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R-matrix

Let's start with the most basic R-matrix
u+c 0 0 0
0 u c 0
R(u)I= 0 c u 0
0 0 0 u+tc
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Monodromy matrix of Y (gl,)

Monodromy matrix

Monodromy matrix is 2 x 2 matrix with nocommutative elements

o (43 59)

that satisfy RTT relation

Ris(u — )T (u)Ta(v) = To(v)T1(u) Ria(u — v),

where T1(u) = T(u) ® 1 and Th(v) = 1 ® T'(v).
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Bethe vector

Vacuum

Let's suppose existence of special vector called pseudovacuum
vector (2, such that

D(u)Q = A2(u),
where \;(u) are some scalar functions.

Standart construction

Then, usual construction for Bethe vector is

B(u) = B(uy) - ... B(up)Q




Y (gly) as basic example
[e1e]eY Yolelelelelolo)

Bethe vector becomes an eigenvector
t(z)B(a) = 7(z|u)B(a)
with eigenvalue

r(al) = M (2) [ HEl 4 ag(e) [ 2t

U; — 2 Z — Uy
i=1 v i=1 v

Bethe equations

if Bethe equations are satisfied
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Gauss decomposition of Y (gls)

Monodromy matrix

Let's consider change coordinates on monodromy matrix

o (A BY_(k  Fk
~\C D) kE ko +FkiE)°

We call operators k;, E, F' by semicurrent.

This reparametrisation can be write in compact form

where t is transposition by the second diagonal, and

(1 F (k0 (10
F=(01) ®=(5 n) ®==( 1)
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Current representation

New commutation relations

We can rewrite RTT-relation for new coordinates
[ki(u), Ky (0)] = 0, ij=12,
Fluki(v) = 5k (0) F(u) - — I (0) F(0),
F(u)ka(v) = ———ks(0) F(u) + ——ka(0) F(v),
R()B@) = =Bk (v) - —— B(o)k (v),
ka(0) E(u) = ———B(u)ka(v) + ——E(0)ka(0),
50,701~ 255 (1)~ o)




And two more relations

(u—v—c)E(u)Ew) =
(u—v+c)E(u)EMW) —c (E(u)2 + E(v)Q) ,

(u—v—c)F(v)F(u) =
(u—v+c)F(v)F(u) —c (F(u)2 + F(v)Q) .
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Semicurrent representation of Bethe vectors

In terms of semicurrents Bethe vector can be rewrite as

B(a) = H M(u) [ f(uil o)

i<j
F(up) - F(ug;uy) - ... Fup;ut, ... un—1)%,

where

LT ) g,

F(uk;ul, 500 ,uk,l) = F(un) —
e f(ujv ’LLk)

We used functions
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Double Yangian

Two copies of RTT

Let us consider two monodromy matrices 7+ (u) that satisfy 4
(four!) sets RTT relations

Rua(u, v)T1 (W) T3 (v) = T3 ()T (u) Riz(w,v),  pv ==+

Full currents

| \

For two monodromy matrices T (u) there are two sets of Gauss
coordinates k;t, E* F*. Then we define full currents

F(u) = F*(u) — F~ (u), E(u) = ET(u) — B~ (u).




Y (gly) as basic example
00000000080

Current construction of Bethe vector

Let's define projection P]T. The projection is a linear operator. On
the normal ordered term the projection acts as
P (F~.F-Ft...F") =0,

P (FY...F*)=F*. . F*

Normal ordering

We call term ordered if term has form FF~..F~ - F* . . F*™. One
can make normal ordering using FF-commutation relation

(u—v—c)FT(v)F (u) =
(u—v+c)F (V)Ft(u) —c (F_(u)2 +F+(’U)2)

v
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Projection formula

B@) = [[ ) ] e x P (Flw) . Flu) )02

e S (ui, uj)

And dropping the prefactor we can write

B(a) ~ P; (F(ul) o f(un)>(2.
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RTT and RRR

Monodromy matrix

The monodromy matrix T'(u) is N x N matrix which satisfies
bilinear relations called RTT-relation

R12 (u, ’U)Tl (U)TQ (’U) = T2 (U)Tl (u)ng(u, U),

where Rpo acts in (graded) tensor product of two spaces,
Ti(u) =T(u)®1 and Ta(v) = 1@ T'(v).

| \

Yang-Baxter equation
Consistency condition of this algebra is Yang-Baxter equation

ng(u, v)ng(u, w)R23 (’U, w) = R23 (U, w)R13 (’LL, w)ng(u, U).

v
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Transfer matrix

The transfer matrix is defined as the (super)trace of the
monodromy matrix

t(u) = tr T(u) = > _(—1)P Ty5(u).

@

It defines an integrable system, due to the relation [t(u) , t(v)] = 0.

Hamiltonian

Usually, Hamiltonian is one of the coefficient of series expansion of
the transfer matrix ¢(u) or some combination of them.
For example, local Hamiltonian for spin chains
d
H = t(u)™ —t(u)

du u=0

Other coefficients are called symmetries or higher Hamiltonians.
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Algebraic Bethe ansatz framework

Vacuum

Using this approach requires the existence of special vector called
pseudovacuum vector €2, such that

CE‘J(U)Q = 0, ©> j:
TM(U)Q = )\Z(U)Q,

where \;(u) are some scalar functions.

Bethe vectors belong to the space H in which the monodromy
matrix entries act. We do not specify this space. However, we
assume that it contains the pseudovacuum vector ().
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Bethe vectors

Bethe vector

Typically, the Bethe vector can be represented as a polynomial in
the elements of the monodromy matrix with different spectral
parameters acting on the vacuum.

B(ui, ..., un) = Pol(Tij(u1), ..., Tij(un))S2

Eigenvector

The most important property of the Bethe vector is that it
becomes an eigenvector

when the spectral parameters satisfy certain constraints, called the
Bethe equations.
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R-matrix

gl,, R-matrix

Let's consider the most typical R-matrix

Cc

R(u,v) =1+ P,

uU—v
where P is the permutation operator

n
pP= Z eij ® €.

ij=1

RTT-relation

For this R-matrix one can RTT relation in components

Cc

[Tij(u), Tra(v)] =

(T (w)Tu(v) — Tij(v)Tu(u)) -

u—v
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Gauss decomposition

gl,, — Yangian

For n x n monodromy matrix the Gauss decomposition is

where t is transposition by the second diagonal, F is
uppertriangular matrix, K is diagonal matrix, and E is
lowerdiagonal matrix.

Ding-Frenkel isomorphism

| \

Gauss decomposition describes isomorphism between RT T-algebra
and new realisation of Yangian discovered by Drinfeld.

N,
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Ding-Frenkel isomorphism

New commutation relations

We can rewrite RT T-relation for new coordinates
[ki(u), k;j(v)] =0, i,j=1,...n,
Fi(whki(v) = ki) Fiw) - — k(o) Fi(v)
Fi(u)hia (v) = ki1 (0)Fiw) + —— ki (0) Fi(v),
k() Bi(w) = “— By (wki(v) = —Ei(0)hi(v)
ki1 (0) By(w) = ———Bi (ki1 (v) + —— Bi(v)kor (0)
i), Ey)] = 24 ( h gff)‘) - k,jg()))

Here we use notation F; = F;1; and E; = E; ;1. J




And few more relations

(u—v—c)E;(u)E;(v) =
(v — v+ ) Ei(w)E;(v) — ¢ (Ei(u)? + Ei(v)?),

(u—v+c)E;(v)Eiz1(u) = (u —v)Eip1(u) E;(v)+
¢ (Biy1(w)Ei(u) + Eiiv2(u) — Eiiv2(v)),

(u—v—c)F;(v)Fi(u) =
(u—v+c)F;(v)Fi(u) —c (Fl(u)2 + Fi(v)2) ,

(u— v+ )Fp1 (W) Fi(v) = (u— v)F(v) Fiy1 (u)+
¢ (Fi(u)Fip1(u) + Fitoi(u) — Fita,:(v)) -
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Projection formula

. R + _ =
Here we also use notation for full current F; = F}'; | — Fi . J




R-matrix

$5092541, 502y, 5Py, R-matrices

Let's consider the most typical R-matrix

Other Series
®00

C

c
R(u,v) =1+ "

P —
v

where P is the permutation operator

U— U+ ck

n

)

n
¢
P=) e;®ei, Q=P'=> ecjepm ey,

ij=1

where i/ = N +1 —i.

ij=1
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Center

Quantum orthogonality condition

Considering the residue at the point of the equation, we can prove
the existence of the center

2(u) = T(u + ck)'T(u)

V.

Constrains

This center implies constraints
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Projection formula
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R-matrix

Beisert representation of Shastry R-matrix for Hubbard model

R(u,v) = I(u,v) + P(u,v) + Q(u,v).




Hubbard
0®00000000000000000

Notation

We use notation

U(z) = ) Y(2) = VU ) (@t (2) — 27 (2),
and coordinates z* live on the two sheets covering of complex
plane

1 d

+
—— =z+ .
= (z) + =02) 2E

This R-matrix has graded tensor product
(eij @ ent) - (Cap @ €cd) = (_1)(p[k]+P[l])(p[a]+p[b])el.jeab ® €riCeds

with the following grading
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|-operator

4
I(u,v) = Z id; j(u,v)eq; @ ejj,
ij=1

with
o) = ) = 1. i) = i) = S,
idya(u,v) = idg (u,v) = T idas(u,v) = idss(u,v) = OOk
idia(u,v) = idi3(u, v) = idsa(u,v) = idyz(u,v) = (1u)’
ido1 (u,v) = id31(u, v) = idas(u,v) = idzs(u,v) = U(”);EZ; : ;Ezi



P-operator

4
P(u,v) = Z pij(u,v)ei; @ e,
ij=1
with
pro(u.0) = pua, ) = praCus) = pua(u) = L=,
p21(u,v) = p31(u,v) = pas(u, v) = psa(u,v) = XEZ; ;EZ; — iiézg )
v)xt(v) —a (v

p22(u,v) = ps3(u,v) = paz(u,v) = p32(u,v) = ZEU; $+Eu§ — :L‘JFEU; :

U)y(u) 2t (v) =z~ (v
pra(us o) = pra(us o) = pialus o) = pia(us o) = F N LA L LY




—
(@)
s
T
—
Q
o
?
o

with




— ¢21(u,v) = g31(u,v) = gaa(u,v) =

w10 0) = G @ (e (o) — 1)
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Operator I(u,v) looks like unity and

lim res I(u,v NI—ZemQ@eM

V—>00 U=V

Operator P(u,v) has pole at the point u = v

res P(u,v) ~ P = Z ezj ® eji.

uU=v

Operator Q(u,v) has pole at the pole on another sheet
C1L J—
ZiﬁQ(u’v) ~ Q= ngnij e Q €ji,
ij

where C,, : 2% (u) — 1/2%(u) and then at point u = v.
Operator has properties: Q?> =0, rank Q =1, Q = P™.
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Schematic view of the R-matrix

The following simplified representation of R-matrix

Blu o)~ I+ oy o () T 1= (e )

helps a lot to understand structure of Gauss decomposition.
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Center

For this algebra here we have the “orthogonal” center

here 7 is graded transposition by the second diagonal with extra
signs

! /
T ey (~LPEIEBID 0l b
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Constrains

The center imposes constrains

° Bu(o*(:) = —CEED  Bis (sabe)
o F43(z:t(z)) = _’y(i)(l!i:i)—n) F21 <1-2E(i+n))




Qunatum algebra







FE F-commutation relations

E12(2), F51(2) - su(1|1) (a la fermion)




EE and F'F-commutation relations

E12(2), Fo1(2) - su(1]1) (a la fermion)

{Er2(w), E12(2)} = {Fa1(w), Fa1(2)} = 0.

FEa3(2), F52(2) - su(2) (2 la boson)

(w — 2z +n)Egs(w) Ea3(2) =
(z — w — ) Ea3(2) Eas(w) + 1 (E23(2)* + Eas(w)?)

(w — 2z 4+ n)Fgg(z)Fgg(w) =
(z — w — ) Fa(w) Fsa(2) + n (F2(2)” + Faz(w)?)




FE19 — E93 commutation relations

Z—w—"n

E3(2) Er2(w) = —— ” E12(w)Ea3(2) + —

= (w)xT(2) — Dy(2)y(w)U(w
= )(w ! i>x+23>i)'€fu>) ) (B (2) s (2) — B (2)) -

zZ—w wriZF?’l(w)_'—
z(w)zt(2) = Dy(w)y(2)U (w
- )(w—z):ch()z)(er)Zu(J)) = 2)Fa1(2) — Fis(2)) —

F21 (U))Fg,g(z) =
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Projection formula

Bas(@,) ~ P (.Fl(ul) e Fi(ua) - Falvr) - fg(vb)>§2.




Hubbard
On-shell Bethe vector

Bethe vector becomes eigenvalue for transfer matrix ¢(u)
t(2)Bap (@, ) = 7(2|8, 0)Ba (T, D)
with eigenvalue

a

e = e e @ e @
a a b
(5, EEELIEY, CETRS, EEE
i=1 ’ i=1 *g=L
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Bethe equation

if Bethe equations are satisfied

Al (’LLZ) H Uj Uj aF n

Jj=1

b
[ 2% -%=% . 1.
kL#]’Uk—U]—FT) ’Uj—ul'+7]




Thank you for your attention! |
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