Gaudin Integrability and Harmonic Analysis of Conformal Partial Waves

Ilija Burić
University of Pisa

Integrability in Gauge and String Theory 2022
July 28, Budapest
based on works with
M. Isachenkov, S. Lacroix, J. A. Mann, L. Quintavalle, V. Schomerus and E. Sobko

Partial wave decompositions

Partial waves in quantum field theory

- Basic analytic tool in QFT, e.g. in $2 \rightarrow 2$ scattering

$$
T(s, t)=-i\left\langle p_{3}, p_{4}\right| S-\hat{1}\left|p_{1}, p_{2}\right\rangle=\sum_{J=0}^{\infty} f_{J}(s) P_{J}^{(d)}(\cos \theta)
$$

- partial wave $=$ contribution to scattering of all spin J intermediate states
- $P_{J}^{(d)}(\cos \theta)=$ zonal spherical function on $S O(d-1)$

Partial waves in CFT

- Decompositions of four-point functions

$$
\left\langle\phi\left(x_{1}\right) \ldots \phi\left(x_{4}\right)\right\rangle=\Omega\left(x_{i}\right) \sum_{\Delta, l} c_{\phi \phi \mathcal{O}}^{2} g_{\Delta, l}(u, v)
$$

- partial wave $=$ contribution of states in a single conformal representation

Conformal bootstrap

Bootstrap equations [Polyakov]

- Crossing symmetry = self-consistency

Applications [El-Showk, Kos, Paulos, Poland, Rychkov, Simmons-Duffin, Vichi]

Partial waves for four-point functions

Casimir equations [Dolan, Osborn]

- Derived a $2^{\text {nd }}$ order differential equation for blocks
- Solved in two and four dimensions

$$
g_{\Delta, l}^{(4 d)}(z, \bar{z})=\frac{z \bar{z}}{z-\bar{z}}\left(k_{\Delta+l}(z) k_{\Delta-l-2}(\bar{z})-k_{\Delta-l-2}(z) k_{\Delta+l}(\bar{z})\right)
$$

Efficient methods for scalar and spinning four-point blocks

- Differential shifting operators [Costa, Penedones, Poland, Rychkov]
- Expansions in radial coordinates [Hogervorst, Rychkov; Costa, Hansen, Penedones, Trevisani]
- Recursion relations [Penedones, Trevisani, Yamazaki; Erramilil, Iliesiu, Kravchuk]
- From seed conformal blocks [Echeverri, Elkhidir, Karateev, Serone; Costa, Hansen, Penedones, Trevisani]
- Weight-shifting operators [Karateev, Kravchuk, Simmons-Duffin]

Relation to Calogero-Sutherland models [Isachenkov, Schomerus, Sobko]

- Mapped the Dolan-Osborn operator to the $B C_{2}$ CS Hamiltonian

Higher-point functions

Problem

- Much less known about about higher-point partial waves
- Solved in $d=1,2$ or for scalar exchanges [Rosenhaus; Fortin, Hoback, Ma, Parikh, Skiba]
- Weight-shifting for five-point blocks [Poland, Prilepina]

Potential uses

- Higher-point correlators contain a wealth of OPE data [Goncalves, Pereira, Zhou]
- "Abstract" bootstrap on the lightcone [Antunes, Costa, Goncalves, Vilas Boas]
- Away from the lightcone ...

Aim for the talk

Questions

- In what sense are (higher-point) partial waves integrable?
- Elements of universality in Casimir equations?

Today

4-point functions \uparrow N-point functions \downarrow	\leftrightarrow	(spinning) Calogero-Sutherland model
3-point functions	\leftrightarrow	Gaudin models

Results

- Complete set of differential equations for the waves
- First structural consequences: 6-point blocks factorisation
- New relations between integrable models

Plan for the talk

(1) Introduction
(2) Harmonic analysis of four-point functions
(3) N-point functions and the Gaudin model
(4) OPE reductions
(5) Summary and perspectives

Spherical functions

Why should Dolan-Osborn equations be integrable?

- $G_{4}\left(x_{i}\right) \sim$ two-point function of two-particle states. Two-particle little group

$$
K=S O(1,1) \times S O(d)
$$

- Ward identities: $G_{4}\left(x_{i}\right) \in C(G / K \times G / K)^{G} \cong C(K \backslash G / K)$

Spherical functions [Harish-Chandra, Gelfand, Godement]

- Lie group G and a subgroup K fixed by Cartan involution

$$
G=S O(d+1,1), \quad K=S O(1,1) \times S O(d)
$$

- Bi-covariant functions on G

$$
\Gamma_{\rho, \sigma}=\left\{f: G \rightarrow \operatorname{Hom}\left(W_{r}, W_{l}\right) \mid f\left(k_{l} g k_{r}\right)=\rho\left(k_{l}\right) f(g) \sigma\left(k_{r}\right)\right\}
$$

- $\Gamma_{1,1}$ commutative algebra under convolutions

Radial component map

Radial part of the Casimir [Harish-Chandra, Berezin]

- Cartan decomposition $\mathfrak{g}=\mathfrak{k} \oplus \mathfrak{p}$

$$
\mathfrak{g}=\mathfrak{a}_{p} \oplus \mathfrak{m} \oplus \sum_{\lambda \in \Sigma} \mathfrak{g}^{\lambda} \quad \rightarrow \cdots \rightarrow \quad U(\mathfrak{g})=U\left(\mathfrak{a}_{p}\right) \otimes U(\mathfrak{k}) \otimes U(\mathfrak{m}) \quad U(\mathfrak{k})
$$

- \mathfrak{a}_{p} is the maximal abelian subspace of \mathfrak{p}, the split rank of (G, K)
- On the group level, decomposition takes the from

$$
G=K A_{p} K
$$

- Spherical functions depend effectively on $\operatorname{dim}\left(A_{p}\right)$ variables
- Casimir reduced to an operator on A_{p} using radial decomposition

$$
C_{2}=h^{i j} H_{i} H_{j}+\sum_{\alpha \in P_{+}} \operatorname{coth}(\alpha \cdot t) h_{\tilde{\alpha}}+\text { spin part }
$$

- Harish-Chandra's map $\Pi: U(\mathfrak{g}) \rightarrow \operatorname{Fun}\left(A_{p}\right) \otimes U\left(\mathfrak{a}_{p}\right) \otimes U(\mathfrak{k}) \otimes U(\mathfrak{k})$

Quantum integrabie System@ [Feher, Pusztai; Reshetikhin, Stokman; Oblomkov; Etingof, Frenkel, Kirillov...]

Calogero-Sutherland Hamiltonian [Olshanetsky, Perelomov]

- Radial part of the Laplacian conjugate to the CS Hamiltonian

$$
\begin{aligned}
H & =\partial_{t_{1}}^{2}+\partial_{t_{2}}^{2}+\frac{1-D_{+}^{2}}{2 \sinh ^{2}\left(t_{1}+t_{2}\right)}+\frac{1-D_{-}^{2}}{2 \sinh ^{2}\left(t_{1}-t_{2}\right)}-\frac{d^{2}-2 d+2}{2} \\
& +\frac{M_{1 a} M_{1 a}-\frac{1}{4}(d-2)(d-4)}{\sinh ^{2} t_{1}}+\frac{M_{2 a} M_{2 a}-\frac{1}{4}(d-2)(d-4)}{\sinh ^{2} t_{2}}-\frac{1}{2} M^{a b} M_{a b}
\end{aligned}
$$

- Higher Casimirs ensure integrability
- Equivalent to the Dolan-Osborn equation for scalars

Related systems

- SUSY extension as a nilpotent perturbation [IB, Schomens, sooko]
- Systems involving defects IIB, Isachenkov, Liendo, Linke, Schomerus]
- Partial waves for ordinary QFT are rank 1 spherical functions

Insufficiency of Casimirs

Casimir operators [BLMQS, PRL 126 (2021)]

- For four-point functions, $2^{\text {nd }}$ and $4^{\text {th }}$ order Casimirs measure weight and spin of propagating field

- Four Casimir operators to measure weights and spins
- Five cross ratios \rightarrow complete by the "vertex operator"

$$
\mathcal{V}_{4}=\kappa_{4}^{\alpha_{1} \ldots \alpha_{4}}\left(X_{\alpha_{1}}^{(12)}-X_{\alpha_{1}}^{(3)}\right) \ldots\left(X_{\alpha_{4}}^{(12)}-X_{\alpha_{4}}^{(3)}\right)
$$

- Wish to generalise to higher-point functions

Phase space of N-point functions

Solutions to Ward identities

- Correlators = invariants in the N-fold tensor product of principal series

$$
\mathcal{H}_{\text {red }}=\mathcal{H}^{G}=\left(\pi_{1} \otimes \cdots \otimes \pi_{N}\right)^{G}
$$

Gaudin model

- \mathcal{H} carries the action of the algebra

$$
\left[\boldsymbol{X}_{\alpha}^{(i)}, \boldsymbol{X}_{\beta}^{(j)}\right]=\delta_{i j} f_{\alpha \beta}^{\gamma} X_{\gamma}^{(i)}
$$

- Gaudin Hamiltonians constructed with the help of Lax matrix

$$
\mathcal{L}_{\alpha}(z)=\sum_{i=1}^{N} \frac{X_{\alpha}^{(i)}}{z-z_{i}}, \quad \mathcal{H}_{p}(z)=\kappa^{\alpha_{1} \ldots \alpha_{p}} \mathcal{L}_{\alpha_{1}}(z) \ldots \mathcal{L}_{\alpha_{p}}(z)+\ldots
$$

- Diagonal symmetry = Gaudin Hamiltonians preserve $\mathcal{H}_{\text {red }}$

$$
\left[\mathcal{H}_{p}(z), \mathcal{H}_{q}(w)\right]=0, \quad\left[\sum X_{\alpha}^{(i)}, \mathcal{H}_{p}(z)\right]=0
$$

Edge and vertex operators

Colliding punctures

- "Sites" $z_{1}, \ldots, z_{N}=$ parameters with no CFT counterpart
- Simple limit with $z_{N} \rightarrow \infty$ and each $z_{i<N} \rightarrow 0,1$
- Scaling dependent on OPE topology

Edge and vertex operators [BLMQS, JHEP 10 (2021)]

- Each edge r breaks $\underline{N}=I_{r, 1} \cup I_{r, 2}$. Form Casimirs

$$
\mathcal{D}_{r}^{p}=\kappa_{p}^{\alpha_{1} \ldots \alpha_{p}} X_{\alpha_{1}}^{\left(I_{r, 1}\right)} \ldots X_{\alpha_{p}}^{\left(I_{r, 1}\right)}
$$

- Each vertex ρ breaks $\underline{N}=I_{\rho, 1} \cup I_{\rho, 2} \cup I_{\rho, 3}$

$$
\mathcal{D}_{\rho, 12}^{p, \nu}=\kappa_{\rho}^{\alpha_{1} \ldots \alpha_{\rho}} X_{\alpha_{1}}^{\left(I_{\rho, 1}\right)} \ldots X_{\alpha_{\nu}}^{\left(I_{\rho}, 1\right)} X_{\alpha_{\nu+1}}^{\left(I_{\rho, 2}\right)} \cdots X_{\alpha_{\rho}}^{\left(\rho_{\rho}, 2\right)}
$$

- \{Gaudin Hamiltonians\} \rightarrow \{edge operators, vertex operators\}
- Strong evidence for completeness

OPE limits of Gaudin models

$$
z_{i}=x^{N-1-i}
$$

$$
\begin{array}{lll}
z_{1}=x^{3}, & z_{3}=x+x^{3}, & z_{5}=1 \\
z_{2}=x^{2} & z_{4}=x+x^{2}, & z_{6}=x^{-1}
\end{array}
$$

$$
\mathcal{L}_{\alpha}(z)=\frac{X_{\alpha}^{(1)}}{z-x^{3}}+\frac{X_{\alpha}^{(2)}}{z-x^{2}}+\frac{X_{\alpha}^{(3)}}{z-x-x^{3}}
$$

$$
+\frac{X_{\alpha}^{(4)}}{z-x-x^{2}}+\frac{X_{\alpha}^{(5)}}{z-1}+\frac{X_{\alpha}^{(6)}}{z-x^{-1}}
$$

Counting dependencies

Counting of edge operators

- Increase by one in each step towards centre until $\operatorname{rank}(G)$ is reached

Completed by vertex operators

- Comb channel has single variable vertices, while the snowflake vertex has three variables

OPE-adapted coordinates

Comb channel six-point function [BLMQS, JHEP 06 (2022)]

- coordinates $\left(z_{i}, \bar{z}_{i}\right)$ defined using four-point subdiagrams
- coordinates (w_{1}, w_{2}) defined using five-point subdiagrams
- six-point coordinate Υ

OPE limit

$$
z_{2}, \bar{z}_{2}, \Upsilon \rightarrow 0
$$

Conformal frame

$$
x_{2}=0, \quad x_{4}=e_{1}, \quad x_{3}=\infty, \quad w_{1}=\sin ^{2} \frac{\phi}{2}
$$

Spinning Calogero-Sutherland Hamiltonian

Factorised partial wave

Properties

- 9 conformal invariants reduce to 6 in the limit

$$
\psi\left(z_{i}, \bar{z}_{i}, w_{j}, \Upsilon\right) \stackrel{z_{2}, \bar{z}_{2}, \Upsilon \rightarrow 0}{\sim} z_{2}^{\frac{1}{2}\left(\Delta_{b}+l_{b}+\ell_{b}\right)} \bar{z}_{2}^{\frac{1}{2}\left(\Delta_{b}-l_{b}-\ell_{b}\right)} \Upsilon^{\ell_{b}} \psi\left(z_{1}, \bar{z}_{1}, w_{1}, z_{3}, \bar{z}_{3}, w_{2}\right)
$$

- Hamiltonians separate into variables $\left(z_{1}, \bar{z}_{1}, w_{1}\right)$ and $\left(z_{3}, \bar{z}_{3}, w_{2}\right)$
- Quadratic Hamiltonians = spinning Calogero-Sutherland

Scalar-scalar-scalar-MST 2 Hamiltonian

The Hamiltonian

Substitutions for generators give the one-sided Hamiltonian

$$
\begin{aligned}
& H_{l, \ell}^{(b)}=\partial_{t_{1}}^{2}+\partial_{t_{2}}^{2}+\frac{1-\left(2 b+\ell-I+2 X \partial_{X}\right)^{2}}{2 \sinh ^{2}\left(t_{1}+t_{2}\right)}+\frac{1-\left(2 b-\ell+I-2 X \partial_{X}\right)^{2}}{2 \sinh ^{2}\left(t_{1}-t_{2}\right)} \\
& +\frac{L_{l, \ell}(X)-\frac{1}{4}(d-2)(d-4)}{\sinh ^{2} t_{1}}+\frac{L_{l, \ell}(-X)-\frac{1}{4}(d-2)(d-4)}{\sinh ^{2} t_{2}}-\frac{d^{2}-2 d+2}{2}
\end{aligned}
$$

where $2 b=\Delta_{3}-\Delta_{b}$ and

$$
\begin{aligned}
L_{I, \ell}(X) & =-X(1-X)^{2} \partial_{X}^{2}-\left(\ell(1-X)-2(1-I) X+\frac{d-2}{2}(1+X)\right)(1-X) \partial_{X} \\
& +\left(1-I-\frac{d-2}{2}\right)(\ell(1-X)+I X)-\frac{I(d-2)}{2}
\end{aligned}
$$

Reduction to a vertex

Vertex reduction [BLMQS, JHEP 11 (2021)]

Elliptic Calogero-Moser model

- Act with \mathcal{V}_{4} on functions of the form

$$
\psi\left(z_{1}, \bar{z}_{1}, z_{2}, \bar{z}_{2}, w\right) \stackrel{z_{i}, \bar{z}_{i} \rightarrow 0}{\sim} \bar{z}_{1}^{\frac{\Delta_{a}-l_{a}}{2}} z_{1}^{\frac{\Delta_{a}+l_{a}}{2}} z_{2}^{\frac{\Delta_{b}+l_{b}}{2}} \bar{z}_{2}^{\frac{\Delta_{b}-l_{b}}{2}} \psi(w)
$$

- Produces $4^{\text {th }}$ order differential operator $H\left(w, \partial_{w}\right)$ with four singular points

$$
z_{0}=0, \quad z_{1}=\frac{1+i}{2}, \quad z_{2}=\frac{i}{2}, \quad z_{3}=\frac{1}{2}
$$

- Coincides with elliptic CM Hamiltonian of Etingof, Felder, Ma, Veselov

Summary of results

(1) A Gaudin model adapted to any CFT correlation function in any channel
(2) Coordinates compatible with OPE limits
(3) OPE factorisation of six-point conformal partial waves
(4) Relations between Gaudin and CMS models

Future directions and open questions

(1) Lightcone bootstrap for six-point functions
and how to formulate numerical bootstrap?
(2) General solution theory?
\rightarrow Bethe ansatz? Separation of variables? Weight-shifting operators?
\rightarrow Ideal: build partial waves by "gluing"edge and vertex wavefunctions
(3) Universality and CFTs with defects:
\rightarrow thee-point blocks from the radial component map [with V. Schomerus]
\rightarrow cyclotomic Gaudin models [with S. Lacroix and V. Schomerus]
(4) Extension of harmonic analysis methods to non-conformal theories $\rightarrow S$-matrix partial waves [with F. Russo and A. Vichi]

Thank you!

Radial component map on $S L(2, \mathbb{R})$

Generators and bracket relations

$$
\left[H, E_{+}\right]=E_{+}, \quad\left[H, E_{-}\right]=-E_{-}, \quad\left[E_{+}, E_{-}\right]=2 H
$$

Unprimed and primed generators of \mathfrak{k}

$$
h=e^{t H}, \quad Y=\frac{1}{2}\left(E_{+}-E_{-}\right), \quad Y^{\prime}=h^{-1} Y h=\frac{1}{2}\left(e^{-t} E_{+}-e^{t} E_{-}\right)
$$

Spherical functions and the Cartan decomposition

$$
\Gamma_{m, n}=\left\{f: G \rightarrow \mathbb{C} \mid f\left(e^{\varphi Y} g e^{\psi Y}\right)=e^{i(m \varphi-n \psi)} f(g)\right\}, \quad g(\varphi, t, \psi)=e^{\varphi Y} e^{t H} e^{\psi Y}
$$

Radial decomposition of the Casimir

$$
C_{2}=H^{2}+\frac{1}{2}\left\{E_{+}, E_{-}\right\}=H^{2}+\operatorname{coth} t H+\frac{1}{\sinh ^{2} t}\left(Y^{\prime 2}-2 \cosh t Y^{\prime} Y+Y^{2}\right)
$$

Substitutions $\left\{H \rightarrow \partial_{t}, Y^{\prime} \rightarrow i m, Y \rightarrow-i n\right\}$ lead to $\left.\Delta\right|_{r_{m, n}}$

$$
\Delta_{m, n}=\partial_{t}^{2}+\operatorname{coth} t \partial_{t}-\frac{1}{\sinh ^{2} t}\left(m^{2}+2 m n \cosh t+n^{2}\right)
$$

Decompositions of the conformal Lie algebra

Cartan decomposition

$$
\mathfrak{g}=\mathfrak{a}_{p} \oplus h^{-1} \mathfrak{q} h \oplus \mathfrak{k}, \quad \mathfrak{k}=\mathfrak{m} \oplus \mathfrak{q}
$$

Gauss decomposition $\mathfrak{g}=\mathfrak{a}_{p} \oplus \mathfrak{m} \oplus \mathfrak{n} \oplus \overline{\mathfrak{n}}$
rank 1: $\mathfrak{g}=\mathfrak{s o}(1,1) \oplus \mathfrak{s o}(d) \oplus \mathbb{R}^{d} \oplus \mathbb{R}^{d}$
rank 2: $\mathfrak{g}=\mathbb{R}^{2} \oplus \mathfrak{s o}(d-2) \oplus \mathfrak{n} \oplus \overline{\mathfrak{n}}$
Iwasawa decomposition $\mathfrak{g}=\mathfrak{k} \oplus \mathfrak{a}_{p} \oplus \mathfrak{n}$,

$$
\begin{array}{ll}
\text { rank 1: } & \mathfrak{g}=\mathfrak{s o}(d+1) \oplus \mathfrak{s o}(1,1) \oplus \mathbb{R}^{d} \\
\text { rank 2: } & \mathfrak{g}=(\mathfrak{s o}(1,1) \oplus \mathfrak{s o}(d)) \oplus \mathbb{R}^{2} \oplus \mathfrak{n}
\end{array}
$$

Three-point functions of spinning fields

Abstractly, the space of three-point functions is

$$
\left(W_{1} \otimes W_{2} \otimes W_{3}\right)^{S O(d-1)}
$$

If two fields are scalars, only one tensor structure

$$
\#=\operatorname{dim} W_{1}^{S O(d-1)}=1
$$

STT-STT-scalar three-point function

$$
\left\langle\mathcal{O}_{1}\left(x_{1}, z_{1}\right) \mathcal{O}_{2}\left(x_{2}, z_{2}\right) \varphi_{3}\left(x_{3}\right)\right\rangle=\Omega\left(x_{i}, z_{j}\right) t(X)
$$

with

$$
\Omega\left(x_{i}, z_{j}\right)=\frac{\left(X_{1 ; 32} \cdot z_{1}\right)^{l_{1}}\left(X_{2 ; 13} \cdot z_{2}\right)^{l_{2}}}{\left(X_{3 ; 21}^{2}\right)^{-\frac{\Delta_{3}}{2}}\left(X_{2 ; 13}^{2}\right)^{\frac{l_{2}-\Delta_{2}}{2}}\left(X_{1 ; 32}^{2}\right)^{\frac{1_{1}-\Delta_{1}}{2}}}, \quad X=\frac{1}{X_{12}^{2}} \frac{z_{1 \mu} J^{\mu \nu}\left(x_{12}\right) z_{2 \nu}}{\left(X_{1 ; 32} \cdot z_{1}\right)\left(X_{2 ; 13} \cdot z_{2}\right)}
$$

Similarly $\mathrm{MST}_{2}-\mathrm{MST}_{2}$-scalar three-point function depends on two variables.

OPE limit of the Gaudin model

Combinatorially polynomials define "vertex Lax matrices"

$$
\mathcal{L}_{\alpha}^{\rho}(z) \equiv \frac{X_{\alpha}^{\left(\rho_{\rho, 1}\right)}}{z}+\frac{X_{\alpha}^{\left(I_{\rho, 2}\right)}}{z-1}=\lim _{x \rightarrow 0} x^{n_{\rho}} \mathcal{L}_{\alpha}\left(x^{n_{\rho}} z+g_{\rho}(x), z_{i}\right) .
$$

Associated Hamiltonians used to extract vertex operators

$$
\mathcal{H}_{\rho}^{(p)}(z)=\kappa^{\alpha_{1} \ldots \alpha_{\rho}} \mathcal{L}_{\alpha_{1}}^{\rho}(z) \ldots \mathcal{L}_{\alpha_{\rho}}^{\rho}(z)+\cdots=\sum_{\nu=0}^{p} \frac{\mathcal{D}_{\rho, 12}^{p, \nu}}{z^{\nu}(z-1)^{p-\nu}}+\ldots
$$

