
BOOTSTRAP THE LATTICE YANG-MILLS THEORY
work with Vladimir Kazakov

Zechuan Zheng
July 28, 2022

IGST 2022



BOOTSTRAP

Basically bootstrap method is solving problems in theoretical
physics by optimization theory.

∙ Quadratic programming:

min y
s.t. y = x2 + 3x+ 1

(1)

∙ Linear programming:

max 300x+ 100y
s.t. 6x+ 3y ≤ 40

x− 3y ≤ 0
x+ 1

4y ≤ 4

(2)
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MOTIVATION

∙ Non-perturbative formulation.
∙ A competitive numerical method.

2



SMALL PIECES OF OPTIMIZATION THEORY

∙ Quadratic programming:

min y
s.t. y = x2 + 3x+ 1

(3)

∙ Linear programming:

max 300x+ 100y
s.t. 6x+ 3y ≤ 40

x− 3y ≤ 0
x+ 1

4y ≤ 4

(4)
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SEMI-DEFINITE PROGRAMMING

∙ Semi-definite Programming:

min 2x+ 3y

s.t.
(
x 1
1 y

)
⪰ 0 (5)

∙ Linear programming and Quadratic programming are special
situations of Semi-definite Programming(SDP).

∙ They all fall into the class of Convex Optimization.
∙ Generally we cannot solve large-scale non-convex optimization
problem (NP hard).
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A SIMPLEST BOOTSTRAP MODEL

Consider the single-variable integral:

Z =

∫ ∞

−∞
exp(−x

2

2 − gx
4

4 )dx, g > 0, (6)

We want to compute its k-moment for a given g:

Wk =
1
Z

∫ ∞

−∞
xk exp(−x

2

2 − gx
4

4 )dx (7)

We have a lot of choices to do the integration!
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LOOP EQUATIONS AND GLOBAL SYMMETRIES

Loop equations are Dyson-Schwinger equations. They can be derived
by make the variable translation x→ x+ ϵ or in our model by
integration by part:

(k+ 1)Wk = Wk+2 + gWk+4 (8)

Global symmetry:
Wk = 0, for odd k (9)

The conclusion is all the k-moments are linear functions ofW2, so
correlation matrix is a linear function ofW2.
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CORRELATION MATRIX

The bootstrap method is that considering the expectations of square
of polynomials are always positive semi-definite:

1
Z

∫ ∞

−∞
(
∑

αixi)2 exp(−
x2
2 − gx

4

4 ) ≥ 0, ∀α (10)

This is a quadratic form in α, its positivity is equivalent to:

W =


W0 W1 W2 . . .

W1 W2 W3 . . .

W2 W3 W4 . . .
...

...
... . . .

 ⪰ 0 (11)

This condition will be referred as the positivity of correlation matrix.
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BOOTSTRAP

We can solve the Semi-Definite Programming(SDP) maximizing or
minimizingW2 constrained by a truncation of the positivity of
correlation matrix:

min ormax W2 (12)
WΛ ⪰ 0 (13)

HereWΛ is the top (Λ + 1)× (Λ + 1) sub-matrix ofW.
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RESULT

Analytic result:

W2 =
π
(
−I− 1

4

(
1
8g

)
+ (4g+ 1)I 1

4

(
1
8g

)
− I 3

4

(
1
8g

)
+ I 5

4

(
1
8g

))
2
√
2gK 1

4

(
1
8g

) (14)

For g = 1, Λ = 10, we can get the numerical bootstrap result:

0.4679137 ≤ W2 = 0.4679199170 ≤ 0.4679214 (15)
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RESULT
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REMARKS

∙ Weak coupling perturbation totally fails at g = 1.
∙ Justification/Convergence
∙ Uniqueness/Generalization
∙ Symmetry: Not necessary but efficient IfW1 ̸= 0,

−2.9968× 10−6 ≤ W1 ≤ 2.9968× 10−6 (16)
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REMARKS

∙ Symmetry: block-diagonal through re-arrangement of the vector:



1 x2 x4 . . . x x3 . . .

1 1 W2 W4
x2 W2 W4 W6 . . . 0x4 W4 W6 W8
...

... . . .
x W2 W4 . . .

x3 0 W4 W6
...

... . . .


⪰ 0.
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MULTI-MATRIX BOOTSTRAP: AN EXAMPLE

Here we propose to study the following two-matrix model:

Z = lim
N→∞

∫
dN

2
AdN

2
B e−Ntr(−h[A,B]2/2+A2/2+gA4/4+B2/2+gB4/4) (17)

The integration is over Hermitian matrix. To the best of our
knowledge, this model with general g and h value, is not solvable!

TrA2, TrA4, TrA2B2, TrABAB, TrA6, TrA4B2, TrA3BAB, TrA2BA2B, TrA8,
TrA6B2, TrA5BAB, TrA4BA2B, TrA4B4, TrA3BA3B, TrA3BAB3, TrA3B2AB2,
TrA2BABAB2, TrA2BAB2AB, TrA2B2A2B2, TrABABABAB . . .

(18)
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RESULT



0.4217 0.4218 0.4219 0.4220 0.4221
0.3332

0.3333

0.3334

0.3335

0.3336

+

Λ = 11, g = h = 1 :
{
0.421783612 ≤ ⟨TrA2⟩ ≤ 0.421784687
0.333341358 ≤ ⟨TrA4⟩ ≤ 0.333342131

(19)
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COMPARE WITH MC

Compared to the MC study of the same model[Jha, 2021], we are
convinced that for this model bootstrap is at least two order of
magnitude more efficient than MC.

∙ MC: 80-85 hours for N=800 simulation to get 4.5 digits.
∙ Bootstrap: ∼ 40 hours to get 6 digits. (These are old results and
can be greatly improved by at least one order of magnitude.)
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LATTICE GAUGE THEORY

We are going to bootstrap the large Nc limit of the following theory:

Z =

∫ ∏
x, µ

dUµ(x) exp(−S) (20)

S = −Nc2λ
∑
P

Re trUP (21)

where UP is the product of four unitary link variables around the
plaquette P and we sum up over all plaquettes P, including both
orientations. In our last work we bootstrap the one plaquette
average:

uP =
1
Nc

⟨trUP⟩ (22)
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RESULT

(a) 4D (b) 3D

Figure: Our bootstrap results for plaquette average in 4D and 3D LGT: upper
bounds at Lmax = 8 (yellow domain) at Lmax = 12 (orange curves) and
Lmax = 16 (blue curves). The red circles represent the MC data for SU(10) LGT
(with 5 purple squares for SU(12)). Dashed upper and lower lines represent
the 3-loop PT and strong coupling expansion, respectively.
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MAKEENKO-MIGDAL LOOP EQUATIONS

Doing the following infinitesimal transformation
Uµ(x) → Uµ(x)(1+ iϵ) to the Wilson loopW[C], we can get the
following loop equations schematically:

(linear) + 2λW[C] = 2λ(nonlinear) (23)

-
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MAKEENKO-MIGDAL LOOP EQUATIONS

(linear) + 2λW[C] = 2λ(nonlinear) (24)

− 1+ − + 2λ = 0
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MAKEENKO-MIGDAL LOOP EQUATIONS

(linear) + 2λW[C] = 2λ(nonlinear) (25)

− − + = 0
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MAKEENKO-MIGDAL LOOP EQUATIONS

(linear) + 2λW[C] = 2λ(nonlinear) (26)

-
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POSITIVITY BY HERMITIAN CONJUGATION

In parallel to the bootstrap for Hermitian matrix model, we have:

Path∗T = Reverse ◦ Path (27)

For a simplest example:

Path1 = , Path2 = (28)

( Path1 Path2

Path†
1 1 uP

Path†
2 uP 1

)
⪰ 0. (29)
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POSITIVITY BY HERMITIAN CONJUGATION

Of course the matrix can be arbitrarily big when we consider multiple
Wilson paths:
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POSITIVITY BY HERMITIAN CONJUGATION



I

I 1

1

1

1

1

1

1

1

1



⪰ 0.
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BOOTSTRAP

There are actually 6 Wilson loops in the matrix:

(30)

− − + = 0

− 1+ − + 2λ = 0
After the optimization, we get (λ = 1):

0 ≤ ≤ 0.69300
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POSITIVITY BY INNER PRODUCT

Generalization: Any inner products defined on the vector space of
operators or its subspace could leads to positivity condition:

⟨O|O⟩ = ⟨O†O⟩ = α∗TMα ≥ 0⇔ M ⪰ 0. (31)

In the above case of single-variable integration and Hermitian matrix
integration, we were taking adjoint to be Hermitian conjugation:

O† = O∗T (32)
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REFLECTION POSITIVITY

We can also define the inner product by reflection positivity:

O† = ΘO (33)

Figure: Three reflection symmetries on the lattice allowing new positivity
conditions on Wilson loops combining the original and reflected Wilson
lines. 27



REFLECTION POSITIVITY

Reflection Positivity is a new independent positivity condition (Gray
curve and Orange curve).
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SYMMETRY REDUCTION

Coming from the matrix of inner products, our positivity conditions is
formally similar to S-matrix. It is a well-known fact that we can
decompose the S-matrix w.r.t the spin channel.

We notice that our inner product defined above is invariant under
some symmetry group.

⟨(g ◦ O1)|(g ◦ O2)⟩ = ⟨O1|O2⟩, ∀g ∈ G (34)

We can decompose the positivity conditions w.r.t the irreducible
representation of the symmetry group. (This is mathematically
guaranteed)
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SYMMETRY GROUP

For the correlation matrix with 0→ 0, the invariant group G is
Bd × Z2. Here Bd is the Hyperoctahedral group in D spacetime
dimensions. It acts on the Wilson path by doing the corresponding
spacetime rotation and reflection on the lattice. Z2 is the group
reversing the path.

Dimension Hermitian
Conjugation

site&link re-
flection

diagonal re-
flection

2 B2 × Z2 Z2 × Z2 Z2 × Z2
3 B3 × Z2 B2 × Z2 Z32
4 B4 × Z2 B3 × Z2 B2 × Z22

Table: Invariant groups of correlation and reflection matrices 0→ 0
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SYMMETRY GROUP

(A1,+1) : I,
1
8
( + + + + + + + )

(B2,+1) :
1
8
(− − − − + + + + )

(E,+1) : 1
4
(− − + + )

(B1,−1) :
1
8
(− − − − + + + + )

(A2,−1) :
1
8
(− − − − + + + + )

(E,−1) : 1
4
(− − + + )

(35)
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SYMMETRY GROUP

 1
1
4 + 1

8 + 1
4 + 1

8 + 1
8 + 1

8

 ⪰ 0,

− 14 +
1
8 − 1

4 +
1
8 +

1
8 +

1
8 ≥ 0,

− 14 +
1
4 − 1

4 +
1
4 ≥ 0,

1
4 − 1

8 − 1
4 − 1

8 +
1
8 +

1
8 ≥ 0,

− 14 − 1
8 +

1
4 − 1

8 +
1
8 +

1
8 ≥ 0,

1
4 − 1

4 − 1
4 +

1
4 ≥ 0.

(36)
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SELECTION OF MULTIPLETS OF WILSON PATH

We discard positivity constraints from less important Wilson Paths.

To better illustrate the efficiency of these reduction and selection
techniques, take an example of the correlation matrix for the paths
0→ 0, at 3D and Lmax = 16: it has a huge size 6505× 6505. After the
symmetry reduction and truncation of the multiplets, the positivity
of the correlation matrix becomes the positivity conditions of 20
smaller matrices 1, each with size:

38, 15, 25, 18, 62, 33, 68, 75, 56, 78,
22, 18, 34, 15, 56, 33, 57, 76, 69, 73

(37)

So the SDP gets greatly simplified.
1The invariant group B3 × Z2 has 20 irreducible representations.

33



RELAXATION

Most naively we treat all the quadratic terms as independent
variables, and eliminate them from the loop equations. Actually we
have better choice.
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RELAXATION

Suppose we have only three quadratic “loop equations”:
x2 = T1
y2 = T2
xy = T3

(38)

Here Ti(i = 1, 2, 3) is the new variable we introduce to replace the
quadratic terms in the loop equations.

We can relax them to make them convex by replacing x2 = T1 with
x2 ≤ T1 or, in the positive semi-definite matrix form,(

1 x
x T1

)
⪰ 0 . (39)
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RELAXATION

But the same operation cannot be reproduced for equation xy = T3,
since neither xy ≤ T3 nor xy ≥ T3 is convex 2. It is tempting to
consider the positive semi-definite combinations:

(x+ αy)2 ≤ T1 + α2T2 + 2αT3, ∀α ∈ R . (40)

In its turn, it is equivalent to:

Det

1 x y
x T1 T3
y T3 T2

 ≥ 0. (41)

2Because the bilinear form xy is not positive semi-definite.
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RELAXATION

We come to the conclusion that:1 x y
x T1 T3
y T3 T2

 ⪰ 0. (42)

Our general strategy: we treat the quadratic terms in the loop
equations as independent variable, and replace the algebraic
equality by the convex inequality:

X = xxT (43)

to:

R =

(
1 xT

x X

)
⪰ 0. (44)
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RELAXATION

In our example, at Lmax = 12, the relaxation matrix is:(
1

q

)
⪰ 0. (45)

Here q is the variable in place of square of .
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FINAL SCHEME

min /max ,

subject to MM loop equations

CMirrep ⪰ 0,

RefMirrep ⪰ 0,×3
R ⪰ 0

(46)
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RESULT

Figure: 2D: the upper and lower bounds from our bootstrap at Lmax = 8
(yellow region), Lmax = 12 (orange curves) and Lmax = 16 (blue curves). The
dashed line is the exact solution.

uP =
{
1− λ

2 , forλ ≤ 1
1
2λ , forλ ≥ 1

(47)
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RESULT

(a) 4D (b) 3D

Figure: Our bootstrap results for plaquette average in 4D and 3D LGT: upper
bounds at Lmax = 8 (yellow domain) at Lmax = 12 (orange curves) and
Lmax = 16 (blue curves). The red circles represent the MC data for SU(10) LGT
(with 5 purple squares for SU(12)). Dashed upper and lower lines represent
the 3-loop PT and strong coupling expansion, respectively.
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SOME REMARKS

∙ MM loop equation is over-determined, i.e. contains linear
redundancy!

∙ Number of independent MM loop equations is smaller than the
number of Wilson loops.

∙ Wilson loop average is real. This is from the charge conjugation
symmetry. (Path reversing symmetry)
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SOME REMARKS

∙ Better than MC in weak coupling limit, which is physical.
∙ Is perfectible. We expect much better result at L = 24.
∙ Not limited to large N, i.e. could be straightforwardly generalized
to N = 3.

∙ We can get estimation for all higher Wilson loops up to bootstrap
cutoff.

∙ Solver: MOSEK. 20 hours CPU time for a single point.
∙ We are not far from real physics!
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QUESTIONS?
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