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Partial wave decompositions

Partial waves in quantum field theory
• Basic analytic tool in QFT, e.g. in 2 → 2 scattering

T (s, t) = −i⟨p3, p4| S − 1̂ |p1, p2⟩ =
∞∑

J=0

fJ(s)P
(d)
J (cos θ)

• partial wave = contribution to scattering of all spin J intermediate states
• P(d)

J (cos θ) = zonal spherical function on SO(d − 1)

Partial waves in CFT
• Decompositions of four-point functions

⟨ϕ(x1) . . . ϕ(x4)⟩ = Ω(xi)
∑
∆,l

C2
ϕϕOg∆,l(u, v)

• partial wave = contribution of states in a single conformal representation
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Conformal bootstrap

Bootstrap equations [Polyakov]
• Crossing symmetry = self-consistency

Applications [El-Showk, Kos, Paulos, Poland, Rychkov, Simmons-Duffin, Vichi]
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Partial waves for four-point functions

Casimir equations [Dolan, Osborn]

• Derived a 2nd order differential equation for blocks
• Solved in two and four dimensions

g(4d)
∆,l (z, z̄) =

zz̄
z − z̄

(
k∆+l(z)k∆−l−2(z̄)− k∆−l−2(z)k∆+l(z̄)

)
Efficient methods for scalar and spinning four-point blocks

• Differential shifting operators [Costa, Penedones, Poland, Rychkov]

• Expansions in radial coordinates [Hogervorst, Rychkov; Costa, Hansen, Penedones, Trevisani]

• Recursion relations [Penedones, Trevisani, Yamazaki; Erramilli, Iliesiu, Kravchuk]

• From seed conformal blocks [Echeverri, Elkhidir, Karateev, Serone; Costa, Hansen, Penedones, Trevisani]

• Weight-shifting operators [Karateev, Kravchuk, Simmons-Duffin]

Relation to Calogero-Sutherland models [Isachenkov, Schomerus, Sobko]
• Mapped the Dolan-Osborn operator to the BC2 CS Hamiltonian
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Higher-point functions

Problem
• Much less known about about higher-point partial waves
• Solved in d = 1, 2 or for scalar exchanges [Rosenhaus; Fortin, Hoback, Ma, Parikh, Skiba]

• Weight-shifting for five-point blocks [Poland, Prilepina]

Potential uses
• Higher-point correlators contain a wealth of OPE data [Goncalves, Pereira, Zhou]

• "Abstract" bootstrap on the lightcone [Antunes, Costa, Goncalves, Vilas Boas]

• Away from the lightcone . . .
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Aim for the talk

Questions
• In what sense are (higher-point) partial waves integrable?
• Elements of universality in Casimir equations?

Today

4-point functions ↔ (spinning) Calogero-Sutherland model
↑

N-point functions ↔ Gaudin models
↓

3-point functions ↔ elliptic Calogero-Moser model

Results
• Complete set of differential equations for the waves
• First structural consequences: 6-point blocks factorisation
• New relations between integrable models
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Plan for the talk

1 Introduction

2 Harmonic analysis of four-point functions

3 N-point functions and the Gaudin model

4 OPE reductions

5 Summary and perspectives
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Spherical functions

Why should Dolan-Osborn equations be integrable?

• G4(xi) ∼ two-point function of two-particle states. Two-particle little group

K = SO(1, 1)× SO(d)

• Ward identities: G4(xi) ∈ C (G/K × G/K )G ∼= C(K\G/K )

Spherical functions [Harish-Chandra, Gelfand, Godement]
• Lie group G and a subgroup K fixed by Cartan involution

G = SO(d + 1, 1), K = SO(1, 1)× SO(d)

• Bi-covariant functions on G

Γρ,σ = {f : G → Hom(Wr ,Wl) | f (klgkr ) = ρ(kl)f (g)σ(kr )}

• Γ1,1 commutative algebra under convolutions
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Radial component map

Radial part of the Casimir [Harish-Chandra, Berezin]
• Cartan decomposition g = k⊕ p

g = ap ⊕m⊕
∑
λ∈Σ

gλ → · · · → U(g) = U(ap)⊗ U(k)⊗U(m) U(k)

• ap is the maximal abelian subspace of p, the split rank of (G,K )

• On the group level, decomposition takes the from

G = KApK

• Spherical functions depend effectively on dim(Ap) variables
• Casimir reduced to an operator on Ap using radial decomposition

C2 = hijHiHj +
∑
α∈P+

coth(α · t)hα̃ + spin part

• Harish-Chandra’s map Π : U(g) −→ Fun(Ap)⊗ U(ap)⊗ U(k)⊗ U(k)
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Quantum integrable systems [Feher, Pusztai; Reshetikhin, Stokman; Oblomkov; Etingof, Frenkel, Kirillov. . . ]

Calogero-Sutherland Hamiltonian [Olshanetsky, Perelomov]
• Radial part of the Laplacian conjugate to the CS Hamiltonian

H = ∂2
t1 + ∂2

t2 +
1 − D2

+

2 sinh2(t1 + t2)
+

1 − D2
−

2 sinh2(t1 − t2)
− d2 − 2d + 2

2

+
M1aM1a − 1

4 (d − 2)(d − 4)
sinh2 t1

+
M2aM2a − 1

4 (d − 2)(d − 4)
sinh2 t2

− 1
2

MabMab

• Higher Casimirs ensure integrability
• Equivalent to the Dolan-Osborn equation for scalars

Related systems
• SUSY extension as a nilpotent perturbation [IB, Schomerus, Sobko]

• Systems involving defects [IB, Isachenkov, Liendo, Linke, Schomerus]

• Partial waves for ordinary QFT are rank 1 spherical functions
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Insufficiency of Casimirs

Casimir operators [BLMQS, PRL 126 (2021)]

• For four-point functions, 2nd and 4th order Casimirs measure weight and
spin of propagating field

ρ

φ1

φ2 φ3 φ4

φ5

• Four Casimir operators to measure weights and spins
• Five cross ratios → complete by the "vertex operator"

V4 = κ
α1...α4
4 (X (12)

α1 − X (3)
α1 ) . . . (X

(12)
α4 − X (3)

α4 )

• Wish to generalise to higher-point functions
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Phase space of N-point functions

Solutions to Ward identities
• Correlators = invariants in the N-fold tensor product of principal series

Hred = HG = (π1 ⊗ · · · ⊗ πN)
G

Gaudin model
• H carries the action of the algebra

[X (i)
α ,X

(j)
β ] = δij f γαβX (i)

γ

• Gaudin Hamiltonians constructed with the help of Lax matrix

Lα(z) =
N∑

i=1

X (i)
α

z − zi
, Hp(z) = κα1...αpLα1(z)...Lαp (z) + . . .

• Diagonal symmetry = Gaudin Hamiltonians preserve Hred

[Hp(z),Hq(w)] = 0, [
∑

X (i)
α ,Hp(z)] = 0
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Edge and vertex operators

Colliding punctures
• "Sites" z1, . . . , zN = parameters with no CFT counterpart
• Simple limit with zN → ∞ and each zi<N → 0, 1
• Scaling dependent on OPE topology

Edge and vertex operators [BLMQS, JHEP 10 (2021)]
• Each edge r breaks N = Ir,1 ∪ Ir,2. Form Casimirs

Dp
r = κ

α1...αp
p X

(Ir,1)
α1 · · ·X (Ir,1)

αp

• Each vertex ρ breaks N = Iρ,1 ∪ Iρ,2 ∪ Iρ,3

Dp,ν
ρ,12 = κ

α1...αp
p X

(Iρ,1)
α1 · · ·X (Iρ,1)

αν X
(Iρ,2)
αν+1 · · ·X (Iρ,2)

αp

• {Gaudin Hamiltonians} → {edge operators, vertex operators}
• Strong evidence for completeness
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OPE limits of Gaudin models

1 2

3

N−2

N−1

N

[N−2]

[N−3]

[2]

[1]

zi = xN−1−i

L[i]
α (z) =

X (1)
α + · · ·+ X (i)

α

z
+

X (i+1)

z − 1

1 2 3 4

5

6

[1] [2]

[3]

[4]

z1 = x3, z3 = x + x3, z5 = 1

z2 = x2 z4 = x + x2, z6 = x−1

Lα(z) =
X (1)
α

z − x3 +
X (2)
α

z − x2 +
X (3)
α

z − x − x3

+
X (4)
α

z − x − x2 +
X (5)
α

z − 1
+

X (6)
α

z − x−1
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Counting dependencies

Counting of edge operators

φ1

φ2 φ3 φ4 φ5 φ6 φ7

φ8ρ1 ρ2 ρ3 ρ3 ρ2 ρ1
1 2 3 3 3 2 1

1 1 1 1 1 1

• Increase by one in each step towards centre until rank(G) is reached

Completed by vertex operators

φ1

φ2 φ3 φ4 φ5

φ6

φ3 φ4

φ5

φ6φ1

φ2

• Comb channel has single variable vertices, while the snowflake vertex has
three variables
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OPE-adapted coordinates

Comb channel six-point function [BLMQS, JHEP 06 (2022)]

φ1

φ2 φ3 φ4 φ5

φ6
z1, z̄1

a

z2,Υ, z̄2

b

z3, z̄3

c
w1 w2

• coordinates (zi , z̄i) defined using four-point subdiagrams
• coordinates (w1,w2) defined using five-point subdiagrams
• six-point coordinate Υ

OPE limit

z2, z̄2,Υ → 0
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Conformal frame

x2 = 0 , x4 = e1 , x3 = ∞ , w1 = sin2 ϕ

2

φ

φ

x1

x2

x3

x4

x5

z1, z̄1

z2, z̄2
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Spinning Calogero-Sutherland Hamiltonian

Factorised partial wave

φ1

φ2 φ3

z1, z̄1

a
Obw1

Properties
• 9 conformal invariants reduce to 6 in the limit

ψ(zi , z̄i ,wj ,Υ)
z2,z̄2,Υ→0∼ z

1
2 (∆b+lb+ℓb)

2 z̄
1
2 (∆b−lb−ℓb)

2 Υℓbψ(z1, z̄1,w1, z3, z̄3,w2)

• Hamiltonians separate into variables (z1, z̄1,w1) and (z3, z̄3,w2)

• Quadratic Hamiltonians = spinning Calogero-Sutherland
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Scalar-scalar-scalar-MST2 Hamiltonian

The Hamiltonian

Substitutions for generators give the one-sided Hamiltonian

H(b)
l,ℓ = ∂2

t1 + ∂2
t2 +

1 − (2b + ℓ− l + 2X∂X )
2

2 sinh2(t1 + t2)
+

1 − (2b − ℓ+ l − 2X∂X )
2

2 sinh2(t1 − t2)

+
Ll,ℓ(X )− 1

4 (d − 2)(d − 4)
sinh2 t1

+
Ll,ℓ(−X )− 1

4 (d − 2)(d − 4)
sinh2 t2

− d2 − 2d + 2
2

where 2b = ∆3 −∆b and

Ll,ℓ(X ) = −X (1 − X )2∂2
X −

(
ℓ(1 − X )− 2(1 − l)X +

d − 2
2

(1 + X )

)
(1 − X )∂X

+

(
1 − l − d − 2

2

)
(ℓ(1 − X ) + lX )− l(d − 2)

2
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Reduction to a vertex

Vertex reduction [BLMQS, JHEP 11 (2021)]

φ1

φ2 φ3 φ4

φ5ρ φa

φ3 φ4

φ5ρ φa

φ3

φbρ

Elliptic Calogero-Moser model
• Act with V4 on functions of the form

ψ(z1, z̄1, z2, z̄2,w)
zi ,z̄i→0∼ z̄

∆a−la
2

1 z
∆a+la

2
1 z

∆b+lb
2

2 z̄
∆b−lb

2
2 ψ(w)

• Produces 4th order differential operator H(w , ∂w ) with four singular points

z0 = 0, z1 =
1 + i

2
, z2 =

i
2
, z3 =

1
2

• Coincides with elliptic CM Hamiltonian of Etingof, Felder, Ma, Veselov
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Summary of results

1 A Gaudin model adapted to any CFT correlation function in any channel

2 Coordinates compatible with OPE limits

3 OPE factorisation of six-point conformal partial waves

4 Relations between Gaudin and CMS models
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Future directions and open questions

1 Lightcone bootstrap for six-point functions

and how to formulate numerical bootstrap?

2 General solution theory?
→ Bethe ansatz? Separation of variables? Weight-shifting operators?
→ Ideal: build partial waves by "gluing"edge and vertex wavefunctions

3 Universality and CFTs with defects:
→ thee-point blocks from the radial component map [with V. Schomerus]
→ cyclotomic Gaudin models [with S. Lacroix and V. Schomerus]

4 Extension of harmonic analysis methods to non-conformal theories
→ S-matrix partial waves [with F. Russo and A. Vichi]
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Thank you!
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Radial component map on SL(2,R)

Generators and bracket relations

[H,E+] = E+, [H,E−] = −E−, [E+,E−] = 2H

Unprimed and primed generators of k

h = etH , Y =
1
2
(E+ − E−), Y ′ = h−1Yh =

1
2
(e−tE+ − etE−)

Spherical functions and the Cartan decomposition

Γm,n = {f : G −→ C | f (eφY geψY ) = ei(mφ−nψ)f (g)}, g(φ, t , ψ) = eφY etHeψY

Radial decomposition of the Casimir

C2 = H2 +
1
2
{E+,E−} = H2 + coth t H +

1
sinh2 t

(
Y ′2 − 2 cosh t Y ′Y + Y 2

)
Substitutions {H → ∂t , Y ′ → im, Y → −in} lead to ∆|Γm,n

∆m,n = ∂2
t + coth t ∂t −

1
sinh2 t

(
m2 + 2mn cosh t + n2

)
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Decompositions of the conformal Lie algebra

Cartan decomposition

g = ap ⊕ h−1qh ⊕ k, k = m⊕ q

Gauss decomposition g = ap ⊕m⊕ n⊕ n̄

rank 1 : g = so(1, 1)⊕ so(d)⊕ Rd ⊕ Rd

rank 2 : g = R2 ⊕ so(d − 2)⊕ n⊕ n̄

Iwasawa decomposition g = k⊕ ap ⊕ n,

rank 1 : g = so(d + 1)⊕ so(1, 1)⊕ Rd

rank 2 : g = (so(1, 1)⊕ so(d))⊕ R2 ⊕ n
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Three-point functions of spinning fields

Abstractly, the space of three-point functions is

(W1 ⊗ W2 ⊗ W3)
SO(d−1)

If two fields are scalars, only one tensor structure

# = dimW SO(d−1)
1 = 1

STT-STT-scalar three-point function

⟨O1(x1, z1)O2(x2, z2)φ3(x3)⟩ = Ω(xi , zj)t(X )

with

Ω(xi , zj) =
(X1;32 · z1)

l1(X2;13 · z2)
l2

(X 2
3;21)

−∆3
2 (X 2

2;13)
l2−∆2

2 (X 2
1;32)

l1−∆1
2

, X =
1

x2
12

z1µJµν(x12)z2ν

(X1;32 · z1)(X2;13 · z2)

Similarly MST2-MST2-scalar three-point function depends on two variables.
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OPE limit of the Gaudin model

Combinatorially polynomials define "vertex Lax matrices"

Lρα(z) ≡
X

(Iρ,1)
α

z
+

X
(Iρ,2)
α

z − 1
= lim

x→0
xnρLα

(
xnρz + gρ(x), zi

)
.

Associated Hamiltonians used to extract vertex operators

H(p)
ρ (z) = κα1...αpLρα1(z) . . .L

ρ
αp (z) + · · · =

p∑
ν=0

Dp,ν
ρ,12

zν(z − 1)p−ν + . . .
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