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AdS; x §3 x T*, AdS; x S3 x K3, AdS; x S3 x S3 x St
They should be dual to (largely unknown) N = (4, 4) two-dimensional SCFTs.

In this talk | will focus on the planar spectrum of

AdS; x S3x T*

The background has 20 moduli. [Larsen, Martinec '99]

For the closed-string spectrum, only B-field (and tension) matter. [Ohlsson-Sax, Stefanski '18]

Two-parameter classically integrable NLSM. [Cagnazzo, Zarembo '12]
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Interpolating from zero to maximal B-field

No B field Intermediate case Maximal B field
— Most similar to AdS5 — Hardest case - sl(2) @ su(2) WZW) model
— From D1-D5 system — From generic setup — From F1-NS5 system
— Unknown dual — Unknown dual — Partially known dual
— Continuous tension h > 0] —Both h>0and ke N — Quantised tension k € N
— Nondegenerate spectrum — Nondegenerate spectrum — Simple, degenerate spectrum
— Spectrum through TBA — “Only" S-matrix so far — Can do TBA too
[Frolov, AS "21] [Hoare, Tseytlin '13] [Maldacena, Ooguri '00][...][Dei, AS "18]
[Lloyd, O.Sax, AS, Stefanski '14]
This talk!
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Symmetries and lightcone-gauge fixing

The symmetries of AdSz x S3 x T* contain

50(2,2) @ 50(4) = su(1,1)% @ su(2)P C psu(l,1[2)%?

The quantisation of the string in lightcone gauge is similar to AdSs x S°, and gives

[Borsato, Ohlsson Sax, AS, Stefanski, Torrielli '13]

psu(1,1[2)%2 — psu(1]1)&2

{Q%, S} =03 (Lo — ) = 62(H + M) {Q., 5%} =02 (Lo — 3%) = 65(H — M)
{Q%,Qs} =05 C {S.,Sb} =abCf

Irreducible representations are labeled by (H, M, C, CT).
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Particles (short unitary representations)
We get the conditions

H?> = M? + CiC, Ccth = (0), MeZ, H>0.

Single-particle dispersion relation (h > 0 is the tension) [Borsato, Ohlsson Sax, Stefanski, AS, Torrielli '13]

H(p) = \/ M2 + 4k sin(p/2)

They must be four-dimensional (B=Boson, F=Fermion)
B) F)
|FY) |F?) or BY) |B2)

N N
|1B') F')
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We distinguish:
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Left, right and massless particles

For a given tension h > 0,

H(p):\/M2—|—4h25in2(p/2), —T<p<m, MeZ.

We distinguish:
o “Left" particles: M = +1 and bound states M = +2,+3,..., with —7m < p <,

@ "“Right" particles: M = —1 and bound states M = —2, -3, ..., with —7 < p < 7,

e Massless particles: M =0 (x 2). Note that

H(p) = |2hsin(p/2)|,

» “chiral” if H(p) = +2hsin(p/2),ie. 0 < p <,
» “antichiral” if H(p) = —2hsin(p/2), i.e. —m < p < 0. [Frolov, AS '21]
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S-matrix blocks

For each pair of irreps we can construct an S-matrix block:
o Left-left

Left-right

Left-(anti)chiral

Right-left

Each block is fixed up to a dressing factor, and satisfies the Yang-Baxter equation.

The dressing factors are not all independent, due to unitarity, parity, and LR symmetry.
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Independent S-matrix elements

Dressing factor

Particles scattered

a**(p1, p2)
a**(p1, p2)

a°*(p1, p2)
a*°(p1, p2)

M; = My = £1.
M; = —M, = 1.

My =0, My = 1.
M| =1, My =0.



Independent S-matrix elements

Dressing factor Particles scattered
a**(p1, p2) My = Mp = £1.
a**(p1, p2) M; = —Mp = +1.
UO.(pl,pz) M1 =0, ’MQ’ =1.

a°°(p1, p2) M; = M, = 0, same chirality.

a°°(p1, p2) My = M, = 0, opposite chirality.
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Zhukovski variables
Instead of using momenta, we introduce

M|+ 1/ M2 + 4h2sin?(p/2)
x*(p, |M|) = e+ \/

2hsin(p/2)

that satisfy

x+ h 1 1

e =L H:'<X3L 5 XP_+‘>’

Xp 2i Xp Xp

For massless variables
1 . 5 h 1
szx+(P70):Wa e? =(x)", H:i(xp_xp> :
Crossing:
+ =+ 1 1
Xp T Xp = Xp = Xp = —
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Crossing equations
X 2 X X X X ?
et ) 6 ) = () e
2
1
Y= 2 (nee( + -2 £ 2 (1_X1X2> x| =Xy
(o) et ) = () Sy
172 1
[ ]o) 00 (= f(Xi’X2)
(0%0a% )~ (0% (% x2)) _(X2)4f(xi+,x2)
e 2 f(x1,xy)
) (0 (g) = Z (Feey) =i




Crossing equations
1
+X

1

(0% 05" 6) 2 (67 (&) = () s 1,@
+ 1-— 2 -
(o (%", 57)) 2 (5°° (" % ))72 <§%)2 ( ( o2 ) - e
2 yp—— 1_X1_X_ 1 7%
2 f(x,x
(O'.O(X]:_E,XQ)) (J.O(X]:-E,X2)) = (XZ) fEX}F,Xz;
_ f(x1, x
() () = ) (fben =1
(UOO(Xl,XQ))_2(O' ()_<1,X2))_ :—f(Xl,XQ)fz,
72(0’ ()_(1,X2))7 :—f(Xl,Xg)iz.




Some (old) observations
We expect that, like in AdSs x S°, the BES phase should appear. Introduce:
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Some (old) observations
We expect that, like in AdSs x S°, the BES phase should appear. Introduce:

+ _+ + _+
G“(Xi Xi) U..(Xl y X5 ) 6..(Xi Xi) G* (Xl y X2 )
172 UBES(Xl ’X2j:) ’ 172 UBES(XliaXQi) ’
and consider the combination
B _ goo(xi Xi)
) =0 )00 ) s 000 = S e
¢ (X, %)

Then we have simply

<g+( - i)) 2<g+( + i)) 2 4 g) %)

X- X X- X
b b Fixg x5 ) Fxg )

( (x:l 2 %5 )) = (something simple)( (xf,xf)) 2,
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It is convenient to introduce [Fontanella, Torrielli '19]
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Another parametrisation for massless modes

It is convenient to introduce [Fontanella, Torrielli '19]

i—e7 2h

D o x=-——">, H
VEoX= (7)

- cosh~y

Crossing is
Yy y=y+imT.

In these terms, massless S matrix is of difference form.

Moreover, the crossing equation is almost (up to a sign) the one of Sine-Gordon.
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The “old” (incorrect) solution to crossing

Previous proposal for the phases [Borsato, Ohlsson Sax, Sfondrini, Stefanski, Torrielli '14 —'16]

@ Massive phases are give by the BES phase plus “bits and pieces” (like HL phase)
@ Massless and mixed-mass are given by HL phase

@ For massless, this seems to match the Sine-Gordon phase [Bombardelli, Stefanski, Torrielli '18]

Problems:

@ Only partial match with perturbation theory (maybe ok?)
@ Strange analytic properties

@ Match with Sine-Gordon up to an "

o Actually, violates worldsheet parity invariance.
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New proposal

Intuition: in the loops, massless and massive are not separate. Treat them on the same footing.

Assume there is a BES factor everywhere: not only

+ _+ o + _+
§ (Xi Xi) U..(Xl ’X2 ) § (Xi Xi) ..(Xl 7X2 )
M ) b )
b UBES(Xf[axzi) toe UBES(Xf[aXQi)
but also: N
oe
C'o(xli,xz) (Xl 2 %2 o7 (a,

I go.(X:l?X;:) = 2
UBES(Xl y X2

) )

x2) )
(Xl, 2) ~ 5OO(X1, X2)

) )

00 00 _
(Xla X2) UBEs(Xl, X 5 S (X17 X2) -



New massive rapidities

Introduce rapidity variables for massive particles too: [Beisert, Hernandez, Lopez '06]

. + ; _
n i —e7 _ i+ e7
X = — X = - — .

i+ert’ | —eY

Crossing:



New massive rapidities

Introduce rapidity variables for massive particles too: [Beisert, Hernandez, Lopez '06]

) .
= = ! W L
il =—




New form of the crossing equations
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_2 ) ++ +- —+ ——
(g"'(ﬁli,yét)) (g"'(yli,'yzi)) = coth 7122 coth 7122 coth 7122 coth 7122 .

-2 sinh~5" sinh~5" -2
—=t _* Y12 Y12 < —t o+ )
S s > = - : —— | < ) .
( (71 Y2 ) smh’yf'; sinh 75 (")/1 Y2 )




New form of the crossing equations

-2 -2 ++ +— —+ ——
(g+ﬁ1i’72i)) (§+(71ia72i)) = coth 7122 coth 7122 coth 7122 coth 7122 .

-2 sinh~{y~ sinh~;," -2
—(zE A E _ 712 12 < o+ 4 )
S ; > = — - ~=— (¢ , .
( (772) sinh ,yis—z—ir sinh g, (7))

-2 -2 +o —o
(c'o(ﬁ,’m)) (C'O(’Yli> ’72)) = coth % coth % 7

-2 ) o+ o—
(<°°(’7177§E)) (<°‘(71,’V§—L)) :tanh%tanh%,



New form of the crossing equations

-2 -2 ++ +— —+ ——
(§+(711,72i)) (g"‘(vli,'y;[)) = coth 7122 coth 7122 coth 7122 coth 7122 )
—2 sinhqiy" sinhyt o -2

_ 12 12_ <§ (,ch’%i))

sinh 5t sinhyp,

(s=GiED)

-2 ) +o —o
$*°(vf, 72)) = coth % coth % ,

-2 -2 o+ o—
(go'(’_hﬁzi)) <<°'(’Yl>’¥2i)> = tanh % tanh % ,

(3 2))

71) Y2

/_\

-2 -2 oo
( 71,72)> — tanh? 112

) 2
)

-2 0o
(A1, 72) ( 71,72)) —tanhz%.

/_\



Solution for the rescaled factors ¢*

For massive modes we have

—+
F( ok Ey) 2 tanh (e
(g (X1 » X2 )) = _7%@('712 )@(712 )¢(712 )@('712 )

tanh%



Solution for the rescaled factors ¢*

For massive modes we have

F(E o tanh 2% +—
(g (X1 » X2 )) = 7@(712 )@(712 )915(712 )@('712 )
tanh 12
~sinhy," (5N Py )
( (Xl , X5 )) _ 12 12 12

sinh vy &(vfy ) B(v")



Solution for the rescaled factors ¢+

For massive modes we have

2 tanh " _
(§+(X1i’xzi)) = Ti@(712 )@(712 )915(712 )@(71*2 )a
tan

( (X X )) _ Slnh")/12 @(fyﬁ+)¢(7ﬁ_)
172 N — = N — .
sinhafy (vl ) B

with

- log () = il , log®(0) =0, (Sine-Gordon).

d ~
o log®(y) = ———, log®(0) =0, (new phase).



The remaining factors

. ) _tanh 12" o Y
(§ (7]:_t7 72)) =+ zo QS(,),]‘E )@(712 ) )
tanh 7

o+
oo 5 _tanh 2 o o
(C (’Y1772i)) =1 73795(71;)@(712 )
tanh %



The remaining factors

. ) _tanh 12" o Y
(§ (fY]:F: 72)) =+ zo QS(V]—_FZ )¢(712 ) )
tanh 7

o+
oo 5 _tanh 2 o o
(C (’Yl,%i)) =1 73795(71;)45(712 )
tanh %

(§°°(71,72))72 = —itanh (’Y;z — f) ((15(712))2.

(500(’}/1,’)/2))_2 = —jtanh <’)/;2 — IZ) (@(712))2 .
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H=—ip, p=—iH.
This swaps

w.s. time <> w.s. space, finite volume < finite temperature.



Double Wick-rotation

Just like in AdSs x S°, we introduce a mirror model by setting [Arutyunov, Frolov '07]
H=—ip, p=—iH.
This swaps

w.s. time <> w.s. space, finite volume < finite temperature.

The mirror model is genuinely different: dispersion

. /M2 1 72
A = 2arcsinh <M+p> .

2h

Still, it is related to the original theory by analytic continuation. [Frolov, AS '21]



Analytic continuation for massive variables

I

String theory

i
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Analytic continuation for massless variables

Massless modes live on a line (no bound states allowed).

-
N

NP

antistring

------------- mirror

string
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Properties of the phases in string & mirror region

The new proposal for the phases:

e Satisfies all good properties (crossing, unitarity, parity) in the string region.
@ Allows us to construct bound-state S matrices by fusion.

@ Can be unambiguously continued to mirror region.

e Satisfies all good properties in the mirror region (mirror unitarity).

@ Works well with mirror fusion, too.
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The string hypothesis

Mirror Bethe-Yang equations: 1=¢PR H Sk
k
R>1 — “Bethe strings”

In this case we have:

o Left-left bound states, or Q-particles.
@ Right-right bound states, or 6—partic|es.
@ Massless particles x 2.

@ Auxiliary roots x 2.
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Bethe-Yang equations for the “Bethe strings”
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Deriving the TBA equations
From the Bethe-Yang equations, we follow a standard route [Yang, Yang '69]
o Take the thermodynamic limit R > 1, N, > 1,

@ Rewrite (log of) products as integrals for densities,
@ Set a finite temperature T = 1/L,

@ Impose equilibrium, 6 F = 0.
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Deriving the TBA equations
From the Bethe-Yang equations, we follow a standard route [Yang, Yang '69]
o Take the thermodynamic limit R > 1, N, > 1,

@ Rewrite (log of) products as integrals for densities,

@ Set a finite temperature T = 1/L,

@ Impose equilibrium, 6 F = 0.
The resulting equations constrain the root densities, and yield the mirror free energy F.
F is also the ground-state energy of string model.
It is customary and convenient to express them in terms of Y-functions
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The (simplified) mirror TBA equations
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The (simplified) mirror TBA equations
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The mirror TBA equations /2
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The mirror TBA equations /2
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Conclusions

We derived the mirror TBA equations based on minimal assumptions.

In principle, full control on finite-volume spectrum. [Dorey, Tateo '96]

@ In the process, we corrected the proposal for the dressing factors.

Main lesson: massless and massive modes interact (affecting o**).

Truncating to only massless or massive results in different integrable models.



Outlook

@ Further simplify the TBA: Y-system, QSC, ... [see Dima's and Andrea’s talks]

Compute observables. What comparison? [Ohlsson Sax, AS, Stefanski '14]

More ambitious observables: correlation functions! [Eden, le Plat, AS '21]

Mixed-flux integrability [Hoare, Stepanchuk, Tseytlin '13] [Lloyd, Ohlsson Sax, AS, Stefanski '14]

H(p) = \/<M + %p)2 + 4h2 sin? (g)

e Make contact with WZW / “hybrid” formalism at

k
k>1, h—0, H(p)m‘MJr—p‘
2T

[many recent developments!]
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