Highlights from QM2022 from a hadron physics perspective

Zoltan Varga

NFO Seminar 2022.05.09.

Parallel sessions in 15 different categories

- T01: Initial state physics and approach to thermal equilibrium
- T02: Chirality, vorticity and spin polarization
- T03: QCD matter at finite temperature and density
- T04: Jets, high-pT hadrons, and medium response
- T05: QGP in small and medium systems
- T06: Lattice QCD and heavy-ion
- T07: Correlations and fluctuations
- T08: Strongly coupled systems
- T09: Ultra-peripheral collisions
- T10: Baryon rich matter, neutron stars, and gravitational waves
- T11: Heavy flavors, quarkonia, and strangeness production
- T12: New theoretical developments
- T13: Electroweak probes
- T14: Hadron production and collective dynamics
- T15: Future facilities and new instrumentation

Parallel sessions in 15 different categories

- T01: Initial state physics and approach to thermal equilibrium
- T02: Chirality, vorticity and spin polarization
- T03: QCD matter at finite temperature and density
- T04: Jets, high-pT hadrons, and medium response
- T05: QGP in small and medium systems
- T06: Lattice QCD and heavy-ion
- T07: Correlations and fluctuations
- T08: Strongly coupled systems
- T09: Ultra-peripheral collisions
- T10: Baryon rich matter, neutron stars, and gravitational waves
- T11: Heavy flavors, quarkonia, and strangeness production
- T12: New theoretical developments
- T13: Electroweak probes
- T14: Hadron production and collective dynamics
- T15: Future facilities and new instrumentation

Correlations and fluctuations

Proton-Deuteron Femtoscopy in Au+Au Collisions at 3 GeV

- Depletion for small k* range is observable
- Data can be described by Lednicky & Lyuboshitz model^{1,2}, assuming a spherical source size of r=3-4 fm.

1.LednickýR,LyuboshitzV.Sov.J.Nucl.Phys.35:770(1982) 2.J. Arvieux, Nucl. Phys. A 221 (1974) 253–268

Talk: Ke Mi (STAR)

Deuteron-Deuteron Femtoscopy in Au+Au Collisions at 3 GeV

- Depletion for small k* range is observable
- Data can be described by Lednicky & Lyuboshitz model^{1,2}, assuming a spherical source size of r=4-5 fm \rightarrow larger compared to p-d!

1,I.N. Filikhin and S.L. Yakovlev, Phys. Atom. Nucl. 63, 55 (2000) 2,I.N. Filikhin and S.L. Yakovlev, Phys. Atom. Nucl. 63, 216 (2000)

Talk: Ke Mi (STAR)

Deuteron-Deuteron Femtoscopy in Au+Au Collisions at 3 GeV

- Compare data with SMASH + CRAB (Correlation After Burner) model!
- Calculating CF with coalescence of deuterons gives better agreement with data → supports that deuteron formation at 3 GeV is dominated by coalescence
- SMASH source size: (4.3 5.9) fm from peripheral to central collisions
- Light nuclei are likely to form via coalescence!

Talk: Ke Mi (STAR)

First measurement of longitudinal decorrelation in pp and peripheral Xe+Xe

- Larger decorrelation in pp compared to Xe+Xe
- Results sensitive to non-flow subtraction methodology
- Disfavors such string models of initial state, where nucleon-nucleon collision is simulated by a low number of long strings

Femtoscopic correlations at CMS

- Femtoscopic correlation functions are important tools to study the space-time structure of the hadron production from the sQGP
- Correlation functions are often assumed to be Gaussian/Exponential → correct description: generalized Gaussian
- α parameter of the correlation function might be connected to the anomalous diffusion in the final state.

One-dimensional fit to correlation function for charged hadrons (Lévy-type) $C(q) = N\{1 - \lambda + \lambda K_C(q; R, \alpha)[1 + \lambda e^{-|qR|^{\alpha}}]\}\Omega(q)$

Coulomb correction

Quantum Statistics

Background (bkg)

- Lévy stability parameter ${f a}$: describing the shape of the source
- Lévy slace parameter R: spatial scale
- Correlation strength λ : core-halo ratio

Talk: Dener S. Lemos (CMS) Poster: Balázs Kórodi (CMS)

Q SMASH: J. Weil et al. Phys.Rev.C 94 (2016) 5, 054905 Coalescence: W.Zhao et al. Phys. Rev. C.98 (2018) 5,054905

Dependence of Lévy stability index α in function of m_{τ} and multiplicity

- The index α was first measured at LHC energies! → Non-Gaussian, centrality dependent behavior is observed.
- α does not depend strongly on $m_{_{T}}.$
- <u>Challenge for phenomology</u>: Centrality dependence is not modeled so far.

Talk: Dener S. Lemos (CMS)

Heavy flavors, strangeness and quarkonia production

Charm production studies in ALICE

Open heavy-flavor production provides a unique opportunity for physics measurements:

- Production restricted to early stages of the collisions, and has a memory of its evolution through QGP
- Under good theoretical control: 1)pQCD for production mechanism
 2)Diffusion treatment for the transport through the medium
- Heavy-flavor quarks retain their identity: flavor and mass → can be "tagged" by heavy-flavor measurements

ITS 1 (ALICE exhibition)

- 6 layers:
- 2 layers of Silicon Pixel Detector (SPD)
- 2 layers of Silicon Drift Detectors (SDD)
- 2 layers of Silicon Strip Detectors (SSD)

Talk: Dener S. Lemos (CMS)

- 7 layers of ALPIDE Monolitic Active Pixel Sensors
- $\rightarrow 10 \text{ m}^2$ active silicon area
- $\rightarrow 12.6 \times 10^9$ pixels

ALICE upgrade program for LHC Run 3&4 is crucial for HF measurements:

Run 3: ITS2 (installed in 2021) Run 4: ITS3 (in prep.)

Promising future: New precise HF measurements down to low p_T !

ITS 3

3 truly cylindrical Si pixel layers → ultra-thin wafer-sized curved sensors → no external connections air-flow cooling

Charm production studies in ALICE

Different regions of interest:

See Luuk Vermunt's talk (ALICE)!

$$D^{0} \longrightarrow K^{-} \pi^{+} \qquad D^{+} \longrightarrow K^{-} \pi^{+} \pi^{+}$$
$$D^{+}_{s} \longrightarrow \varphi \pi^{+} \longrightarrow K^{+} K^{-} \pi^{+}$$
$$D^{*+} \longrightarrow D^{0} \pi^{+} \longrightarrow K^{-} \pi^{+} \pi^{+}$$
$$\Lambda^{+}_{c} \longrightarrow K^{0}_{s} p \longrightarrow \pi^{+} \pi^{-} p$$
$$c \longrightarrow \mu^{\pm} X$$

Intermediate momenta

- Probes the heavy quark hadronisation mechanisms
- Via fragmentation and/or recombination?

Low momenta

- Heavy quarks interact via elastic rescatterings
- Diffusion approach via Langevin dynamics
- Approach thermalisation
- nPDF and shadowing

High momenta

- Heavy quarks interact via gluon radiation
- Quark mass and path-length dependence?

Nuclear modification factor: non-strange D

Lessons:

There is an increasing suppression ($p_T > 3$ GeV/c) for more central collisions, due to increasing **density**, **size** and **lifetime** of the medium

Due to the interplay of so many different effects → **model comparison required** to interpret even these single D-meson measurements

JHEP 01 (2022) 174 NEW!

Talk: Dener S. Lemos (CMS)

Nuclear modification factor: D_s^+ and Λ_c^+

 $R_{AA}(\Lambda_{c}^{+})>R_{AA}(D_{s}^{+})>R_{AA}(D)$ for $p_{T}>4$ GeV/c in the most central collisions → **Hint of hierarchy!** → Indication of <u>modified hadronisation</u> mechanism → Interplay with <u>radial flow</u>?

Non strange D: JHEP 01 (2022) 174

15

Azimuthal anisotrophies for D mesons

• **Positive D** v_2 and v_3 in 0-10% and 30-50% \rightarrow Charm participates in collective expansion!

• **Positive D**_s⁺ v₂ in 2<p_T<8 GeV/c and 30-50% with significance of $6.4\sigma \rightarrow Potential difference w.r.t. non$ strange D? (Uncertainties too large atm...) 16

Non strange D: PLB 813 (2021) 136054

Heavy flavor production in pp collisions

- Heavy flavor hadron production measurements are fundamental tests of pQCD
- Standard description of pp collisions: based on the factorization approach, i.e. <u>fragmentation functions are assumed to be universal</u> among collisions systems (can be constrained by e⁺e⁻ and e⁻p measurements)
- The ratios of particle species: ratios of fragmentation functions, they are sensitive to HF quark hadronization

Charm meson production in pp collisions

- Meson/meson ratios independent of meson $\boldsymbol{p}_{\!\scriptscriptstyle T}$ and collision system
- Agreement with model calculations (FONLL) based on the factorization approach and relying on universal fragmentation functions (e⁺e⁻ and e⁻p) and with e⁺e⁻, e⁻p measurements
- $D_s^+/(D^0+D^+)$ is higher for non-prompt mesons \rightarrow substantial B_s^0 -decay contribution 18
- Further hadronization mechanisms? Non-universal fragmentation functions?

Probe hadronisation with charm-strange

- The ratio is higher in the $2 < p_T < 8$ GeV/c region for 0-10% and 30-50% Pb-Pb.
- Described by models that include strangeness enhancement and fragmentation + recombination.

19

Probing hadronisation with charm baryons

- The ratio is enhanced in the $4 < p_T < 8$ GeV/c region for 0-10% Pb-Pb w.r.t. pp collisions.
- Catania and SHMc only agree qualitatively. TAMU describes data quantitatively!
- We also studied the Λ_c^+/D^0 ratio enhancement with enhanced CR modes, and the role of the underlying event: arXiv:2111.00060 [hep-ph].

Λ_{c}^{+}/D^{0} in pp collisions

Phys. Rev. Lett. 128, 012001 Phys. Rev. Lett. 127, 202301

- Strong p_T dependence observed for prompt $\Lambda_c/D^0 \rightarrow$ same as non-prompt Λ_c/D^0
- No energy dependence between $\sqrt{s}{=}13$ TeV and $\sqrt{s}{=}5.02$ TeV (within uncertainties)
- Ratio is significantly higher for pp than e⁺e⁻ and e⁻p collisions → x2-5 factor of enhancement!

Λ_{c}^{+}/D^{0} in pp collisions – what kind of models?

<u>Catania model</u>

- Thermalised system of u,d,s and gluons assumed
- \circ Mixed hadron formation
 - a. Fragmentation
 - **b.** Coalescence \rightarrow imposed to be the only mechanism for $p \rightarrow 0$

Λ_{c}^{+}/D^{0} in pp collisions – what kind of models?

<u>Statistical Hadronization Model and Relativistic Quark</u> <u>Model (SHM + RQM)</u>

- Hadronization driven by statistical weights governed by hadron masses $(n_i \sim m_i^2 T_H K_2 (m_i/T_H))$ at a hadronization temperature T_H
- Strong feed-down from an augmented set of excited charm baryons
 - \rightarrow PDG: 5 $\Lambda_{\rm c},$ 3 $\Sigma_{\rm c},$ 8 $\Xi_{\rm c},$ 2 $\Omega_{\rm c}$
 - → RQM: additional 18 Λ_c , 42 Σ_c , 62 Ξ_c , 34 Ω_c (not yet measured)

<u>Catania model</u>

- Thermalised system of u,d,s and gluons assumed
- $\circ~$ Mixed hadron formation
 - a. Fragmentation
 - **b.** Coalescence \rightarrow imposed to be the only mechanism for $p \rightarrow 0$

We can look at heavier charmed baryons: $\Xi_{c}^{0,+}$

- Clear p_T dependence and larger than Monash
- Significantly underestimated by models
- Catania model is fairly close to the data

• $\Xi_{c}^{0,+}/\Sigma_{c}^{0,+,++}$ is in agreement with Monash

First D^o-tagged jet measurement at RHIC energies

Observation: Jet energy is redistributed to large distances from the jet axis in the presence of QGP

Possible mechanisms:

- Multiple scattering
- Medium-induced Bremsstrahlung

$$\rho(r) = \frac{1}{\Delta r} \frac{1}{N_{\text{jet}}} \sum_{\text{jet}} \frac{\sum_{\text{track} \in (r_a, r_b)} p_{\text{T,track}}}{p_{\text{T,jet}}}$$

$$r = \sqrt{(\eta_{\text{track}} - \eta_{\text{jet}})^2 + (\phi_{\text{track}} - \phi_{\text{jet}})^2}$$

First D^o-tagged jet measurement at RHIC energies

D reconstruction:

- Kaons and pions are identified using TPC and TOF
- Decay length of $D^{\scriptscriptstyle 0}\sim 123~\mu m$
- HFT can reconstruct D^o candidates based on decay topology
- Correction to jet yield:
- Response matrix for pp $\sqrt{s} = 200$ GeV from PYTHIA and GEANT3 to mimic the detector response
- Single Particle (SP) embedding in heavy ion event to model fluctuations in area-based background subtraction
- Reweight PYTHIA with c-quark distribution from FONLL [1] to modify the shape of the jet p T spectra
- Heavy-flavor jet fragmentation modeled
 using PYTHIA
- Systematics from variation in fragmentation model will be studied later

Talk: Diptanil Roy (STAR)

First measurement of b→D^o azimuthal anizotrophy in PbPb collisions

b quark anisotropy:

\Box Advantages of $b \rightarrow D^0$ channel

✓ Larger branching ratio wrt $b \rightarrow J/\psi$ ✓ Higher mass than leptons: less diluted signal

Mass ordering of flow magnitudes

- Weak $\boldsymbol{p}_{\! T}$ and centrality dependence
- Non-zero v₃

Talk: Milan Stojanovic (CMS)

First measurement of b→D^o azimuthal anizotrophy in PbPb collisions

b quark anisotropy:

\Box Advantages of $b \rightarrow D^0$ channel

✓ Larger branching ratio wrt $b \rightarrow J/\psi$ ✓ Higher mass than leptons: less diluted signal

Qualitative agreement between theory and data

• PHSD magnitude similar as in data (position of maximum shifted towards higher p_T)

Talk: Milan Stojanovic (CMS)

Jets, high-p_T hadrons and medium response

- Measuring back-to-back jet pairs provides access to asymmetric energy loss and
- Provides constraint on the contributions from:
 - Path length dependent energy loss
 - Energy loss functions
- Provides enhanced sensitivity to "small" amounts of jet quenching

$$x_j = rac{p_{\mathrm{T}}^{\mathrm{subleading}}}{p_{\mathrm{T}}^{\mathrm{leading}}}$$

unbalanced dijet: low x_i

balanced dijet: high x_i

Pair normalized: $\frac{1}{N_{pair}} \frac{dN_{pair}}{dx_I}$ \rightarrow enables comparison of the x₁ shape across centrality in PbPb and pp "Absolutely" normalized: $\frac{1}{N_{evt}\langle T_{AA}\rangle} \frac{dN_{pair}}{dx_J}$ NEW!

- \rightarrow enables evaluation of the dijet per event yields as a function of x₁
- \rightarrow Provides insight on the dynamics of the dijet energy loss

- Using absolute normalization enables the study of dijet yields as a function of x₁
- Observation: Peak structure at intermediate x_j → suppression of symmetric dijets
- No evidence for enhancement over pp in the intermediate x₁ range

calculations!

32

Talk: Timothy Rinn (ATLAS)

- R_{AA}(p_{T,1}) → suppression of the leading jet in a dijet
- $R_{AA}(p_{T,2}) \rightarrow$ suppression of the subleading jet in a dijet
- Measurement of R_{AA} quantifies the suppression of leading and subleading jets
- Suppression of subleading jets to leading jets in peripheral PbPb

Dijet measurements

- Measured jet shapes for leading and subleading jets in dijet events as a function of x_j:
 - Leading jets are broadest in balanced events
 - Subleading jets show largest modification in unbalanced events
 Talk: Jussi Viinikainen (CMS)

- Dijet v_2 increasing towards more peripheral events \rightarrow path length dependence
- Dijet v_3 and v_4 consistent with zero.

$$x_j = rac{p_{\mathrm{T}}^{\mathrm{subleading}}}{p_{\mathrm{T}}^{\mathrm{leading}}}$$

unbalanced dijet: low x_i

balanced dijet: high x_i

BACKUP

Charm quark transport models:

	Collisional en. loss	Radiative en. loss	Coalescence	Hydro	nPDF
TAMU	\checkmark	×	\checkmark	\checkmark	\checkmark
LIDO	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
PHSD	\checkmark	X	\checkmark	\checkmark	\checkmark
DAB-MOD	\checkmark	\checkmark	\checkmark	\checkmark	×
Catania	\checkmark	X	\checkmark	\checkmark	\checkmark
MC@sHQ+EPOS	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
LBT	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
POWLANG+HTL	\checkmark	×	\checkmark	\checkmark	\checkmark
LGR	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark

But more importantly: different implementations and input parameters.