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Motivation

We are interested in evaluating dynamical correlation functions for a one-dimensional translation
invariant Hamiltonian system in the infinite volume

(01(X1, 1)07(X, 1)+ 0,(X,, 1,))
with respect to a local thermal equilibrium (or GGE)
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when x;, ; are very large for i = 1,---, n but the ratio x;/?, is kept finite (Euler scaling)



In terms of the Feynman path integral

(x, p)
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This is rather hard to evaluate! Could there be a more efficient way to compute it?

In fact, on the hydrodynamic (large) scale, we don’t have to know all the possible trajectories of ¢.

Relevant degrees of freedom on the hydro scale: those protected by conservation laws

We devise a theory, which we term the ballistic macroscopic fluctuation theory (BMFT), that
provides a more efficient path-integral formula based on the reduction of DOFs.



Hydrodynamics and local relaxation

We consider a translation invariant many-body system with /V conservation laws

Suppose the initial condition is given by some local (generalised) Gibbs ensemble with the statistical
average
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We define the space-time averaged mesoscopic observables via coarse-graining
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Separation of scales: LKL x?
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The key observables in the BMFT are

o(x,t) = 0(£x, 1)

Euler scaling

We regard them as fluctuating mesoscopic variables. Their fluctuations are set by the initial
condition

Hydrodynamics predicts

. o R 1 B <\ Y | )
o(x, 1) := fhm (0(¢x, (1)), = <0>_ﬂ(x,t)9 (e )_ = ETr e 2i-0 P9 o

On the Euler scale, the average of any local operator can be thought of as a functional of
g(x, 1) = <Q>_,B(x,t)’ €. A
o(x, 1) = (0)[a(x, H] = o[q(x, 1)]

Local relaxation of averages



Hydrodynamics describes the time-evolution of the means of fluctuating variables via the
hydrodynamic equation 0,9.(x, t) + d_j (x, 1) = 0, or equivalently,

Dacn+ Allaenlogn =0, Allg)i= 2t = Dk

(x, [ax,n]0,q/(x, 1) =0, A/[q] := =

4 ; ﬂ q] l ﬂ aqi aﬁk

Here CX = (C~1),; with the susceptibility matrix Ci=— i JR dx <ql'(x90)q]'(090)>_;

One can also write down a hydro equation for the Lagrange multipliers

atﬂi(x, 1) + Aji[_ﬁ(x, t)]axﬁj(x, £) =0 Positivity of C implies a

bijection g & [

How would then the fluctuations propagate in space-time? Or more precisely, according to which
measure would o(x, t) fluctuate?



Initial fluctuations

To consider the propagation of fluctuations, we start with the fluctuations of the initial condition

We are interested in the fluctuations of the mesoscopic variables g;(x,0) = g.(£x,0). Its correlations
can be obtained from a measure dP;_:[g(-,0)] = du[q(-,0)] exp(=¢F [_q(-,O)])/ Z, with

F1q(-,0)] = J

dx (ﬁiili(x)(ql-(x,O) — Qjpi (X)) + S[%(x)] — S[_Q(X,O)]) [Derrida, 2007]
R

Defining _ﬁ(gc,O) via g;(x,0) = ql-[_ﬁ(x,O)], the saddle point of the path integral J - leini[_q(-,O)]
gives the /'(x,0) = p. .(x)

How do we generalise leini[_q(-,O)] to dP [_q( ., )]?



Local relaxation of fluctuations (LRF)

We make the following assumption

Fluctuating variables o(x, t) = 0(£x, £t) do not fluctuate
independently but are fixed functionals of charge densities, I.e.

o(x, 1) = o[q(x, 1) |

To fix o[ * |, we can determine it by taking f = 0 and invoke

(5) B(x.0) = J leini[q(-,())] O[Q(X,O)] (because 0(x,0) = 0[_q(x,0)] according to the ansatz)
) (R) B B
The saddle point of it yields o[g(x,0)] = o[qg(x,0)], i.e. o(x,t) = 0o(£x, t) = o[qg(x, )]

i Local relaxation of averages Local relaxation of fluctuations |

<0(X, t))f — o[g(x, 1] o(x,1) = O[_q(X, 1] 7 5 o0 ‘



LRF implies j.(x, 1) = j(£x, £1) = ji[fj(x, 1)]. The measure le[_q( ., + )] is given by

dP[g( -, )] = dulg(-,-)] e 74" Oﬂé[ag +0,1g]]

Initial continuity | RE

flat measure . . $
fluctuation equation

With this measure we write the BMFT average as the path-integral over S := R X [0,7]
t

Ly x,T)

Rare fluctuation
o(x,1) = o[q(x,1)]
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o(x, ) = o[q(x, 1]
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The main claim of the BMFT is

(o)r=((*))

o(x,0) = o[g(x,0)]



The power of the (B)MFT is that we do not have to evaluate the path-integrals, as they turn out to be
dominated by their saddle points when  — oo! [Bertini, De Sole, Gabirielli, Jona-Lasinio, and Landim, 2015]

For instance, for an observable O|g| in space-time, we have
— flim £~ log({exp(£0[g)), = Folg’]

Where F ,lq( -, - )] = Fplq(-,0)] — Olg( -, - )]. Here, g* is the minimiser of the BMFT action
Solg.H) = Folg) + | dxdt 0, + 0,5 q)
S

H serve as the Lagrange multipliers associated to the Euler equation, hence

atqi* T ale[_q*] =0



As applications of the BMFT, we are interested in two objects:

8o, 0. X153 X, 1,):= lim £ =Lo0(¢x,, )0 (Ex,, € 1)) Euler scale dynamical correlation functions

1 T _ _
A, (€T) _ ~ Scaled cumulant generating function
F(A, T):= fh_}n;o e log(e V. JACT) = L dz j.(0,1) (SCGF)

Note J(£T) = ¢ | dtj(0.0) =: £J(T)

The BMFT allows us to evaluate these quantities by choosing O, ... = Za 1 420419(x,, 1,)] and
O.yer = AJ(T):

Curr
n

S A Xis by s X, 1) = F orrl
01,. ( 1> %1 ) d/lld/ln [_Q]

A==, =0

1
F(/l’ T) — ?‘O}curr[_q*]

with COI’I'[q] — 0 [q] and Curr[q] — OCUI‘I'[_q]

COIT —



Current fluctuations from the BMFT

The equation satisfied by g*, the BMFT equation, is obtained from 05, =0

38% O(x) — Hi(x, T) = 0,
| 0500+ ATP D10 =0, |
| O H(x, 1) + ATA(x, D10 H(x, 1) = 0. |

(75,601~ Fo0 + Al — w0y = 0

Since S, s stationary under the change of g and H, we readily see d%TF (A, T)=J(T),i.e.

CuIT

1 A T
FO,T) =—J cu'[ dr 3, [g%)(0,0)]
I 0 0



Dynamical correlation functions from the BMFT

In a similar way one can also compute the Euler-scale dynamical correlation function

For simplicity we focus on the two-point function 5, , (X}, 7};X,, 7,), which is given by
11>1n

d2
S". ".(xat;xat):_ LOZ
Qzlanz 1> %1 PARY) dﬂldﬂz COIT
A1=4,=0
Since at the saddle point ¢ = g™ we have 0, # ... = — ¢, (X, ;). Hence
Séil’giz(xl, tl’ XZ’ tz) — aqiz(xZ, tz) . l .= /11
A=0




The associated MFT eqguation is then

 f0) - L)+ H 0 =0, |
| H'(x,T) =0 |

| atﬁ "+ Ajiaxﬁj —
| OH'+ A/0H + 25, 8(x — x5t —1,) = 0. |

The solution of the MFT equation actually predicts the existence of the long-range correlations
amongst the fluid cells on the same time slice t; = 1, = 1, I.e.

lim £~ l(qll(fxl, ft)qlz(fxz, 1)), = ql i (X1, 1, %5, 1) = C,

11
£ — 00 192

(X1, O(x; — X))+ E;

Initially E; ; (x,Xp; 0) =

Even if there is no long-range correlation initially, it could build up by the coupling between normal
modes on an inhomogeneous background



Note that the long-range correlations observed here is of purely hydrodynamic nature

[

i multiple conservation laws v/

| interaction v
¢ initial inhomogeneity 4

- X

Having more than one conservation laws is crucial (TASEP shows no such correlations)

Long-range correlations could also exist on a different scale (diffusive) [Derrida, 2007; Ortiz de Zarate and
Sengers, 2004]. Non-locality of the NESS density matrix also amounts to long-range correlations even

without interactions [Doyon, Lucas, Schalm, and Bhaseen, 2015; De Nardis and Panfil, 2018].

We are going to compute these quantities explicitly for integrable systems



Generalised hydrodynamics (GHD)

For simplicity, we consider a diagonally-scattering integrable model with single species (e.g. sinh-
Gordon, Lieb-Liniger)

A Kinetic intuition behind GHD is that on a hydrodynamic scale, quasi-particles in integrable systems

behave pretty much like tracer particles of hard-rods.
[Boldrighini, Dobrushin, and Sukhov, 1983; Spohn, 1991; Doyon and Spohn, 2017; Doyon, TY, and Caux, 2018]

qtrs(t)
An exact expression of the current average (i.e. the matrix A) turns out to be instrumental in GHD.

[See reviews: Borsi, Pozsgay, and Pristyak, 2021;
Cortés Cubero, TY, and Spohn, 2021]



On the Euler scale, quasi-particles in integrable systems are transported according to the GHD
equation [Castro-Alvaredo, Doyon, and TY, 2016; Bertini, Collura, De Nardis, Fagotti, 2016]

atg(-xa t) axl(xa t) =0 L= atpg(xa t) T ax(vgeff(xa t)pe(-xa t)) =0

or equivalently dtﬁg(x, H+A f[p(x, t)]dxﬂ¢(x, ) =0withaGGE @ ~ e™” "0s. Here vgff iS

E, 1
=L | a5 15
Po  Polr

To solve initial value problems we shall use the GHD equation in terms of the normal mode

0,€.(x, 1) + vg’ff(x, 1)0,€y(x,1) =0

Note (R _1)¢9 at,xﬂ¢ = 8t,x€9 where R = 1 — ng/2x diagonalises A: RAR™! = diag vt

No shock appears in GHD!



Current fluctuations in integrable systems

We simply adopt the BMFT we formulated to (quantum) integrable systems. We want to compute
F(A,T) = lim log({e*i T))f/ (z/” T) The MFT equation is

£ — 00

11n1

—Ah?8% O(x) + HY(x, T) = 0.10) = h%10)
0,8%(x, 1) + A J(x, )9, f(x, 1) = 0 W= hj
0.H(x,1) + A J(x, N0 H(x,1) = 0

,W(s@ BO(x) — ﬁg(x 0) + ,6‘9 (x) — HH(x 0)=0 |

We rewrite it in terms of normal modes. Recall that 3% and €, are related by (R~ 1) t xﬁ¢ =0, ,€
Motivated by this we define normal modes associated to H": 0

(R~ 1)9(3 H? =: 9,,G"

The property 0,0, GY = 0.0,G? is instrumental



The MFT equation for the auxiliary field becomes

Ah90(0,.7)Ox) — Gx, T) = 0

. , (@™ =R a?
0,GOx, 1) + ve™(x, )0 .G%x, 1) = 0 ’

The method of characteristics allows us to solve the equation via
Gox, 1) = G%(rP(x, 1), T) = h?¥90,T)O(%(x, 1)), where r¥(x, ) = %°(x, t; T).

A
ro(X, 1)
-+ 0

With this the MFT equation is now recast into the GHD equation )
with the A-dependent initial condition

' pO(x,0) = f:(x) + Ah°O(x) — AR (0,T)O(x — u?(0,T)h"**(0,T)
0,5°(x, 1) + A J(x, 10, (x,1) = 0

The evaluation of the current j g)(O,t) gives (4, T)



In the homogeneous case one can readily compute the cumulants and get

h eff‘ (hdr 9)2

om — 4| Xo = po(1 — ny) d"F(A,1)

h ff | 7,dr;¢p d 2 dry27d Cn =
o™ = s | v O (s, B2 + 3sfngnR1d ) dir

A=0

They coincide with the results obtained by the Ballistic fluctuation theory, which were also
corroborated against Hard-rod simulations. [Doyon and Myers, 2020]

A virtue of the BMFT is that the extension to inhomogeneous cases is straightforward. For instance
C, for the partitioning protocol (i.e. p;.; = p; & pp) and obtained

P = y(0) [ v5"(0) | (h"°(0))*

Fully fixed by the NESS at & = x/t = 0!



Comparison against hard-rod simulations
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A gas of hard-rods consists of rigid rods that scatter elastically, and hence is an integrable system

+—>
a

N N—1
| o0
_ 2 _
H = Jz_l, Epj T E , VHR(%‘H o q]')a VHR(X) — {O

. X| 2 a
J=1

The onset to the stationary value is controlled by the diffusive corrections



Euler dynamical correlation functions in integrable systems

The MFT equation for the correlation function S, (xl, 115Xy, 1) iS
ll )

ﬁe(x 0) 1fu(X) +H e(x 0)

H(x,T) =
, I1,1 0,7
atﬁH+A98xﬁ¢=O 7
0,H’ + A [0 H? + /Iheé(x xl)é(t — zl) =
In terms of the solution, the correlator is computed by
54,4, X1 113 X0, 1) = 1 —4;,(%, 1) = — [(h)" 0,613, 1) o
1=0 B




As in the case of SCGF, the MFT equation is reduced to the following GHD equation

BOx,0) = . (x) — 20 ((RT) (xy, 1)RY (x,, 1)@ (x — u¢)>
0,4%(x, 1) + A J(x,00,p%(x, 1) = 0

Let us take ¢, = f, = t. The Euler dynamical correlator S, . (x;, t; x,, f) turns out to be given by

QZI’QZz

54,4, X1 1%, 1) = €y (X1, DO(xy = 20)+ By (1, 03 0), Gy (%1, 8) = (B )9 xp(hy ) (xy, 1)

(X1, Xp3 1) 1= [hl-jrﬁ)(ege] (X5, 1)

1112

, , , X o DY, 1) = R ulx, 0,000 | (RTYA5 (x, DO, 1) = iy, 1) = Wi, DZh™1 0, DO, = 3,)
E°(x,1) = Ey(x, 1) + w(x, 1) dy[ ¥y &1 (y, 1) -
J —00 D(x, 1) := — w(x, t){ dy[xZ51"(y,0)
oel(u’(x, 1)) -
0 ini ) _ 0
w (x, t) — 0 e __ 1,dr;0 6(X U (Xl’t)) —T T\@ 7,dr;a _a
ptot;ﬁ(ué’(x’ I),O) D5(x,0) ;== = h™7(x, 1) 0%, 1).0: 1) +(R™) (X 0)0 [(R ) ](x1 DO — u(xy, 1))

Eo(x, 1) = D(x, 1) + DY(x, 1)



Comparison against hard-rod simulations (bump-release protocol)
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Despite of the small numbers, the agreements are very satisfying!

By increasing £, one can observe the convergence of the numbers



Conclusion and outlook
® The BMFT is a new theory to study the fluctuation-induced physics, such as current fluctuations
and large scale dynamical correlation functions, in ballistic many-body systems

® The underlying idea of the BMFT is local relaxation of fluctuations

® |t works particularly well for integrable systems. The results also agree with hard-rods simulations
very well

® |t is highly desirable to derive our predictions microscopically using a simple model such as the
AHR model

® Obtaining the KPZ function from the BMF T+superdiffusive corrections?

® Quantum fluctuations?



