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Truth vs Beauty

“My work always tried to unite the true with the
beautiful, but when | had to choose one or the other,
I usually chose the beautiful.” — Hermann Weyl

From a particle physics perspective, bringing integrability to 4D quantum
field theory, the AdS/CFT duality has certainly reduced the gap between
truth and beauty.

Phenomenology vs Integrability?

Florian Loebbert
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Where can integrability help particle physics?

Feynman integrals are still a bottle neck for phenomenological predictions

Lttt

> Lower loops/legs: Multiple polylogarithms (under good control)

o dt
Gal Lap\Z :/ 7Ga2 .‘.anta G =1,
@ = [0 G

> Generically: elliptic integrals and worse (Calabi-Yau geometries)
with roots of higher order polynomials, e.g.

dt
/ JA-2)1_ 28

> Currently very active field, see e.g. recent review 2203.07088 by

Bourjaily, Broedel, Chaubey, Duhr, Frellesvig, Hidding, Marzucca, McLeod
Spradlin, Tancredi, Vergu, Volk, Volovich, von Hippel, Weinzierl, Wilhelm, Zhang,
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This Talk: Integrability for Feynman Integrals

oebbert

Brief intro on Yangian symmetry
Origin of Yangian symmetry for massless integrals from AdS/CFT
Generalization to massive Feynman integrals

Application to fishnet integrals and connection to geometry



Integrability and the Yangian

The Yangian is an infinite dimensional extension of a Lie algebra g.

[ Yangian algebra Y'[g] (first realization): [Pisted

Level O : Jo = ZJ“ = Ei?
k=1

k

Level 1: Je = £, Z iy Thy = Mé::éﬁ

k1<kao=1 ki ks

Serre relations: [,AI(,, [j(,.,](.ﬂ — [Ja, [j;,.J(.,H = 0O(J?).

.

Examples:
> Heisenberg chain: g = su(2)
> AdS/CFT: g = psu(2,24)

Consequence in 2D: Factorized Scattering

(Yang—Baxter equation)
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From AdS/CFT to Feynman Graphs



Massless Fishnet Feynman Graphs

Feynman graphs made from scalar four-point vertices in 4D (2? = z/'z,,):

Vertex + I
o—of %

Propagator j

zf, = (zj—zk)?
e.g.
R .
1 [ | . T T i
ry
- 4
Mostly unsolved, cross under control [52urs ]: = n o= [ 4 53—
10720730740
&3

Remarkable properties:
conformal symmetry (e.g. momentum P* = —i} . 0f )
finite integrals (generic kinematics)
Related to AdS/CFT integrability . ..
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Feynman Graphs as Fishnet Correlators

Double-scaling limit:

N =4SYM ~-Deformation Fishnets
XYt )Xy g—0, y3—ico
Lyoy SY2elOXV gy 920 p
E=ge—73/2 fix
Resulting non-unitary bi-scalar fishnet theory: [((Sirdokan

Ly =N tr(—0,X0"X — 0,20"Z + X ZXZ)

Correlators given by single fishnet Feynman graphs.
Fishnet integrals inherit a conformal Yangian symmetry Y[so(1,5)]:

<
e
<

D, X

differential

operator )

~
Ja

X

— O Chicherin, Kazakov, FL
— Y. Miiller, Zhong 2017

What does this imply?
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Yangian Constraints on Feynman Integrals
Level 0:
D = —ix, 0" —iA,
L., =i2,0, — iz, 0y,
P, = —id,,
K, = m2au — 2ix,x" 0, — 2iAx,.

Je=3"J¢  with  Je
k=1

= I, =V, ¢ with ¢(z1, 22, ... ) function of conformal cross ratios.

Level 1: additional non-local generators Jo = F%e Zj<k J5 Jz e.g.

pPr = > (L +9"D;)Phy — (j ¢ k)]
Jj<k=1

~ nooxt
Yangian invariance: 0=P+I, =V, Z :CJ% PDE;.¢
j<k=1"Jk

Leads to system of Yangian PDEs in the cross ratios:

PDE;; ¢ =0, 1<j<k<n.
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Example: Yangian Bootstrap for Box Integral

Consider Euclidean cross (or box) integral in 4D:

d*zg / d*e

220x30zdorsy  J 0+ p1)2(04 p1+p2)? (£ — pa)?

Y interpreted as positions or dual momenta via p/ = 2 —

(Dual) conformal symmetry implies

1
I4 = 7¢(z 5)
2 .2 )
Ti3X24
with s o s o
T7oX" XI5
2z = ;2 ‘;4, 1-2)(1-2)= %4 33.
Ti3T24 Ti3%34
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Example: Yangian Bootstrap for Box Integral

Yangian symmetry implies differential equations:

DO - D@D -0, j-12

1

with Di(2) = 2(z = 1)202 + (32 — 1)(2 — 1)0, + 2,
Do(z) = 2%(2 — 1)02 + (32 — 2)20, + z.

Find four solutions f;(z,2)/(z — Z) by elementary methods:
fl = 17
f2 =log(z) — log(2),
fa = log(1 — 2) — log(1 - 2),
fa = 2Liz(2) — 2Liz(2) + log 1=% log(z2).
Permutation symmetry singles out Bloch-Wigner dilogarithm. [, ..,
Euclidean box integral fixed by symmetries [,/ M

Further solutions required in Minkowski space [corgran FL. Miczaika]

Florian Loebbert
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Yangian Symmetry for the Masses



Massive Generalization?
In the massless case, N’ = 4 SYM theory was the starting point:

N =4 SYM — fishnet theory — Feynman graphs

» Introduce masses via VEV: & = (®) + &

> Leads to massive propagators

122, —  1/2% =1/(z3 + (mj — my)?)

> Well known massive dual conformal symmetry: [} e 200

T LY = iah 9y —iat ol

D; = —i(wju 0 +m;0m, +4;),

K!' = =2iah (2,07 +m;00, + A;) +i(aF +m7)ok .
» Mass interpreted as (D + 1)th dimension: 27! =m,.

... but no massive Yangian symmetry (integrability) known.

Florian Loebbert 11/27



Feynman Integrals with Massive Propagators
Consider massive Feynman integrals directly, e.g.

o i\ fas / dPzdPu;
e el =-Q = N N D 5
J J j ar ia 95(2)(111 $352$(2)80$2a3 x2a4

03 04

Level Zero: Known massive dual conformal generators J¢ :C}

Leve One: Build Yangian generators:

n
Ta __ 1 pa c b _
J= 3 % Y T, =

k1 <ko=1 00

Florian Loebbert
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Massive Yangian at 1 and 2 Loops

1 loop 2 loops

Lplt2

o l4+r—1

Symmetries hold if dual conformal condition satisfied: [yf" e, , ]
E ap = D.
k Evertex

Conjecture at higher loops:
Graphs cut from regular tilings of the plane with massive propagators on
the boundary have Yangian symmetry.

Florian Loebbert 13 /27



Massive Fishnet Theory

> Massive fishnet theory from Coulomb-branch N' =4 SYM: [t Miczaika]

Lmp =Nctr(—0,X0"X — 0,20"Z + X ZXZ)
— Nc(ma — mb)2XabX3 — Nc(ma — mb)2Z“ng.

> Differs from spontaneously broken fishnet theory of [ 53]
» Planar amplitudes in 1-to-1 correspondence with Yangian-invariant
integrals, e.g.:

o——o

First finding of quantum integrability in massive QFT in 4D

Florian Loebbert
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Example: Massive Yangian Bootstrap

Consider one-loop integrals with massive propagators for D = Zj a;

Note: Recently pointed out that I,, equal Witten contact diagrams
in AdS which thus have the same Yangian symmetry [,7=5 |:

Yangian Symmetry in Holographic Correlators

Konstantinos C. Rigatos
Department of Physics and Center for Theory of Quantum Matter,
390 UCB University of Colorado Boulder, CO 30309, USA

Xinan Zhou (& # )

Kauli Institute for Theoretical Seiences, University of Chinese Academy of Sciences, Beijing 100190, China,

We point out that an infinite class of Witten diagrams is invariant under a Yangian symmetry.
These diagrams are building blocks of holographic correlators and are related by a web of differential
recursion relations. We show that Yangian is ! to the it of

the recursion relations.

\ J

. xz-—i- mM;—m; 2
Level 0: Dependence on conformal variables u;; = %
T J

Level 1: Yangian PDEs for conformal function ¢(u;;)

Florian Loebbert 15 /27



Example: Massive Yangian Bootstrap

Evaluate Yangian constraints:
n = 2: fixed by symmetries

— Gaub’ hypergeometric function

D/2

T/ ' p 2

IQ — a ‘:az — 2F1|: al,a2 'U;:|
ai ., a2 D+1)/27 .
I'pm{tms (D+1)/
n = 3: fixed by symmetries
em Srivastava's hypergeometric function
D/2

s / FD/?

n =generic: natural conjecture [y

T'pm{*mg?m33

~Ho(u,v,w).

FL, Miczajka
ler,Miinkler 2020,

I, = D/2FD/2 - Hj:l(aj)EwEBnu H
n D+1
FDHJ 1m ki ;=0 (T+) wcB ko a€B,, k

‘Ananthanarayan, Banik

confirmed in Friot, Ghosh 2020

Florian Loebbert
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Feynman Integrals and Geometry

Above one-loop integrals relate to volumes of simplices with angles
[ Davydychev ] [ Mason ] [Schnetz] [ Bourjaily, Gardi
Delbourgo 1997 Skinner 2010 2010 McLeod, Vergu 2019,
m? + m% + x?k
Pk T e
m;my
E.g. in the massless limit, box integral in 4D computes volume of ideal
hyperbolic tetrahedron:

3 3 4
?
2 4 — 2 5
1 1 6

Florian Loebbert 17



Geometry of Fishnet Integrals



Conformal Fishnets in 1D and 2D

Fishnet integrals in lower dimensions with conformal choice of powers in

—2a; , Duhr, Klemm, FL
propagators |z|”“%: Nego, Perkerarn progress|

I
I

].DZCLJ':

“—{—%ﬁ 2D:aj:

Integrals are correlators in D-dimensional fishnet theory: [o/225%:s

N =

4
’ Zaj =D
) j=1
L=N,tr [X(—a“au)%)‘( + Z2(~0,00% 7 +¢ XZXZ]

Simplest example: Box integral in 1D (here 21 < 2 < 3 < x4):

N

4
IiD = o — [K(z) _|_K(1 — Z)}, e X12%34

VT13T24 Tt

with elliptic K integral: K(z) = fW/Q dé

Florian Loebbert
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1D Box from Yangian Bootstrap

Consider Yangian over 1D conformal algebra Y[s((2,R)] on one-loop box:

1

li= i = ——=—g(2)

VL13L24

Yangian differential equation (= Legendre equation):

0=¢(2) +4(22 = 1)¢/(2) + 4(2 = 129" (2), == pazu

T13T24
Two solutions:

1 power series ‘ 1 single-log solution

K(Z):chjzj K(l_z)ZIOg(Z)chjzj+u.
For Il = (K(z), K (1 — z)) integral must be given by
¢(z) =1L

Fix linear combination using e.g. numerics to find ¥ = (4,4).

Loebbert 19/27



1D Double Box from Yangian Bootstrap

Two loops:

1
I6 = 2 5 — ¢(21’22,z3)

V1422635

Set of PDEs generated by Yangian symmetry ﬁ[g =0, eg

0 =200+ 2 (22 — 1) (2122 (25 — 1) + 1) 22¢(*20)
— (23 — 1) (523 + 2122 (325 — Bzg +2) — 2) 22000V
— 2 (2120 (23 — 1) 4+ 1) (23 — 1) 223290002
+ (3,21 (23— 1) 25 + (5 — 21 (23 — 1)) 29 — 3) 20010
+ (22 (23 — 1) 27 + 321 — 2) (100
+2(z1 — 1) 21 (2122 (23 — 1) + 1) (200

Note: In 1D, P yields less PDEs than in higher dimensions, cf. [\fh i

Florian Loebbert 20/27
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1D Double Box from Yangian Bootstrap

Two loops:

1
16 = 2 5= ¢(21,22,Z3)

V1422635

New trick: Get additional PDEs from permutations o
ﬁ[@ = 07 (U o ﬁ)]{; =0
Frobenius Method: Ansatz yields 5-dimensional solution vector I

1 power series ‘ 3 single-log ‘ 1 double-log solution

% cjklz{zézé log(zq) Xk:l cjk,lz{zgzé log(z,) log(zs) Zk:l cjklzfzéczé
J J J

Fix linear combination e.g. by using numerics:

¢(Zl,2’2723) =7- f[

Loebbert



General Fishnets in 1D

. . 3 Duhr, Klemm, FL
Train track integrals — 3 Nega Porkere n progress]

are Calabi—Yau /-folds with known solution pattern:

Loops ‘ 1 ‘ 2 ‘ 3 ‘

Geometry | Elliptic Curve | K3 surface | CY 3-fold
Solutions 11 1311 1/5/5/1

Cf. train tracks in 4D: Calabi—Yau (£ — 1)-folds [yensitat iitiacne]

Generic fishnets in 1D /2D have Calabi-Yau structure!

Relation to Integrability:

Yangian+permutations generates Picard—Fuchs ideal of differential
operators with Calabi—Yau periods as solutions!

Florian Loebbert



From 1 to 2 Dimensions

Split 2D Yangian into holomorphic and anti-holomorphic part:
Ysi(2, )] @ Y]sI(2, )]

Double Copy Structure: Use same Yangian invariants Il as in 1D:
¢(z) =T"(2) - - TM(2)

Indeed: Box integral in 2D given by linear combination of two factorized

Yangian invariants [*ies 5] [esine):

$(z,2) =4[K(2)K(1 — 2) + K(1 — 2)K(Z)]
0 4 K(z
= (K(Z) K(1- Z)) ) (4 0> : <K(1(—>5)>

What is the role of the matrix X7

Florian Loebbert



Kahler Potential and Calabi—Yau Volume

Fishnet integral should be single-valued since it represents a correlator in
the fishnet theory.

Natural single-valued function for Calabi—Yau is the Kahler potential V.

Duhr, Klemm, FL
Indeed we observe [y moms i prosress)

$(z) =TT -2 -Ti =¢" = Volume(CY,)

with X the Calabi—-Yau intersection matrix.

This structure persists for higher loop integrals!

Relation to Geometry:
Fishnet integrals compute volumes of Calabi-Yau ¢-folds!

Florian Loebbert
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Connection with 2D Basso—Dixon Formula

Basso—Dixon found determinant representation for 4D integrals in
four-point coincidence limit of a x S fishnet [5,2%,/]

Ea

4
2ot ) —4] ot

pER
o

[ [ W D

i

T3

2D generalization of [Peghor ke2k] has double copy form :
explicit check up to 5-loop
ladder integrals

J=1(59 \k—170+8-1 2} ~ TIT.3.1
Gap =, dot[(20.)"1 (209105 o g Fos(e,2)|] | ~ T

Yangian induces dimension-shift relations on BD integrals NN

Dy d)aﬁ ~ ¢D+2(aj —a; +1).
Extension of BD-Formula to graphs with shifted dimensions/powers? Cf.

0

b
agFl(a7b,c|z) = %gFl(a—i— 1,b+1,¢c+1lz)
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Conclusions

Integrability
is present in 4D QFT beyond planar A/ = 4 SYM theory
extends beyond the massless phase

relates to theory of Calabi—Yau manifolds

Geometry
Feynman integrals compute volumes beyond one loop and beyond
polytopes
Geometry used to compute Feynman integrals via n-x.-i

Yangian generates Picard—Fuchs ideal of differential operators

General Lesson

1D/2D fishnets provide instructive models for involved function
classes in the theory of Feynman integrals

oebbert
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Outlook

Integrability for Feynman Integrals
Generalize findings on 2D fishnets to massive situation
Apply insights to Yangian approach for 4D fishnets, cf. [,fL i
Use higher symmetries in dimensional regularization, cf. [s, a0
Extend to other fishnet structures (triangular/hexagonal)
Massive Integrability
Chaos vs integrability for massive fishnet theory [“5&h, 0|
Massive analogue of dual fish chain? [sSsmsr]
Mathematics
Yangian PDEs vs Picard—Fuchs ideal for Calabi—Yau periods
Find more integrals that compute volumes of geometric objects
Further Extensions

Correlators in AdS? See recent relation to Witten diagrams [,

Florian Loebbert



Extra Slides



Proof with Lasso Method
Chicherin, Kazakov, FL]

Package Yangian generators in monodromy: Miller. Zhong 2017

T(u)~1+134+ LT+,

u

Yangian algebra encoded in “RTT-relations”

7
u—v)11(u)12(v) = L2 (v)11(u u=v Nl - X
Ria( )T1(u)Ta(v) = To(v) T (u) Ria( ) () ‘

with Yang's R-matrix Ris(u — v) = 115 +uPys.

Yangian invariance maps to eigenvalue equation for the invariant I,,:

T(u)l, = f(W),-1,  T(u) =~ flu)(1+13+ LT +....

Florian Loebbert



Evaluation Parameters

Parameters s; enter definition of level-one generators:

_2fabC Z JJZ+ZSJ i

Jj<k=1

T FL, Miczajk
PI’eSCI’IPtIOH- Miiller, Mi’.cnzkawjerBQ()zo]

choose (arbitrary) leg 1 and set s; =0,
get s;41 from s; by adding e.g.

_4 _ Gi+1 _ﬂ_aﬁ-l by D
2 2 2
— }—Pi

ag aj+1 a3l *i+1
by

Florian Loebbert 27 /27
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Momentum Space Symmetry

Note: Generator P is symmetry even if level-zero symmetry is broken.

Translate level-one momentum generators in z-space into dual

momentum space (p} =z — /)

Pr 5 KM

Massive generalization of momentum space symmetry: [ iicie 20

Y [V _ gy _ o vou

Pj =P Lj - japj Japj’

— mjam.+mj+18m,. —

Dj =ppby, + ——— =+ 4y,

Th a2 gy oy MiOmiAmiaOmyyy A Tau
KY =plo, —2|pj0,, + 5 +A4;|0, .

...in addition to known massive dual conformal symmetry [} et 20

Florian Loebbert
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Double-Scaling Limit of Coulomb-Branch N = 4 SYM

Leow Ll — double-scaling limit — massive Feynman graphs

Critical step: ~y-deformation

Phase operator only well-defined on R-symmetry singlets:
P = exp(47aeapc q” A q°)
Ad hoc solution: average first over ways to break up trace:
Q :tr(P1Ds... D) — %(‘1’1‘132---‘1%4-@2‘1’3---@1 —1—)
and define deformation as

’Cgoul = Qillp’yQ‘CCoub

Then proceed with double-scaling limit as in massless case . ..

Florian Loebbert



Yangian Bootstrap



Example: Euclidean Box in D Dimensions

Deformed cross integral (simplest "fishnet”): Mankiohet g
3
/ g J
= 2 4 a+b+c+d=D
2b..2¢ ,.2d | 4
riGra0a36710 |

; e S BN S 2,2 /2 9
Yangian constraints in u = x{,2%5, /27325, and v = x7,155/T1525,:

0:[aﬂ+(a+5+1)u8u+((a+5+1)v—'y')61,+u283+(v—1)v85+2vu8u8v]¢(u,v),
O:[aﬁ+(o¢+8+1)v8v+((a+6+1)u7'y)8u+v265+(u71)u8i+2vuavau]¢(u,v) .

with parameters
a=b, ,Bzgfd, 7:+§7c7d+1, ':7§+b+c+1.

Defining PDEs for Appell hypergeometric function Fj:

a,ﬁ.u vl = — (a)m+n(ﬁ)m+ﬂ um o™
Bl = 2 i mmmn,

Pochhammer symbol: (A), =T'(A + k)/T(N).

Florian Loebbert

N
I
N)
N



Permutation Symmetries

Algorithm yields four-dimensional solution space:

g1= Fy [ @By, v},

¥y
go =u'"TFy [”H;j;,‘éjl{ S, 1]
g3 = v’ 7 Fy {“vlj‘f';jfld"/: wu, 1}
gy =u'"" vy {(%277’2::"(/",_;&%7”’ - u, l} . 3
Fix linear coefficients from permutation symmetries 200 Cd 4
a

(b(uv U) =g (u7 ’U) +c292 (U7 U) +c3 93(u7 ’U) +ca 94(“/, ’U)

Limit a,b,c,d — 1 reproduces Bloch—Wigner Function.
Three-point limit agrees with result of [o5%,3%].

= D-dimensional box integral fixed by symmetries! [, LMl

Florian Loebbert
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Example: Minkowski Box

I = 1 d'zq
T2 Jps (02, + i) (02, + i€) (a2, + i€) (a2, + i€)
Remember: Yangian PDEs have four solutions: b aper ]

fi=1,

fa =log(z) —log(z),

fs =1og(1 — 2) —log(1 — z),

fa = 2Liz(2) — 2Liz(2) + log =2 log(z2).

Kinematic regions characterized by sign block:

2 .2
T12, T34
. 2" 2
sign | 235,274
2" 2
L13, L2y

Only f4 needed in Euclidean region: ¢(=-) = fi(z, 2).

How about rest of the 64 regions? And the remaining Yangian invariants?

Florian Loebbert



Florian L

Compact Formula for Minkowski Box

Discrete symmetries reduce 256 = 4 x 64 constants to 12 unkowns.

Remaining parameters fixed by analytic continuation to find [ s iome,

d(R) =+ q
+ 2migy (+0=% + 0+F — 077 + 055 — 0= + 0+7)
+2migs (0= — 05 + 01 — 075 — 0T +6°%)
+2migy (—0TF — 0= — 03 + 077 — 05% — ¢71).

Here we use a slightly different basis of Yangian invariants:

{fi, fas f3, fay - — {91,92,93,94}

Theta-functions are only non-vanishing in specific regions R, e.g.

() =1, 671() = 0.

++\++ ++

oebbert



Example: Double Box

Yangian PDEs

D1 ¢(ug,...,ug) =0, I€{A B,C,D,E,F}, I

with differential operators

D a=—03+ug(D16s+1)Dses+usus(Dies+1)(Dassa+1)—usus Dsss D1o2s
tugusue D1a2(Dies+1)+ususug Daes D3g2 —ususurus D1g2s (Dasza+1),
Dp=0s(D16s+1)—usD1928 D5ger —urus Da75 D1928+usug D3g2 Dsser,
Dc=(01—09)D1g2gs—u1D142(D16s+1)+ugD3o2(D7os+1),
Dp=—02D392+u2D1928(D253a+1)—uruz(Dieg+1)(D2s3a+1)+uzus Da7s D1gas,
Dp=(03—1)03—u3 D365 D3g2+uzuz D3es D192s —u3us D392 Dsser
—uiuzuz(Di16s+1) D365 —ususur D3g2(Dros+1)+usuzusus D192s Dsser,
Dr=(03—04)(D2534+1)+u3 D365 D392 —ua D142 Dars.

Here Euler operators 0; = u;0,, are packaged into

D;jr=0;+6;—0y, Dijri=0;+6;—0,—6,.

Big step from box (2 cross ratios) to double box (9 cross ratios)!

Florian Loebbert
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Double Box and Hexagon

Solution of Yangian constraints yields basis of 4834 series (double box) or
2530 series (hexagon) compared to 12 for the box integral:

n n
Hy = E (IR T A T
n;€x;+2L

Mellin—Barnes approach yields linear combinations [, Soni
Hexagon (26 Series): PN — g,

H

Q6
b6 = my75 o (H1+ Ha+ Ho + His + Hop + Hss + Hsg + Hoa + Hioz + Hizs
£(b/2- A’

+ Higs + Higy + H210 + Haro + Hss1 + Haog + Hesr + Hess
+ Hgsg + Hoos + Hogo + Hizrs + Hieea + Hisrs + Hoos2 + Haa42)

Double Box (44 Series):

DJj2-t
U,
¢33 = %(Dl + Dy + D1o + D1g + D27 + Das + D76 + D140 + D1ss + D1go

+ Daos + Dais + D3ao + Daao + Dsaz + Dera + Dioss + D1oo1 + Diass + Diss1 + Dieas
+ Dass2 + Dsoar + D3oes + Darse + Dasso + D5 + D1g + Dag + Dag

+ D142 + D210 + Dsag + Dogg + Doz + Dosg + Dioga + D1112 + Di3so + Diaag

+ D147 + Daaze + Dsosy + D3sos)

What's the best choice of cross ratios? Increase loops but not legs?

Florian Loebbert
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Example: Three-Point Integrals in Dim-Reg

Consider family of Euclidean three-point integrals with half integer
propagator powers a; in D = 3 — 2¢:

ID L dDir()
slwanal = | o G

with a1 + as + ag < %.
Motivation:

Post-Newtonian (v < ¢) expansion of 3-body potential in GR [ W

Shi, Wang
3PN G*mim;my, 2, 2
SN = Y T 6V VR 8V ) (Vi 02 ) (Vi O,
i
k#i,j

+ (8B —AvE) (30000 (viy 02|l 1. 3. ]
+ (Vi 0;,)? |:(vki'azz‘)(vkj'8z_j)+2(vik'azk)(vij'81]‘)

+4(Vji'3xi)(vij'<9:c,-)+8(ij'3wk)(vkj'3xj)} I3[3, %*é]}

Florian Loebbert



Three-Body Potential in General Relativity

Higher symmetry implies second order PDEs in 7,5, = |zi|:
DIIS = 0; D2I3 =0.

Solved by FLéEi|§%Z"2£20
A
P IS as, ag, a3] = 2 T B+ Clog(%) + O(e),

with A, B, C given polynomials.

> New v2"G? contributions to Post-Newtonian expansion of 3-body

effective potential.

Florian Loebbert
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