positive
definite. Beyond this, we have been unable to obtain
an unambiguous correction to (3.33). One of the major
difhculties is deciding what happens at the end points,
lxl =1.
Equation (3.33) allows us to find only the leading

term for the quantities mentioned in (3.32). These turn
out to be (for small y)

e=~, Z=2pg~,
p= 2p p) 'v=p) t=0, (3.34)

The equation e=p is plotted in Fig. 3. We see that
the upper bound for e [Eq. (3.4)7 is, in fact, its asymp-
totic form—a result predicted by elementary perturba-
tion theory.
It will be noticed from Fig. 1, as well as from Kqs.

(3.32) and (3.34),that for small y the potential energy
dominates the kinetic. The reverse is true for large y;
in fact z —+ 0 as p ~ ~. This behavior is exactly the
same as for three dimensions —it is often said that a
large potential behaves like a kinetic energy barrier.
This fact is supposed by some to be tied up with the
ability of particles to "go around" each other in three
dimensions. But as we can clearly see, it is also present
in one dimension. Thus, the difference between one and
three dimensions does not lie here—it is apparently
immaterial to the particles whether they can "get
around" each other or merely "through" each other.

IV. PERTURBATION THEORY

The well-known perturbation theory of Bogoliubov~
was at first assumed to be an expansion in the density.
That this is incorrect was realized when it was found
that the correct parameter for a low-density expansion
is the scattering length (in three dimensions) and not
J'ij(x)d'x as appears in Bogoliubov's theory. But
Bogoliubov's theory is asymptotically correct if we
regard it as an expansion in the potential. In other words,
it may be expected to give the first two terms in the
energy correctly for any density if the potential is so
weak that it may be treated by the Born approximation.
In our case, therefore, the Bogoliubov theory should be
correct for small p. On the other hand, small p may be
thought of as high density —the reverse of the usual
(incorrect) assumption mentioned above.
This last observation leads to a second reason for

believing in the Bogoliubov result for small y. One can
show (we shall not do so here) that if the Fourier trans-
form of the potential is everywhere nonnegative, then
Bogoliubov's theory is correct—at least as far as the
ground-state energy is concerned —in the limit of high
density. The 8-function potential certainly satisfies
the above criterion.
As stated in the introduction, one of the uses of an

exact model is as a check for approximation schemes.
It is indeed fortunate that the present model has a
definite range of coupling constant over which the
Bogoliubov theory may be unambiguously expected to
be correct. Our model, therefore, should serve not only
to establish the validity of the Bogoliubov theory but
should also serve as an indicator (taking appropriate
account of the difference between one and three dimen-
sions) of the range over which the theory is reasonably
accurate.
The Bogoliubov prescription easily yields the follow-

ing results: The spectrum of elementary excitations is
given by

~(P) =p'lP/pl [(P/p)'+4&i" (4 1)

We have purposely written e(p) in terms of the dimen-
sionless variable p/p. The ground-state energy is given
by

'&'(2e/~)+k Z. [e(p)—-P'—&(2e/l') 7
=&p'~[1—(4/3~)v'v7 (4 2)

The expression for e(7), (4.2) is plotted in Fig. 3;
it is adequate up to approximately p=2. Equation
(3.34) shows the leading term is exact. While we have
not found an analytic expression for the second term,
(4/3ir)y'~', the numerical results of Fig. 3 indicate
that it too is correct. It is interesting to note that the
exact equation for e(y) is so pathological at 7=0 that
it was an effort to find even the zeroth-order term for
e(y), while perturbation theory gives the first two terms
by elementary quadrature.
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Exact Analysis of an Interacting Bose Gas. I. The General Solution and the
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ELLIOTT H. LIEB AND WERNER LINIGER
Thomas J. 8'atson Research Center, International BNsiness Machines Corporation, Yorktomn H'eights, Sew York

(Received 7 January 1963)

A gas of one-dimensional Bose particles interacting via a repulsive delta-function potential has been
solved exactly. All the eigenfunctions can be found explicitly and the energies are given by the solutions of
a transcendental equation. The problem has one nontrivial coupling constant, p. When p is small,
Bogoliubov s perturbation theory is seen to be valid. In this paper, we explicitly calculate the ground-state
energy as a function of p and show that it is analytic for all p, except p=0. In Part II, we discuss the
excitation spectrum and show that it is most convenient to regard it as a double spectrum —not one as is
ordinarily supposed.

I. INTRODUCTION cell model becomes applicable. In consequence of this
fact, the model cannot be used to check any known form
of perturbation theory.
Another drawback of Girardeau's model is that it is

essentially a zero-parameter model. It might have been
hoped that varying the density, p, or the hard-core
radius, u, would modify the spectrum in some essential
way, but this is not true. If E„(p) is any energy level
of a state having momentum p, then E„(p)is of the form
$p/(1—pa)7'f„([(1—pa)/p7p). In other words, the hard
cores simply play the role of an excluded volume.
We shall propose here a model that in many respects

is similar to Girardeau's, but which overcomes the two
difficulties mentioned above. We consider a gas of
bosons in one dimension interacting via a repulsive
5-function potential, whose Hamiltonian is given by
Eq. (2.1) below. As we show, this problem has one non-
trivial parameter, namely, p=p 'c, where 2c is the
strength of the 8 function. When p= ~ we obviously
obtain Girardeau's results since the particles then are
impenetrable. When y=0 we have the noninteracting
Bose gas.
A useful feature of this model is that for small y

Bogoliubov's perturbation theory' is valid. This is
discussed in Sec. IV. The model agrees with all the pre-
dictions of that theory except in one important respect:
For all values of p the most convenient and natural way
to view the spectrum of the gas is in terms of a double
elementary boson excitation spectrum —not a single one
as previous calculations have suggested. Bogoliubov's
single spectrum agrees quite well with one of the spectra
we obtain, but the other is totally unaccounted for in
his theory. The principal value of this model perhaps
lies in this startling fact. The whole question of the
excitation spectrum, as well as some heuristic reason
that this duplicity of the spectrum might have been
anticipated, and why it might also exist in three dimen-
sions, are discussed in the following paper. '
We may summarize the results of this paper as

follows:

'N comparatively recent times, as the history of
~ ~ quantum mechanics goes, a vast body of literature
has developed on the quantum-mechanical problem of
a gas or liquid of particles interacting via a two-body
potential. To attack this problem, perturbation theory
has been refined and developed in many elegant forms,
too numerous and well known to attempt to summarize
here. These results have been mainly of two kinds:
attempts, based on summing series to all orders, to
make exact statements about the true solution of the
problem; and attempts to develop approximation
schemes to yield quantitative results. It is fair to say,
however, that few of these results may claim to be
mathematically rigorous. They are accepted because
they agree with our intuitive understanding of the
problem.
Faced with such a situation it would seem desirable

to find a local, time- and velocity-independent, two-
body potential (the sort of potential that actually
exists in a gas) such that, starting from the Schrodinger
equation, and without introducing any approximations,
one could derive the energy levels and wave functions
of the system. It would also be desirable that such a
model problem be three dimensional.
While there do exist several model many-body

Hamiltonians in the literature, which are solvable, with
one exception, none of them corresponds to having
a simple potential of the character mentioned above.
The one exception is the work of Girardeau' on a gas of
impenetrable bosons in one dimension. He showed that
the energy spectrum of such a gas is identical with the
spectrum of a noninteracting Fermi gas. It is, indeed,
unfortunate that, due to the inability of the particles
to get past one another, Girardeau's model can only
be thought of as an extreme high-density situation—
even though the actual density of his gas may be low.
By this is meant that if we attempt to draw a parallel
between the one-dimensional hard-core model and the
three-dimensional hard-core model, then the former
resembles the latter only at very high densities when

' M. Girardeau, J.Math. Phys. I, 516 (1960).

2 See, for example, The Many Body Problem, edited by C. De
Witt (John Wiley 8r Sons, Inc. , New York, 1958), pp. 347—355.' E. Lich, following paper LPhys. Rev. 130, 1616 (1963) (referred
to here as II)7.
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Choosing the observable
We will focus on the ground state energy of 2d integrable 
models, once they are coupled to a “chemical potential” h 

through a global conserved charge Q
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Thanks to asymptotic freedom, this observable can be 
computed in perturbation theory when              and leads to 
a perturbative series in the running coupling constant g=g(h) 

at the scale set by h:
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Exact solution
This free energy can be also calculated by using the exact S-

matrix and the Bethe ansatz [Polyakov-Wiegmann]. The Fermi density 
of Bethe roots satisfies an integral equation 
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The kernel can be computed from the S-matrix, plus an ansatz on 
the types of particles which appear by turning on h. Then, one has



How do you detect renormalons in F(h)?

Thanks to the work of D. Volin, it is now possible to extract very 
long perturbative series for F(h) directly from the Bethe ansatz. 
This leads to numerical results on renormalons [M.M.-Reis, Bajnok-

Balog-Hegedus et al.] which confirm a first correction
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One can also work at large N, either diagramatically [M.M.-

Miravitllas-Reis] or in the Bethe ansatz [Fateev-Kazakov-Wiegmann, Zarembo, 
Di Pietro-M.M.-Sberveglieri-Serone] 

However, higher order exponential corrections are harder 
to obtain in this way



However, we can do better [M.M.-Miravitallas-Reis] : we analyze the 
integral equations with the Wiener-Hopf method, as in old work 

[Wiegmann, Hasenfratz, Niedermayer, Balog, Weisz…], but incorporating 
exponentially small corrections that were previously neglected 

(generalizing work of [Al. B. Zamolodchikov] on sine-Gordon).

Analytic results at finite N
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This leads to fully analytic results for the trans-series. For 
the O(3) sigma model we find for example

This result has been confirmed and extended by the Budapest 
group [Bajnok-Balog-Hegedus-Vona]



This new approach gives all exponentially small corrections. 
Perhaps the most striking consequence is the existence of 

corrections which are not of the form predicted by Parisi and 
’t Hooft:
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The Parisi-’t Hooft conjecture is recovered in the large N limit, 
but fails at finite N



We obtain as well instanton-like corrections. For 
example, in the O(N) non-linear sigma model we find, on top 
of the leading renormalon singularity, corrections of the form
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In addition, all available evidence indicates that exact results 
from integrability can be recovered by resumming the 

resulting trans-series, in agreement with the resurgence 
conjecture.

One can verify that the corrections obtained with this method 
control the large order behavior of the perturbative series, as 

expected from resurgence. This is a strong check that the result 
is correct. 

These are very likely the only available analytic results on 
exponentially small corrections at finite N in non-SUSY QFTs.



Conclusions

Conventional perturbation theory should be replaced by 
“resurgent perturbation theory”, in which perturbative series 

are replaced by trans-series. This framework seems to be 
powerful enough to include realistic QFTs. 

We do not really know how to compute exponential 
corrections to perturbative series in QFT, in general. Instanton 

calculus was developed to supply this, but it is difficult and 
subtle, and some times it breaks down due to IR problems.

Renormalons are even more subtle since they are not 
described by saddles of the path integral. There is no 

“renormalon calculus” for F(h), for example. 



Most important open problem: the calculation from first 
principles of trans-series associated to renormalons. These 
are largely unexplored new sectors of physical theories! 

The results from integrability give a signpost for any future 
theory of renormalon calculus. 

Integrability makes a difference. We have now 
explicit and analytic results for exponentially small 

corrections in asymptotically free theories (and in some 
integrable condensed matter models). They vindicate the 

renormalon picture…

… but they also make it more complicated: the Parisi-’t Hooft 
conjecture turns out to be a large N approximation. Is there a 

more general conjecture describing all exponentially small 
corrections?
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