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Ballistic macroscopic fluctuation theory

for


 Integrable systems



Motivation


We are interested in evaluating dynamical correlation functions for a one-dimensional translation 
invariant Hamiltonian system in the infinite volume


with respect to a local thermal equilibrium (or GGE)


when  are very large for  but the ratio  is kept finite (Euler scaling)xi, ti i = 1,⋯, n xi/ti

⟨ ̂o1(x1, t1) ̂o2(x2, t2)⋯ ̂on(xn, tn)⟩c
ℓ

⟨ ∙ ⟩ℓ =
1
Z

Tr exp [−∫ℝ
dx β(x/ℓ)ĥ(x,0)] ∙



In terms of the Feynman path integral


This is rather hard to evaluate! Could there be a more efficient way to compute it?


In fact, on the hydrodynamic (large) scale, we don’t have to know all the possible trajectories of . 


We devise a theory, which we term the ballistic macroscopic fluctuation theory (BMFT), that 
provides a more efficient path-integral formula based on the reduction of DOFs.

ϕ

⟨ ̂o1(x1, t1) ̂o2(x2, t2)⋯ ̂on(xn, tn)⟩thermal

= ∫ 𝒟ϕ e− ∫β
0 dt ∫ℝ dx ℒE[ϕ(x,t)] ̂o1(x1, t1) ̂o2(x2, t2)⋯ ̂on(xn, tn)

(x, β)
t

x

Relevant degrees of freedom on the hydro scale: those protected by conservation laws


ϕ(x, t)



Hydrodynamics and local relaxation


We consider a translation invariant many-body system with  conservation laws


Suppose the initial condition is given by some local (generalised) Gibbs ensemble with the statistical 
average


We define the space-time averaged mesoscopic observables via coarse-graining


Separation of scales: 

N

ℓmicro ≪ L ≪ ℓ

⟨ ∙ ⟩ℓ =
1
Z

Tr exp [−
N−1

∑
i=0

∫ℝ
dx βi(x/ℓ) ̂qi(x,0)] ∙

o(x, t) =
1

vL2 ∫
L/2

−L/2
dy∫

vL/2

−vL/2
ds ̂o(x + y, t + s)

̂o(x, t)
vL

L

o(x, t)



The key observables in the BMFT are


We regard them as fluctuating mesoscopic variables. Their fluctuations are set by the initial 
condition


Hydrodynamics predicts


On the Euler scale, the average of any local operator can be thought of as a functional of 
, i.e.𝚚(x, t) = ⟨ ̂q⟩β(x,t)

𝚘(x, t) = ⟨ ̂o⟩[𝚚(x, t)] = 𝚘[𝚚(x, t)]

Euler scaling

o(x, t) = o(ℓx, ℓt)

𝚘(x, t) := lim
ℓ→∞

⟨o(ℓx, ℓt)⟩ℓ = ⟨ ̂o⟩β(x,t), ⟨ ∙ ⟩β :=
1
Z

Tr [e−∑N−1
i=0 βiQi ∙ ]

Local relaxation of averages



Hydrodynamics describes the time-evolution of the means of fluctuating variables via the 
hydrodynamic equation , or equivalently,


Here   with the susceptibility matrix 


One can also write down a hydro equation for the Lagrange multipliers


How would then the fluctuations propagate in space-time? Or more precisely, according to which 
measure would  fluctuate?

∂t𝚚i(x, t) + ∂x𝚓i(x, t) = 0

𝖢ki = (𝖢−1)ki 𝖢ij = −
∂𝚚j

∂βi = ∫
ℝ

dx ⟨ ̂qi(x,0) ̂qj(0,0)⟩c
β

o(x, t)

∂t𝚚i(x, t) + 𝖠 j
i [𝚚(x, t)]∂x𝚚j(x, t) = 0, 𝖠 j

i [𝚚] :=
∂𝚓j[𝚚]

∂𝚚i
=

∂𝚓j

∂βk
𝖢ki

∂tβi(x, t) + 𝖠 i
j [β(x, t)]∂xβ j(x, t) = 0 Positivity of  implies a


bijection 
𝖢
q ↔ β



Initial fluctuations


To consider the propagation of fluctuations, we start with the fluctuations of the initial condition


We are interested in the fluctuations of the mesoscopic variables . Its correlations 
can be obtained from a measure  with


Defining  via , the saddle point of the path integral  
gives the 


How do we generalise  to ?

qi(x,0) = qi(ℓx,0)
dℙini[q(⋅,0)] = dμ[q(⋅,0)] exp(−ℓℱ[q(⋅,0)])/Zℓ

β(x,0) qi(x,0) = 𝚚i[β(x,0)] ∫
(ℝ)

dℙini[q(⋅,0)]
βi(x,0) = βi

ini(x)

dℙini[q(⋅,0)] dℙ[q( ⋅ , ⋅ )]

ℱ[q(⋅,0)] = ∫ℝ
dx (βi

ini(x)(qi(x,0) − 𝚚ini,i(x)) + s[𝚚ini(x)] − s[q(x,0)]) [Derrida, 2007]



Local relaxation of fluctuations (LRF)

We make the following assumption


To fix , we can determine it by taking  and invoke


The saddle point of it yields , i.e. 

o[ ∙ ] t = 0

o[q(x,0)] = 𝚘[q(x,0)] o(x, t) = o(ℓx, ℓt) = 𝚘[q(x, t)]

Fluctuating variables  do not fluctuate 
independently but are fixed functionals of charge densities, i.e.


 

o(x, t) = o(ℓx, ℓt)

o(x, t) = o[q(x, t)]

⟨ ̂o⟩β(x,0) = ∫(ℝ)
dℙini[q(⋅,0)] o[q(x,0)] (because  according to the ansatz)o(x,0) = o[q(x,0)]

⟨o(x, t)⟩ℓ = 𝚘[𝚚(x, t)] o(x, t) = 𝚘[q(x, t)]
Local relaxation of averages Local relaxation of fluctuations

ℓ → ∞



LRF implies . The measure  is given by


With this measure we write the BMFT average as the path-integral over  


 


The main claim of the BMFT is


ji(x, t) = ji(ℓx, ℓt) = 𝚓i[q(x, t)] dℙ[q( ⋅ , ⋅ )]

𝕊 := ℝ × [0,T]

dℙ[q( ⋅ , ⋅ )] = dμ[q( ⋅ , ⋅ )] e−ℓℱ[q(⋅,0)]δ[∂tq + ∂x𝚓[q]]

flat measure initial

fluctuation

continuity

equation + LRF

⟨⟨ ∙ ⟩⟩ℓ:=
1
Zℓ ∫(𝕊)

dμ[q( ⋅ , ⋅ )] e−ℓℱ[q(⋅,0)]δ(∂tq + ∂x𝚓[q]) ∙

=
1
Zℓ ∫(𝕊)

dμ[q( ⋅ , ⋅ )]dμ[H( ⋅ , ⋅ )] e−ℓℱ[q(⋅,0)]e−ℓ ∫𝕊 dxdt Hi(∂tqi+∂x𝚓i[q]) ∙

⟨ ∙ ⟩ℓ = ⟨⟨ ∙ ⟩⟩ℓ



The power of the (B)MFT is that we do not have to evaluate the path-integrals, as they turn out to be 
dominated by their saddle points when !


For instance, for an observable  in space-time, we have


Where . Here,  is the minimiser of the BMFT action


 serve as the Lagrange multipliers associated to the Euler equation, hence 

ℓ → ∞

O[q]

ℱO[q( ⋅ , ⋅ )] = ℱO[q(⋅,0)] − O[q( ⋅ , ⋅ )] q*

H

− lim
ℓ→∞

ℓ−1 log⟨⟨exp(ℓO[q])⟩⟩ℓ = ℱO[q*]

SO[q, H] = ℱO[q] + ∫𝕊
dxdt Hi(∂tqi + ∂x𝚓i[q])

∂tq*i + ∂x𝚓i[q*] = 0

[Bertini, De Sole, Gabrielli, Jona-Lasinio, and Landim, 2015]



As applications of the BMFT, we are interested in two objects: 


Note 


The BMFT allows us to evaluate these quantities by choosing  and 
:


with  and 

̂J(ℓT) = ℓ ∫ T
0

dt j(0,t) =: ℓJ(T)

Ocorr = ∑n
a=1 λa𝚘a[q(xa, ta)]

Ocurr = λJ(T)

ℱcorr[q] := ℱOcorr
[q] ℱcurr[q] := ℱOcurr

[q]

S ̂o1,…, ̂on
(x1, t1; ⋯; xn, tn) = −

dn

dλ1⋯dλn
ℱcorr[q*]

λ1=⋯=λn=0

F(λ, T) = −
1
T

ℱcurr[q*]

S ̂o1,…, ̂on
(x1, t1; ⋯; xn, tn):= lim

ℓ→∞
ℓn−1⟨o1(ℓx1, ℓt1)⋯on(ℓxn, ℓtn)⟩c

ℓ

F(λ, T):= lim
ℓ→∞

1
ℓT

log⟨eλ ̂Ji*
(ℓT)⟩ℓ, ̂Ji(ℓT) := ∫

ℓT

0
dt ̂𝚥i(0,t)

Euler scale dynamical correlation functions

Scaled cumulant generating function 
(SCGF)



Current fluctuations from the BMFT


The equation satisfied by , the BMFT equation, is obtained from 


Since  is stationary under the change of  and , we readily see , i.e.


q* δSOcurr
= 0

SOcurr
q H d

dλ
TF(λ, T) = J(T)

λδi
i*Θ(x) − βi(x,0) + βi

ini(x) − Hi(x,0) = 0,

λδi
i*Θ(x) − Hi(x, T) = 0,

∂tβi(x, t) + 𝖠 i
j [β(x, t)]∂xβ j(x, t) = 0,

∂tHi(x, t) + 𝖠 i
j [β(x, t)]∂xHj(x, t) = 0.

F(λ, T) =
1
T ∫

λ

0
dλ′ ∫

T

0
dt 𝚓i*[q(λ′ )(0,t)]



Dynamical correlation functions from the BMFT


In a similar way one can also compute the Euler-scale dynamical correlation function


For simplicity we focus on the two-point function , which is given by


Since at the saddle point  we have . Hence

S ̂qi1, ̂qi2
(x1, t1; x2, t2)

q = q* ∂λ2
ℱcorr = − qi2(x2, t2)

S ̂qi1, ̂qi2
(x1, t1; x2, t2) = −

d2

dλ1dλ2
ℱcorr

λ1=λ2=0

.

S ̂qi1, ̂qi2
(x1, t1; x2, t2) =

d
dλ

𝚚i2(x2, t2)
λ=0

, λ := λ1



The associated MFT equation is then


The solution of the MFT equation actually predicts the existence of the long-range correlations 
amongst the fluid cells on the same time slice , i.e. 


Initially 


Even if there is no long-range correlation initially, it could build up by the coupling between normal 
modes on an inhomogeneous background

t1 = t2 = t

Ei1i2(x1, x2; 0) = 0

βi(x,0) − βi
ini(x) + Hi(x,0) = 0,

Hi(x, T) = 0,
∂tβi + 𝖠 i

j ∂xβ j = 0,

∂tHi + 𝖠 i
j ∂xHj + λδi

i1δ(x − x1)δ(t − t1) = 0.

lim
ℓ→∞

ℓ−1⟨qi1(ℓx1, ℓt)qi2(ℓx2, ℓt)⟩ℓ = S ̂qi1, ̂qi2
(x1, t; x2, t) = 𝖢i1i2(x1, t)δ(x1 − x2)+Ei1i2(x1, x2; t)



Note that the long-range correlations observed here is of purely hydrodynamic nature


Having more than one conservation laws is crucial (TASEP shows no such correlations)


Long-range correlations could also exist on a different scale (diffusive) [Derrida, 2007; Ortiz de Zárate and 
Sengers, 2004]. Non-locality of the NESS density matrix also amounts to long-range correlations even 
without interactions [Doyon, Lucas, Schalm, and Bhaseen, 2015; De Nardis and Panfil, 2018].


We are going to compute these quantities explicitly for integrable systems

veff
i

veff
j

x

t

multiple conservation laws  ✔ 
interaction                              ✔  
initial inhomogeneity            ✔



Generalised hydrodynamics (GHD)

For simplicity, we consider a diagonally-scattering integrable model with single species (e.g. sinh-
Gordon, Lieb-Liniger)


A kinetic intuition behind GHD is that on a hydrodynamic scale, quasi-particles in integrable systems 
behave pretty much like tracer particles of hard-rods.


An exact expression of the current average (i.e. the matrix ) turns out to be instrumental in GHD.𝖠

[Boldrighini, Dobrushin, and Sukhov, 1983; Spohn, 1991; Doyon and Spohn, 2017; Doyon, TY, and Caux, 2018]

[See reviews: Borsi, Pozsgay, and Pristyák, 2021;

Cortés Cubero, TY, and Spohn, 2021]



On the Euler scale, quasi-particles in integrable systems are transported according to the GHD 
equation


or equivalently  with a GGE . Here  is


To solve initial value problems we shall use the GHD equation in terms of the normal mode 

Note  where  diagonalises : 


No shock appears in GHD!

∂tβθ(x, t) + A θ
ϕ [ρ.(x, t)]∂xβϕ(x, t) = 0 ϱ ∼ e−βθQ̂θ veff

θ

(R−1) θ
ϕ ∂t,xβϕ = ∂t,xϵθ R = 1 − nφ/2π 𝖠 R𝖠R−1 = diag veff

∂tρθ(x, t) + ∂x(veff
θ (x, t)ρθ(x, t)) = 0

∂tϵθ(x, t) + veff
θ (x, t)∂xϵθ(x, t) = 0

[Castro-Alvaredo, Doyon, and TY, 2016; Bertini, Collura, De Nardis, Fagotti, 2016]

∂t𝚚(x, t) + ∂x𝚓(x, t) = 0

veff
θ =

E′ θ

p′ θ
+

1
p′ θ ∫ℝ

dϕ φ ϕ
θ ρϕ(veff

ϕ − veff
θ )



Current fluctuations in integrable systems


We simply adopt the BMFT we formulated to (quantum) integrable systems. We want to compute 
. The MFT equation is


We rewrite it in terms of normal modes. Recall that   and  are related by . 
Motivated by this we define normal modes associated to :


The property  is instrumental

F(λ, T) = lim
ℓ→∞

log⟨eλ ̂Ji*
(ℓT)⟩ℓ/(ℓT)

βθ ϵθ (R−1) θ
ϕ ∂t,xβϕ = ∂t,xϵθ

Hθ

∂t∂xGθ = ∂x∂tGθ

λhθδθ
θ*

Θ(x) − βθ(x,0) + βθ
ini(x) − Hθ(x,0) = 0

−λhθδθ
θ*

Θ(x) + Hθ(x, T) = 0

∂tβθ(x, t) + 𝖠 θ
ϕ (x, t)∂xβϕ(x, t) = 0

∂tHθ(x, t) + 𝖠 θ
ϕ (x, t)∂xHϕ(x, t) = 0

Q̂i |θ⟩ = hθ
i |θ⟩

hθ:= hθ
i*

(R−1) θ
ϕ ∂t,xHϕ =: ∂t,xGθ



The MFT equation for the auxiliary field becomes


The method of characteristics allows us to solve the equation via 
, where . 


With this the MFT equation is now recast into the GHD equation 

with the -dependent initial condition


The evaluation of the current  gives 

Gθ(x, t) = Gθ(rθ(x, t), T) = hdr;θ(0,T)Θ(rθ(x, t)) rθ(x, t) = 𝒰θ(x, t; T)

λ

j(λ)
θ (0,t) F(λ, T)

λhdr;θ(0,T)Θ(x) − Gθ(x, T) = 0
∂tGθ(x, t) + veff;θ(x, t)∂xGθ(x, t) = 0

, (adr,θ := (R−T)θ
ϕaϕ)

t

x
uθ(x, t)

(x, t)

T
rθ(x, t)

s

𝒰θ(x, t; s)βθ(x,0) = βθ
ini(x) + λhθΘ(x) − λR θ

ϕ (0,T)Θ(x − uϕ(0,T))hdr;ϕ(0,T)

∂tβθ(x, t) + 𝖠 θ
ϕ (x, t)∂xβϕ(x, t) = 0



In the homogeneous case one can readily compute the cumulants and get


They coincide with the results obtained by the Ballistic fluctuation theory, which were also 
corroborated against Hard-rod simulations.


A virtue of the BMFT is that the extension to inhomogeneous cases is straightforward. For instance 
 for the partitioning protocol (i.e. ) and obtained
c2 ρini = ρL ⊗ ρR

chom
2 = χθ |veff

θ | (hdr;θ
i*

)2, χθ := ρθ(1 − nθ)

chom
3 = χϕ |veff

ϕ |hdr;ϕ
i* (sϕ f̃ϕ(hdr;ϕ

i*
)2 + 3[sf(hdr

i* )2]dr
ϕ )

, cn :=
dnF(λ,1)

dλn
λ=0

cpart
2 = χθ(0) |veff

θ (0) | (hdr;θ
i*

(0))2

Fully fixed by the NESS at !ξ = x/t = 0

[Doyon and Myers, 2020]



A gas of hard-rods consists of rigid rods that scatter elastically, and hence is an integrable system


The onset to the stationary value is controlled by the diffusive corrections
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H =
N

∑
j=1

1
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p2
j +
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∑
j=1

VHR(qj+1 − qj), VHR(x) = {∞ |x | < a
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Euler dynamical correlation functions in integrable systems


The MFT equation for the correlation function  is


In terms of the solution, the correlator is computed by


S ̂qi1, ̂qi2
(x1, t1; x2, t2)

βθ(x,0) − βθ
ini(x) + Hθ(x,0) = 0

Hθ(x, T) = 0
∂tβθ + 𝖠 θ

ϕ ∂xβϕ = 0

∂tHθ + 𝖠 θ
ϕ ∂xHϕ + λhθ

i1δ(x − x1)δ(t − t1) = 0

, t1, t2 ≠ 0,T

S ̂qi1, ̂qi2
(x1, t1; x2, t2) =

d
dλ

𝚚i2(x2, t2)
λ=0

= − [(hi2)
dr;θ χθ∂λϵθ](x2, t2)

λ=0
.



As in the case of SCGF, the MFT equation is reduced to the following GHD equation


Let us take . The Euler dynamical correlator  turns out to be given byt1 = t2 = t S ̂qi1, ̂qi2
(x1, t; x2, t)

βθ(x,0) = βθ
ini(x) − λ∂ ((RT)θ

ϕ(x1, t1)hdr;ϕ(x1, t1)Θ(x − uϕ))
∂tβθ(x, t) + 𝖠 θ

ϕ (x, t)∂xβϕ(x, t) = 0

S ̂qi1, ̂qi2
(x1, t; x2, t) = 𝖢i1i2(x1, t)δ(x1 − x2)+Ei1i2(x1, x2; t), 𝖢i1i2(x1, t) := [(hi1)

dr;θ χθ(hi2)
dr;θ](x1, t)

Ei1i2(x1, x2; t) := − [hdr;θ
i2

χθℰθ](x2, t)

ℰθ(x, t) = ℰθ
0(x, t) + wθ(x, t)∫

x

−∞
dy[χℰ]dr;θ(y, t)

wθ(x, t) :=
∂ϵθ

ini(uθ(x, t))
ρtot;θ(uθ(x, t),0)

ℰθ
0(x, t) = 𝒟θ

1(x, t) + 𝒟θ
2(x, t)

𝒟θ
1(x, t) := (R−T)θ

ϕ(uθ(x, t),0)∂ [(RT)ϕ
αhdr;α](x1, t)Θ(uθ(x, t) − uα(x1, t)) − wθ(x, t)[χhdr]dr;θ(x1, t)Θ(x2 − x1)

𝒟θ
2(x, t) := − wθ(x, t)∫

uθ(x,t)

−∞
dy[χ𝒟3]dr;θ(y,0)

𝒟θ
3(x,0) := − hdr;θ(x1, t)

δ(x − uθ(x1, t))
∂𝒰θ(uθ(x1, t),0; t)

+ (R−T)θ
ϕ(x,0)∂ [(RT)ϕ

αhdr;α](x1, t)Θ(x − uα(x1, t))



Despite of the small numbers, the agreements are very satisfying!


By increasing , one can observe the convergence of the numbersℓ
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Conclusion and outlook


• The BMFT is a new theory to study the fluctuation-induced physics, such as current fluctuations 
and large scale dynamical correlation functions, in ballistic many-body systems


• The underlying idea of the BMFT is local relaxation of fluctuations


• It works particularly well for integrable systems. The results also agree with hard-rods simulations 
very well


• It is highly desirable to derive our predictions microscopically using a simple model such as the 
AHR model


•Obtaining the KPZ function from the BMFT+superdiffusive corrections?


•Quantum fluctuations?


