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≡ ⊗

What is crosscap?

• Cut out a disk and perform antipodal identification. 
• Surface becomes non-orientable.

z ∼ − 1/z̄



Punchline
• Integrability survives in the presence of crosscaps.

• Overlap between the crosscap state and an excited state can 
be computed analytically both in field theory and spin chain.

• Generalize Zamolodchikov’s staircase model to D-series minimal model.

By-products

• “Fermionization” of integrable field theories.

⟨& |Ψ⟩

[Petkova], [Hsieh, Nakayama, Tachikawa]…

• They compute 1-pt functions in N=4 SYM on  with charge 
conjugation.

RP4
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Why crosscaps?
• Boundaries in 1+1-d systems have attracted much attention.

• Successful example: Kondo problem. 

resis%vity

temperature	
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experiment	

Kondo model:  
Free fermion + magnetic impurity

s-wave dimensional reduction

1+1 d fermion with boundary. 
Solvable by Integrability, CFT

Andrei, Wiegmann, Affleck, Ludwig….
cf. Callan-Rubakov effect

boundaries



• Boundaries in 1+1-d systems have attracted much attention.

• Successful example: Kondo problem. 

resis%vity

temperature	

metal	
experiment	

Kondo model:  
Free fermion + magnetic impurity

s-wave dimensional reduction

1+1 d fermion with boundary. 
Solvable by Integrability, CFT

• 2d CFT with boundary: D-branes in string theory

• Boundary state in CFT/spin chains: quantum quench.

Andrei, Wiegmann, Affleck, Ludwig….

Calabrese, Cardy, Caux, Essler, Brockman, De Nardis, Wouters, Pozsgay

• Application to N=4 SYM: defect 1pt, determinant 3pt,….
Bohl-Mortensen, de Leeuw, Kristjansen, Zarembo, Wilhelm, Jiang, Komatsu 

Vescovi, Wang, Bajnok Gombor,……

cf. Callan-Rubakov effect

Why crosscaps? boundaries



Why crosscaps?
• In 2d CFTs, there exists another important class of states: Crosscap

• 2d system on non-orientable surfaces, 2+1 d Symmetry Protected 
Topological phase with time reversal symmetry.

• Orientifold in string theory: Important in string compactifications, in 
particular for the construction of de Sitter vacua.

cf. Maldacena, Nunez



Why crosscaps?
• In 2d CFTs, there exists another important class of states: Crosscap

• 2d system on non-orientable surfaces, 2+1 d Symmetry Protected 
Topological phase with time reversal symmetry.

• Orientifold in string theory: Important in string compactifications, in 
particular for the construction of de Sitter vacua.

• Almost no literature for integrable field theories and spin chains.

cf. Maldacena, Nunez

• As we will see, the crosscap states in spin chain provide new “integrable” 
initial states for quantum quench: Long-range entangled, volume law…

• The analysis in N=4 SYM suggests a new class of “defects” in 
higher-d CFTs: “orientifold defects”
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Crosscap overlap in integrable field theories

R

L
• Set up:

• Tree-channel expansion

Z) = ∑
ψL

|⟨& |ψL⟩ |2 e−EψLR R→∞→ |⟨& |ΩL⟩ |2 e−EΩLR

Compute the partition function and take  limit: Crosscap overlapR → ∞



Crosscap overlap in integrable field theories
• Loop-channel expansion

R

L
L/2

Z) = tr2R [Π e−LĤ/2] Π : 	Parity	operator= ∑
ψ2R

ϵψ2R
e−LEψ2R/2

In integrable theories, states are labelled by rapidities of particles.
|{pj}⟩ Π |{pj}⟩ ∝ |{−pj}⟩

•  unless  . 

• If ,  .  

(Nontrivial but can be proven by using the structure of Bethe-ansatz wave function)

⟨{pj} |Π |{pj}⟩ = 0 {pj} = {−pj}
{pj} = {−pj} ϵψ = + 1
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Crosscap overlap in integrable field theories
• Loop-channel expansion

R

L
L/2

Z) = tr2R [Π e−LĤ/2] = ∑
{pj}={−pj}

e−L∑j E(pj)/2

Parity-invariant solutions to Bethe eq.

• Loop = Tree

lim
R→∞ ∑

{pj}={−pj}
e−L∑j E(pj)/2 = |⟨& |ΩL⟩ |2 e−EΩLR

Could be dealt with by thermodynamic Bethe ansatz if there was 
no parity constraint



How to deal with parity constraint
lim

R→∞ ∑
{pj}={−pj}

e−L∑j E(pj)/2 = |⟨& |ΩL⟩ |2 e−EΩLR

• (Asymptotic) Bethe equation for parity invariant states:

S : 1 = e2ipjRS(pj, − pj)∏
k≠j

S(pj, pk)S(pj, − pk)

T : 1 = e2ipjRS(pj, − pj)S(pj,0)∏
k≠j

S(pj, pk)S(pj, − pk)

R

L
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• Crucial observation: formally identical to boundary problem

p1 p2 p3 p4

R(p2)

R(p2) 1 = e2iRpj(R(pj))2∏
k≠j

S(pj, pk)S(pj, − pk)

(R(p))2 ↔ {S(p, − p) S
S(p, − p)S(p,0) T



How to deal with parity constraint
lim

R→∞ ∑
{pj}={−pj}

e−L∑j E(pj)/2 = |⟨& |ΩL⟩ |2 e−EΩLR

• (Asymptotic) Bethe equation for parity invariant states:

S : 1 = e2ipjRS(pj, − pj)∏
k≠j

S(pj, pk)S(pj, − pk)

T : 1 = e2ipjRS(pj, − pj)S(pj,0)∏
k≠j

S(pj, pk)S(pj, − pk)

R

L

• Crucial observation: formally identical to boundary problem

p1 p2 p3 p4

R(p2)

R(p2) 1 = e2iRpj(R(pj))2∏
k≠j

S(pj, pk)S(pj, − pk)

(R(p))2 ↔ {S(p, − p) S
S(p, − p)S(p,0) T

We can recycle the result for boundary problem



Boundary Entropy: Review

• Closed-form expression (diagonal S-matrix without bound states)

closed	string= ∑
ψn

|⟨B |ψn⟩ |2 e−REn
R ≫ 1

|⟨B |ΩL⟩ |2 = exp [2∫
∞

0

du
2π

Θ(u)log(1 + Y(u))]
det [1 − Ĝ−]
det [1 − Ĝ+]

0 = LE(u) + log Y(u) − log(1 + Y ) ⋆ 6+• TBA equation: A ⋆ B = ∫
∞

0

dv
2π

A(u , v)B(v)

• Kernel:

• Fredholm det:

6±(u, v) ≡ 1
i (log S(u, v) ± S(u, − v))

Ĝ± ⋅ f (u) = ∫
∞

0

dv
2π

6±(u, v)
1 + 1/Y(v) f (v)

• Prefactor: Θ(u) = 1
i

∂u log R(u) − πδ(u) − 1
2i

∂u log S(u, − u)

(R(p))2 ↔ {S(p, − p) S
S(p, − p)S(p,0) T



Final result

|⟨& |ΩL⟩ | = 1 + Y(0)
1 + Y(0)

det [1 − Ĝ−]
det [1 − Ĝ+]



Final result

|⟨& |ΩL⟩ | = 1 + Y(0)
1 + Y(0)

det [1 − Ĝ−]
det [1 − Ĝ+]

• Excited state:
|⟨& |Ψ⟩ | = 1 + Y(0)

1 + Y(0)
det [1 − Ĝ∙

−]
det [1 − Ĝ∙+]

• Asymptotic limit :(L → ∞) |⟨& |Ψ⟩ | =
det [G+]
det [G−]

Ĝ∙
± ⋅ f (u) = ∑

k

i6±(u, uk)
∂u log Y(uk) f (uk) + ∫

∞

0

du
2π

6±(u, v)
1 + 1/Y(v) f (v)

(G±)1≤i, j≤ M
2

= L∂u p(ui) +
M
2

∑
k=1

6+(ui, uk) − 6±(ui, uj)

“Simplest possible” g-function

cf. [Dorey, Tateo]



Check (Staircase model)
• Definition of the model:

S(θ) = tanh ( θ − θ0
2 − iπ

4 ) tanh ( θ + θ0
2 − iπ

4 )
• Effective central charge (ground state energy):

RG flows interpolate between 
unitary minimal models.

• Crosscap overlap for the ground state.

Values at plateaux agree with A-series 
minimal models: 

( 2
m(m + 1) )

1
4

cot π
2m

cot π
2(m + 1)
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Boundaries in spin chain
• Open spin chain (= boundaries in space)

Well-studied in the (integrability) 
literature since 80’s

H = Hbulk + Hboundary

• “Boundary states” in closed spin chain (= boundaries in time)

|B⟩ = ∏
j

( |K⟩⟩j)⊗ |K⟩⟩j = c0 |↑↑⟩j, j+1 + c1 |↑↓⟩j, j+1 + c2 |↓↑⟩j, j+1



Boundaries in spin chain
• Open spin chain (= boundaries in space)

Well-studied in the (integrability) 
literature since 80’s

H = Hbulk + Hboundary

• “Boundary states” in closed spin chain (= boundaries in time)

|B⟩ = ∏
j

( |K⟩⟩j)⊗ |K⟩⟩j = c0 |↑↑⟩j, j+1 + c1 |↑↓⟩j, j+1 + c2 |↓↑⟩j, j+1

• Almost a product state. Defined locally, much like a boundary state in field theory.

• Short-range entangled, ideal initial state for studying time evolution of entanglement.

• Simple formula in integrable spin chains.

|⟨ℬ |Ψ⟩ | = (some	prefactors)
det [G+]
det [G−]

(G±)1≤i, j≤ M
2

= L ∂u p(ui) +
M
2

∑
k=1

6+(ui, uk) − 6±(ui, uj)

Caux, Essler, Brockman, De Nardis, Wouters, Pozsgay



Can we define a crosscap state in spin chain?

• Naive guess (for XXX spin 1/2 chain):

Long-range entangled.

• The state preserves infinitely many conserved charges:

⟨C |[T(u) − T(−u)] = 0
Transfer matrix in the fundamental rep.



• We also computed the overlap between the crosscap and Bethe eigenstates.

|⟨C |Ψ⟩ | =
det [G+]
det [G−]

(G±)1≤i, j≤ M
2

= L∂u p(ui) +
M
2

∑
k=1

6+(ui, uk) − 6±(ui, uj)

Overlap formula

• We found (numerically, without a proof) that they admit a very simple (Gaudin-like) 
determinant formula.

1. Coincides with the asymptotic limit of the overlap formula for integrable QFTs. 
2. Similar to but simpler than an overlap formula for the spin-chain boundary states.

Caux, Essler, Brockman, De Nardis, Wouters, Pozsgay

|⟨B |Ψ⟩ | = (non-universal	prefactor)
det [G+]
det [G−]

Proven recently by Gombor! 
arXiv:2207.10598



• We also computed the overlap between the crosscap and Bethe eigenstates.

|⟨C |Ψ⟩ | =
det [G+]
det [G−]

(G±)1≤i, j≤ M
2

= L∂u p(ui) +
M
2

∑
k=1

6+(ui, uk) − 6±(ui, uj)

A new tractable initial condition for quantum quench…?

Overlap formula

• We found (numerically, without a proof) that they admit a very simple (Gaudin-like) 
determinant formula.

1. Coincides with the asymptotic limit of the overlap formula for integrable QFTs. 
2. Similar to but simpler than an overlap formula for the spin-chain boundary states.

Caux, Essler, Brockman, De Nardis, Wouters, Pozsgay

|⟨B |Ψ⟩ | = (non-universal	prefactor)
det [G+]
det [G−]

Proven recently by Gombor! 
arXiv:2207.10598
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Crosscap and N=4 SYM

• Crosscap overlaps on the world sheet = 1pt functions in N=4 SYM 
on  with charge conjugation.RP4

• 4d CFT on .RP4
xμ ↔ − xμ

|x |2



Crosscap and N=4 SYM

• Crosscap overlaps on the world sheet = 1pt functions in N=4 SYM 
on  with charge conjugation.RP4

• 4d CFT on .RP4
xμ ↔ − xμ

|x |2

• New conformal data: ⟨>⟩RP4

• Crossing equation:

>1 >2 = >1>2

“mirror image”



N=4 SYM on RP4
• In N=4 SYM, we can define a “half-BPS version” of .RP4

Φ1,2,3 ↔ Φ1,2,3 Φ4,5,6 ↔ − Φ4,5,6

• This turns out to be non-integrable. [Caetano, Rastelli, 2022]

xμ ↔ − xμ

|x |2 +



N=4 SYM on RP4
• In N=4 SYM, we can define a “half-BPS version” of .RP4

Φ1,2,3 ↔ Φ1,2,3 Φ4,5,6 ↔ − Φ4,5,6

• This turns out to be non-integrable. [Caetano, Rastelli, 2022]

• Integrability gets restored if we combine it with “charge conjugation” 

xμ ↔ − xμ

|x |2 +

Φ1,2,3 ↔ − ΦT
1,2,3 Φ4,5,6 ↔ ΦT

4,5,6
Charge conjugation of SU(N) 

TA → − (TA)T

• Propagator on  :RP4
|x − y |2

±
|1 + x ⋅ y |2

• One-point function at tree level:

self contraction

Leading large N answer 
= antipodal contraction of single-trace op. 
= crosscap overlap

relevant for 1pt function



Conjecture for the asymptotic 1pt functions

⟨>⟩RP4
L≫1= Sdet GGaudin

• Derivatives of logarithms of Bethe equation.

• Same  grading structure as the defect 1pt function (but without non-universal 
prefactors)

Z2
cf. talk by Kostya [Komatsu, Wang], [Bajnok, Gombor]



New class of defects in higher-d CFT?

• In embedding coordinates,  corresponds toRP4

• We can define “higher-codimension versions” of  : “orientifold defects”RP4

• Can we define them consistently in any CFT? What are crossing equations?

• In N=4 SYM, there should be half-BPS versions of these orientifold defects. 

• Combined with charge conjugation, they probably lead to crosscaps on the 
world sheet, which preserve integrability.

X−1 ∼ X−1 X1,2,3,4, ∼ − X1,2,3,4

X−1,1 ∼ X−1,1 X2,3,4, ∼ − X2,3,4e.g.
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Conclusion
• Crosscap is integrable!

• Overlap with excited states can be computed analytically.  
    “Simplest possible g-function”

• Generalization to non-diagonal S-matrix, theories with bound states….

• Best arena for developing QSC approaches to correlation functions.

• Study quench dynamics, measurement-induced phase transition.

• Relevant for N=4 SYM on . RP4

In progress with Caetano, Claeys, Miao

• More orientifold defects in N=4 SYM and general CFTs.
cf. [Gaiotto, Witten]

Conjecture for the asymptotic formula at finite  
1-loop check + susy localization in progress with  

Caetano, Rastelli, Soresina

λ

• Crosscap for fishnet, Yangian invariance of crosscap type Feynman diagrams?
cf.talk by Edoardo, talk by Florian 

cf.[Caetano, Komatsu] [Cavaglia, Gromov, Levkovich-Maslyuk]



Back ups



• Closed-form expression (diagonal S-matrix without bound states)

closed	string= ∑
ψn

|⟨B |ψn⟩ |2 e−REn
R ≫ 1

different saddles =         ∑
ψn

Saddle pt eq = TBA eq 1-loop det = |⟨B |ψn⟩ |2

|⟨B |ΩL⟩ |2 = exp [2∫
∞

0

du
2π

Θ(u)log(1 + Y(u))]
det [1 − Ĝ−]
det [1 − Ĝ+]

• Derivation

= ∑
ψopen

e−LEψopen
R≫1→ ∫ Dρ e−L R seff[ρ]

Density of particles

Boundary Entropy: Review



Proof of ⟨C |[T(u) − T(−u)] = 0
• Step 1

T(u)

T(u) = tr [L1(u)L2(u)⋯]

• Step 2
σ2

→ ⟨C |T(−u)



Exact p-function

|⟨& |ΩL⟩ |2 ⊃ exp [2∫
∞

0

du
2π

Θ̃(u)log(1 + Y(u))]
det [1 − Ĝ−]
det [1 − Ĝ+]

• -sectorS S : 1 = e2ipjRS(pj, − pj)∏
k≠j

S(pj, pk)S(pj, − pk) S(0,0) = − 1

Θ̃S(u) = 1
i

∂u log R(u) − πδ(u) − 1
2i

∂u log S(u, − u)
1
2 log S(u , − u)

= 0

|⟨& |ΩL⟩ |2 S⊃
det [1 − Ĝ−]
det [1 − Ĝ+]
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k≠j

S(pj, pk)S(pj, − pk)

T : 1 = e2ipj RS(pj, − pj)S(pj,0)∏
k≠j

S(pj, pk)S(pj, − pk)

S(0,0) = − 1

Θ̃S(u) = 1
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2i

∂u log S(u, − u)
1
2 log S(u , − u)
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det [1 − Ĝ−]
det [1 − Ĝ+]

• -sectorT
Θ̃T(u) = 1

i
∂u log R(u) − πδ(u) − 1

2i
∂u log S(u, − u)

S(0,0)S(0,0) = + 1

1
2 log S(u , − u) + 1

2 log S(u ,0)

|⟨& |ΩL⟩ |2 T⊃
exp [− mL

2 + 1
2 ∫ ∞

0
du
2π 6+(0,u)log(1 + Y(u))]
1 + Y(0)

det [1 − Ĝ−]
det [1 − Ĝ+]
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Exact p-function

|⟨& |ΩL⟩ |2 ⊃ exp [2∫
∞

0

du
2π

Θ̃(u)log(1 + Y(u))]
det [1 − Ĝ−]
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T

e
−L∑pj>0 E( pj)
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Orbifolded staircase model
• For , there are two (or more) unitary minimal models.m ≥ 5

 Ising model,    Tricritical Ising model,   
 Tetracritical Ising (A-series), three-state Potts model (D-series)

m = 3 : m = 4 :
m = 5 :

• The two series are related by -gauging:  Z2 A-series
gauging↔ D-series

• Gauging in 2d QFT:

• Modification to (parity-invariant) Bethe eq.

S : 1 = e2ipjRS(pj, − pj)∏
k≠j

S(pj, pk)S(pj, − pk)

T : 1 = e2ipjRS(pj, − pj)S(pj,0)∏
k≠j

S(pj, pk)S(pj, − pk)

1. Introduce a twisted sector : . 
2. Restrict to -invariant states.

ϕ(σ + 2π) = − ϕ(σ)
Z2
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• Modification to (parity-invariant) Bethe eq.

S : 1 = e2ipjRS(pj, − pj)∏
k≠j

S(pj, pk)S(pj, − pk)

U : − 1 = e2ipjRS(pj, − pj)∏
k≠j

S(pj, pk)S(pj, − pk)



Answer for orbifolded theory

|⟨& |ΩL⟩ | = 1 + 1
1 + Y(0)

det [1 − Ĝ−]
det [1 − Ĝ+]

-sector, U −πδ(u)
• p-function

log 2
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1. Reproduces the answer for D-series. 
2. Starts to increase in the deep infrared. 
3. IR limit is the -symmetry broken phase.Z2


