Introduction	Plan	Harmonic analysis of four-point functions	N-point functions and the Gaudin model	OPE reductions	Summary and perspectives

Gaudin Integrability and Harmonic Analysis of Conformal Partial Waves

Ilija Burić University of Pisa

Integrability in Gauge and String Theory 2022 July 28, Budapest

based on works with M. Isachenkov, S. Lacroix, J. A. Mann, L. Quintavalle, V. Schomerus and E. Sobko

Introduction	Plan	Harmonic analysis of four-point functions	N-point functions and the Gaudin model	OPE reductions	Summary and perspectives
00000					

Partial wave decompositions

Partial waves in quantum field theory

• Basic analytic tool in QFT, e.g. in 2 \rightarrow 2 scattering

$$T(s,t) = -i\langle p_3, p_4 | S - \hat{1} | p_1, p_2 \rangle = \sum_{J=0}^{\infty} f_J(s) \mathcal{P}_J^{(d)}(\cos \theta)$$

- partial wave = contribution to scattering of all spin J intermediate states
- $P_J^{(d)}(\cos \theta)$ = zonal spherical function on SO(d-1)

Partial waves in CFT

Decompositions of four-point functions

$$\langle \phi(\mathbf{x}_1) \dots \phi(\mathbf{x}_4) \rangle = \Omega(\mathbf{x}_i) \sum_{\Delta,l} C^2_{\phi\phi\mathcal{O}} g_{\Delta,l}(u,v)$$

partial wave = contribution of states in a single conformal representation

00000 0 00000 000000 0000000	Introduction	Plan	Harmonic analysis of four-point functions	N-point functions and the Gaudin model	OPE reductions	Summary and perspectives
	00000	0	0000	000000	000000	0000000

Conformal bootstrap

Bootstrap equations [Polyakov]

Crossing symmetry = self-consistency

$$\sum_{s \in S} C_{12s} C_{s34} \stackrel{2}{\underset{1}{\sum}} \stackrel{s}{\longrightarrow} \stackrel{4}{\underset{4}{\sum}} = \sum_{t \in S} C_{23t} C_{t41} \stackrel{2}{\underset{1}{\underset{1}{\sum}}} \stackrel{3}{\underset{4}{\sum}}$$

Applications [EI-Showk, Kos, Paulos, Poland, Rychkov, Simmons-Duffin, Vichi]

Introduction	Plan	Harmonic analysis of four-point functions	N-point functions and the Gaudin model	OPE reductions	Summary and perspectives
00000	0	0000	000000	000000	0000000

Partial waves for four-point functions

Casimir equations [Dolan, Osborn]

- Derived a 2nd order differential equation for blocks
- Solved in two and four dimensions

$$g^{(4d)}_{\Delta,l}(z,ar{z})=rac{Zar{z}}{z-ar{z}}\Big(k_{\Delta+l}(z)k_{\Delta-l-2}(ar{z})-k_{\Delta-l-2}(z)k_{\Delta+l}(ar{z})\Big)$$

Efficient methods for scalar and spinning four-point blocks

- Differential shifting operators [Costa, Penedones, Poland, Rychkov]
- Expansions in radial coordinates [Hogervorst, Rychkov; Costa, Hansen, Penedones, Trevisani]
- Recursion relations [Penedones, Trevisani, Yamazaki; Erramilli, Iliesiu, Kravchuk]
- From seed conformal blocks [Echeverri, Elkhidir, Karateev, Serone; Costa, Hansen, Penedones, Trevisani]
- Weight-shifting operators [Karateev, Kravchuk, Simmons-Duffin]

Relation to Calogero-Sutherland models [Isachenkov, Schomerus, Sobko]

Mapped the Dolan-Osborn operator to the BC₂ CS Hamiltonian

Introduction	Plan	Harmonic analysis of four-point functions	N-point functions and the Gaudin model	OPE reductions	Summary and perspectives
00000	0	0000	000000	000000	0000000

Higher-point functions

Problem

- Much less known about about higher-point partial waves
- Solved in d = 1, 2 or for scalar exchanges [Rosenhaus; Fortin, Hoback, Ma, Parikh, Skiba]
- Weight-shifting for five-point blocks [Poland, Prilepina]

Potential uses

- Higher-point correlators contain a wealth of OPE data [Goncalves, Pereira, Zhou]
- "Abstract" bootstrap on the lightcone [Antunes, Costa, Goncalves, Vilas Boas]
- Away from the lightcone ...

Introduction	Plan	Harmonic analysis of four-point functions	N-point functions and the Gaudin model	OPE reductions	Summary and perspectives
00000					

Aim for the talk

Questions

- In what sense are (higher-point) partial waves integrable?
- Elements of universality in Casimir equations?

Today		
4-point functions $^{\uparrow}$	\leftrightarrow	(spinning) Calogero-Sutherland model
N-point functions	\leftrightarrow	Gaudin models
$\stackrel{\star}{3}$ -point functions	\leftrightarrow	elliptic Calogero-Moser model

Results

- Complete set of differential equations for the waves
- First structural consequences: 6-point blocks factorisation
- New relations between integrable models

Introduction	Plan	Harmonic analysis of four-point functions	N-point functions and the Gaudin model	OPE reductions	Summary and perspectives
	•				

Plan for the talk

Introduction

- Armonic analysis of four-point functions
- One of the second se
- OPE reductions
- Summary and perspectives

Introduction	Plan	Harmonic analysis of four-point functions	N-point functions and the Gaudin model	OPE reductions	Summary and perspectives
		0000			

Spherical functions

Why should Dolan-Osborn equations be integrable?

• $G_4(x_i) \sim$ two-point function of two-particle states. Two-particle little group

$$K = SO(1,1) \times SO(d)$$

• Ward identities: $G_4(x_i) \in C (G/K \times G/K)^G \cong C(K \setminus G/K)$

Spherical functions [Harish-Chandra, Gelfand, Godement]

• Lie group G and a subgroup K fixed by Cartan involution

$$G = SO(d+1,1), \quad K = SO(1,1) \times SO(d)$$

Bi-covariant functions on G

 $\Gamma_{\rho,\sigma} = \{f: G \to \operatorname{Hom}(W_r, W_l) \mid f(k_lgk_r) = \rho(k_l)f(g)\sigma(k_r)\}$

Γ_{1,1} commutative algebra under convolutions

Introduction	Plan	Harmonic analysis of four-point functions	N-point functions and the Gaudin model	OPE reductions	Summary and perspectives
		0000			

Radial component map

Radial part of the Casimir [Harish-Chandra, Berezin]

• Cartan decomposition $\mathfrak{g} = \mathfrak{k} \oplus \mathfrak{p}$

$$\mathfrak{g} = \mathfrak{a}_{
ho} \oplus \mathfrak{m} \oplus \sum_{\lambda \in \Sigma} \mathfrak{g}^{\lambda} \quad \rightarrow \cdots \rightarrow \quad U(\mathfrak{g}) = U(\mathfrak{a}_{
ho}) \otimes U(\mathfrak{k}) \otimes_{U(\mathfrak{m})} U(\mathfrak{k})$$

- \mathfrak{a}_{ρ} is the maximal abelian subspace of \mathfrak{p} , the split rank of (G, K)
- On the group level, decomposition takes the from

$$G = KA_{p}K$$

- Spherical functions depend effectively on dim(A_p) variables
- Casimir reduced to an operator on A_p using radial decomposition

$$\mathcal{C}_2 = h^{ij} \mathcal{H}_i \mathcal{H}_j + \sum_{lpha \in \mathcal{P}_+} \coth(lpha \cdot t) h_{ ilde{lpha}} + ext{spin part}$$

• Harish-Chandra's map $\Pi: U(\mathfrak{g}) \to \operatorname{Fun}(A_{\rho}) \otimes U(\mathfrak{a}_{\rho}) \otimes U(\mathfrak{k}) \otimes U(\mathfrak{k})$

Introduction	Plan	Harmonic analysis of four-point functions	N-point functions and the Gaudin model	OPE reductions	Summary and perspectives
00000	0	0000	000000	000000	0000000

Quantum integrable systems [Feher, Pusztai; Reshetikhin, Stokman; Oblomkov; Etingof, Frenkel, Kirillov...]

Calogero-Sutherland Hamiltonian [Olshanetsky, Perelomov]

Radial part of the Laplacian conjugate to the CS Hamiltonian

$$H = \partial_{t_1}^2 + \partial_{t_2}^2 + \frac{1 - D_+^2}{2\sinh^2(t_1 + t_2)} + \frac{1 - D_-^2}{2\sinh^2(t_1 - t_2)} - \frac{d^2 - 2d + 2}{2} + \frac{M_{1a}M_{1a} - \frac{1}{4}(d - 2)(d - 4)}{\sinh^2 t_1} + \frac{M_{2a}M_{2a} - \frac{1}{4}(d - 2)(d - 4)}{\sinh^2 t_2} - \frac{1}{2}M^{ab}M_{ab}$$

- Higher Casimirs ensure integrability
- Equivalent to the Dolan-Osborn equation for scalars

Related systems

- SUSY extension as a nilpotent perturbation [IB, Schomerus, Sobko]
- Systems involving defects [IB, Isachenkov, Liendo, Linke, Schomerus]
- Partial waves for ordinary QFT are rank 1 spherical functions

Introduction	Plan	Harmonic analysis of four-point functions	N-point functions and the Gaudin model	OPE reductions	Summary and perspectives
		0000			

Introduction	Plan	Harmonic analysis of four-point functions	N-point functions and the Gaudin model	OPE reductions	Summary and perspectives
			00000		

Insufficiency of Casimirs

Casimir operators [BLMQS, PRL 126 (2021)]

 For four-point functions, 2nd and 4th order Casimirs measure weight and spin of propagating field

- Four Casimir operators to measure weights and spins
- Five cross ratios \rightarrow complete by the "vertex operator"

$$\mathcal{V}_4 = \kappa_4^{lpha_1 \dots lpha_4} (X_{lpha_1}^{(12)} - X_{lpha_1}^{(3)}) \dots (X_{lpha_4}^{(12)} - X_{lpha_4}^{(3)})$$

Wish to generalise to higher-point functions

Introduction	Plan	Harmonic analysis of four-point functions	N-point functions and the Gaudin model	OPE reductions	Summary and perspectives
00000	0	0000	00000	000000	0000000

Phase space of *N*-point functions

Solutions to Ward identities

Correlators = invariants in the N-fold tensor product of principal series

$$\mathcal{H}_{red} = \mathcal{H}^{G} = (\pi_1 \otimes \cdots \otimes \pi_N)^{G}$$

Gaudin model

H carries the action of the algebra

$$[X_{\alpha}^{(i)}, X_{\beta}^{(j)}] = \delta_{ij} f_{\alpha\beta}^{\gamma} X_{\gamma}^{(i)}$$

Gaudin Hamiltonians constructed with the help of Lax matrix

$$\mathcal{L}_{lpha}(z) = \sum_{i=1}^{N} rac{X^{(i)}_{lpha}}{z-z_{i}}, \quad \mathcal{H}_{
ho}(z) = \kappa^{lpha_{1}...lpha_{
ho}}\mathcal{L}_{lpha_{1}}(z)...\mathcal{L}_{lpha_{
ho}}(z) + \dots$$

Diagonal symmetry = Gaudin Hamiltonians preserve H_{red}

$$[\mathcal{H}_{\rho}(z),\mathcal{H}_{q}(w)]=0, \quad [\sum X_{\alpha}^{(i)},\mathcal{H}_{\rho}(z)]=0$$

Introduction	Plan	Harmonic analysis of four-point functions	N-point functions and the Gaudin model	OPE reductions	Summary and perspectives
			000000		

Edge and vertex operators

Colliding punctures

- "Sites" z₁,..., z_N = parameters with no CFT counterpart
- Simple limit with $z_N \rightarrow \infty$ and each $z_{i < N} \rightarrow 0, 1$
- Scaling dependent on OPE topology

Edge and vertex operators [BLMQS, JHEP 10 (2021)]

• Each edge *r* breaks $\underline{N} = I_{r,1} \cup I_{r,2}$. Form Casimirs

$$\mathcal{D}_r^p = \kappa_p^{\alpha_1 \dots \alpha_p} X_{\alpha_1}^{(l_{r,1})} \cdots X_{\alpha_p}^{(l_{r,1})}$$

• Each vertex ρ breaks $\underline{N} = I_{\rho,1} \cup I_{\rho,2} \cup I_{\rho,3}$

$$\mathcal{D}_{\rho,12}^{\rho,\nu} = \kappa_{\rho}^{\alpha_{1}...\alpha_{p}} X_{\alpha_{1}}^{(l_{\rho,1})} \cdots X_{\alpha_{\nu}}^{(l_{\rho,1})} X_{\alpha_{\nu+1}}^{(l_{\rho,2})} \cdots X_{\alpha_{p}}^{(l_{\rho,2})}$$

- {Gaudin Hamiltonians} → {edge operators, vertex operators}
- Strong evidence for completeness

Introduction	Plan	Harmonic analysis of four-point functions	N-point functions and the Gaudin model	OPE reductions	Summary and perspectives
			000000		

OPE limits of Gaudin models

 $z_1 = x^3$, $z_3 = x + x^3$, $z_5 = 1$ $z_2 = x^2$ $z_4 = x + x^2$, $z_6 = x^{-1}$

$$\begin{aligned} z_i &= x^{N-1-i} \\ \mathcal{L}_{\alpha}(z) &= \frac{X_{\alpha}^{(1)}}{z-x^3} + \frac{X_{\alpha}^{(2)}}{z-x^2} + \frac{X_{\alpha}^{(3)}}{z-x-x^3} \\ \mathcal{L}_{\alpha}^{[i]}(z) &= \frac{X_{\alpha}^{(1)} + \dots + X_{\alpha}^{(i)}}{z} + \frac{X_{\alpha}^{(i+1)}}{z-1} &+ \frac{X_{\alpha}^{(4)}}{z-x-x^2} + \frac{X_{\alpha}^{(5)}}{z-1} + \frac{X_{\alpha}^{(6)}}{z-x^{-1}} \end{aligned}$$

Introduction	Plan	Harmonic analysis of four-point functions	N-point functions and the Gaudin model	OPE reductions	Summary and perspectives
			000000		

Counting dependencies

Completed by vertex operators

 Comb channel has single variable vertices, while the snowflake vertex has three variables

Introduction	Plan	Harmonic analysis of four-point functions	N-point functions and the Gaudin model	OPE reductions	Summary and perspectives
			000000		

Introduction	Plan	Harmonic analysis of four-point functions	N-point functions and the Gaudin model	OPE reductions	Summary and perspectives
				000000	

OPE-adapted coordinates

Comb channel six-point function [BLMQS, JHEP 06 (2022)]

- coordinates (z_i, z
 _i) defined using four-point subdiagrams
- coordinates (w₁, w₂) defined using five-point subdiagrams
- six-point coordinate ↑

OPE limit

$$z_2,\bar{z}_2,\Upsilon\to 0$$

Introduction	Plan	Harmonic analysis of four-point functions	N-point functions and the Gaudin model	OPE reductions	Summary and perspectives
				00000	

Conformal frame

Introduction Plan	Harmonic analysis of four-point functions	N-point functions and the Gaudin model	OPE reductions	Summary and perspectives
00000 0	0000	000000	000000	000000

Spinning Calogero-Sutherland Hamiltonian

Properties

9 conformal invariants reduce to 6 in the limit

$$\psi(\mathbf{z}_i, \bar{\mathbf{z}}_i, \mathbf{w}_j, \Upsilon) \overset{\mathbf{z}_2, \bar{\mathbf{z}}_2, \Upsilon \to 0}{\sim} \mathbf{z}_2^{\frac{1}{2}(\Delta_b + l_b + \ell_b)} \bar{\mathbf{z}}_2^{\frac{1}{2}(\Delta_b - l_b - \ell_b)} \Upsilon^{\ell_b} \psi(\mathbf{z}_1, \bar{\mathbf{z}}_1, \mathbf{w}_1, \mathbf{z}_3, \bar{\mathbf{z}}_3, \mathbf{w}_2)$$

- Hamiltonians separate into variables (z₁, z
 ₁, w₁) and (z₃, z
 ₃, w₂)
- Quadratic Hamiltonians = spinning Calogero-Sutherland

00000 0 0000	000000	000000	000000

Scalar-scalar-Scalar-MST₂ Hamiltonian

The Hamiltonian

Substitutions for generators give the one-sided Hamiltonian

$$\begin{aligned} H_{l,\ell}^{(b)} &= \partial_{t_1}^2 + \partial_{t_2}^2 + \frac{1 - (2b + \ell - l + 2X\partial_X)^2}{2\sinh^2(t_1 + t_2)} + \frac{1 - (2b - \ell + l - 2X\partial_X)^2}{2\sinh^2(t_1 - t_2)} \\ &+ \frac{L_{l,\ell}(X) - \frac{1}{4}(d - 2)(d - 4)}{\sinh^2 t_1} + \frac{L_{l,\ell}(-X) - \frac{1}{4}(d - 2)(d - 4)}{\sinh^2 t_2} - \frac{d^2 - 2d + 2}{2} \\ \text{where } 2b &= \Delta_3 - \Delta_b \text{ and} \\ L_{l,\ell}(X) &= -X(1 - X)^2 \partial_X^2 - \left(\ell(1 - X) - 2(1 - l)X + \frac{d - 2}{2}(1 + X)\right)(1 - X)\partial_X \\ &+ \left(1 - l - \frac{d - 2}{2}\right)(\ell(1 - X) + lX) - \frac{l(d - 2)}{2} \end{aligned}$$

Introduction	Plan	Harmonic analysis of four-point functions	N-point functions and the Gaudin model	OPE reductions	Summary and perspectives
				000000	

Reduction to a vertex

Elliptic Calogero-Moser model

Act with V₄ on functions of the form

$$\psi(\mathbf{Z}_1, \bar{\mathbf{Z}}_1, \mathbf{Z}_2, \bar{\mathbf{Z}}_2, \mathbf{w}) \stackrel{\mathbf{Z}_i, \bar{\mathbf{Z}}_j \to 0}{\sim} \bar{\mathbf{Z}}_1^{\frac{\Delta_a - l_a}{2}} \mathbf{Z}_1^{\frac{\Delta_a + l_a}{2}} \mathbf{Z}_2^{\frac{\Delta_b + l_b}{2}} \bar{\mathbf{Z}}_2^{\frac{\Delta_b - l_b}{2}} \psi(\mathbf{w})$$

• Produces 4^{th} order differential operator $H(w, \partial_w)$ with four singular points

$$z_0 = 0, \quad z_1 = \frac{1+i}{2}, \quad z_2 = \frac{i}{2}, \quad z_3 = \frac{1}{2}$$

Coincides with elliptic CM Hamiltonian of Etingof, Felder, Ma, Veselov

Introduction	Plan	Harmonic analysis of four-point functions	N-point functions and the Gaudin model	OPE reductions	Summary and perspectives
				000000	

Introduction	Plan	Harmonic analysis of four-point functions	N-point functions and the Gaudin model	OPE reductions	Summary and perspectives
					000000

Summary of results

A Gaudin model adapted to any CFT correlation function in any channel

Ocordinates compatible with OPE limits

OPE factorisation of six-point conformal partial waves

4 Relations between Gaudin and CMS models

00000 0 0000 000000 00000 00000 00000	Introduction	Plan	Harmonic analysis of four-point functions	N-point functions and the Gaudin model	OPE reductions	Summary and perspectives
	00000	0	0000	000000	000000	000000

Future directions and open questions

1 Lightcone bootstrap for six-point functions

and how to formulate numerical bootstrap?

- ② General solution theory?
 - \rightarrow Bethe ansatz? Separation of variables? Weight-shifting operators?
 - \rightarrow Ideal: build partial waves by "gluing"edge and vertex wavefunctions
- Our Content of the second s
 - \rightarrow thee-point blocks from the radial component map [with V. Schomerus]
 - → cyclotomic Gaudin models [with S. Lacroix and V. Schomerus]
- ④ Extension of harmonic analysis methods to non-conformal theories → S-matrix partial waves [with F. Russo and A. Vichi]

Introduction	Plan	Harmonic analysis of four-point functions	N-point functions and the Gaudin model	OPE reductions	Summary and perspectives
					000000

Thank you!

Introduction	Plan	Harmonic analysis of four-point functions	N-point functions and the Gaudin model	OPE reductions	Summary and perspectives
00000	0	0000	000000	000000	000000

Radial component map on $SL(2,\mathbb{R})$

Generators and bracket relations

$$[H, E_+] = E_+, \quad [H, E_-] = -E_-, \quad [E_+, E_-] = 2H$$

Unprimed and primed generators of \mathfrak{k}

$$h = e^{tH}, \quad Y = \frac{1}{2}(E_+ - E_-), \quad Y' = h^{-1}Yh = \frac{1}{2}(e^{-t}E_+ - e^{t}E_-)$$

Spherical functions and the Cartan decomposition

$$\Gamma_{m,n} = \{f: G \to \mathbb{C} \mid f(e^{\varphi^{Y}}ge^{\psi^{Y}}) = e^{i(m\varphi - n\psi)}f(g)\}, \quad g(\varphi, t, \psi) = e^{\varphi^{Y}}e^{tH}e^{\psi^{Y}}$$

Radial decomposition of the Casimir

$$C_2 = H^2 + \frac{1}{2} \{ E_+, E_- \} = H^2 + \coth t H + \frac{1}{\sinh^2 t} \left(Y'^2 - 2\cosh t Y' Y + Y^2 \right)$$

Substitutions $\{H \rightarrow \partial_t, Y' \rightarrow im, Y \rightarrow -in\}$ lead to $\Delta|_{\Gamma_{m,n}}$

$$\Delta_{m,n} = \partial_t^2 + \coth t \ \partial_t - \frac{1}{\sinh^2 t} \left(m^2 + 2mn \cosh t + n^2 \right)$$

Introduction Plan	Harmonic analysis of four-point functions	N-point functions and the Gaudin model	OPE reductions	Summary and perspectives
00000 0	0000	000000	000000	0000000

Decompositions of the conformal Lie algebra

Cartan decomposition

$$\mathfrak{g} = \mathfrak{a}_{\rho} \oplus h^{-1}\mathfrak{q}h \oplus \mathfrak{k}, \quad \mathfrak{k} = \mathfrak{m} \oplus \mathfrak{q}$$

Gauss decomposition $\mathfrak{g} = \mathfrak{a}_{\rho} \oplus \mathfrak{m} \oplus \mathfrak{n} \oplus \overline{\mathfrak{n}}$

rank 1:
$$\mathfrak{g} = \mathfrak{so}(1, 1) \oplus \mathfrak{so}(d) \oplus \mathbb{R}^d \oplus \mathbb{R}^d$$

rank 2: $\mathfrak{g} = \mathbb{R}^2 \oplus \mathfrak{so}(d-2) \oplus \mathfrak{n} \oplus \overline{\mathfrak{n}}$

Iwasawa decomposition $\mathfrak{g} = \mathfrak{k} \oplus \mathfrak{a}_{\rho} \oplus \mathfrak{n}$,

rank 1:
$$\mathfrak{g} = \mathfrak{so}(d+1) \oplus \mathfrak{so}(1,1) \oplus \mathbb{R}^d$$

rank 2: $\mathfrak{g} = (\mathfrak{so}(1,1) \oplus \mathfrak{so}(d)) \oplus \mathbb{R}^2 \oplus \mathfrak{n}$

Three-point functions of spinning fields

Abstractly, the space of three-point functions is

 $(W_1 \otimes W_2 \otimes W_3)^{SO(d-1)}$

If two fields are scalars, only one tensor structure

$$\# = \dim W_1^{SO(d-1)} = 1$$

STT-STT-scalar three-point function

$$\langle \mathcal{O}_1(x_1, z_1)\mathcal{O}_2(x_2, z_2)\varphi_3(x_3)\rangle = \Omega(x_i, z_j)t(X)$$

with

$$\Omega(x_i, z_j) = \frac{(X_{1;32} \cdot z_1)^{l_1} (X_{2;13} \cdot z_2)^{l_2}}{(X_{3;21}^2)^{-\frac{\Delta_3}{2}} (X_{2;13}^2)^{\frac{l_2 - \Delta_2}{2}} (X_{1;32}^2)^{\frac{l_1 - \Delta_1}{2}}}, \quad X = \frac{1}{x_{12}^2} \frac{z_{1\mu} J^{\mu\nu}(x_{12}) z_{2\nu}}{(X_{1;32} \cdot z_1)(X_{2;13} \cdot z_2)}$$

Similarly MST₂-MST₂-scalar three-point function depends on two variables.

Introduction	Plan	Harmonic analysis of four-point functions	N-point functions and the Gaudin model	OPE reductions	Summary and perspectives
					000000

OPE limit of the Gaudin model

Combinatorially polynomials define "vertex Lax matrices"

$$\mathcal{L}^{\rho}_{\alpha}(z) \equiv \frac{X^{(l_{\rho,1})}_{\alpha}}{z} + \frac{X^{(l_{\rho,2})}_{\alpha}}{z-1} = \lim_{x \to 0} x^{n_{\rho}} \mathcal{L}_{\alpha}(x^{n_{\rho}}z + g_{\rho}(x), z_i) .$$

Associated Hamiltonians used to extract vertex operators

$$\mathcal{H}_{\rho}^{(p)}(z) = \kappa^{\alpha_1 \dots \alpha_p} \mathcal{L}_{\alpha_1}^{\rho}(z) \dots \mathcal{L}_{\alpha_p}^{\rho}(z) + \dots = \sum_{\nu=0}^{p} \frac{\mathcal{D}_{\rho,12}^{p,\nu}}{z^{\nu}(z-1)^{p-\nu}} + \dots$$