Measurement of electric charge dependent splitting of directed flow in STAR experiment at RHIC

Részecskefizika Seminar **Department Of High Energy Physics, Wigner Research Centre for Physics** Hungarian Academy of Sciences

Budapest, Hungary, May 30, 2022

STAR

Ashik Ikbal (Kent State University)

Quark Gluon Plasma (QGP)

- \bullet Later on the universe began to cool down then nucleons, low mass light nuclei and eventually the matter around us are formed
- (QGP)
- To understand early universe => Need to study QGP

• A few microseconds after BigBang, the universe consisted of a hot soup of quarks and gluons

• The deconfined state of quarks and gluons, existed in the early universe - Quark-Gluon Plasma

2/32

How to create QGP?

- Quarks and gluons are confined inside hadrons How do we deconfine them?
- Certain conditions like extremely high pressure (P) and temperature (T) can deconfine them

- Under such conditions, the hadrons get close to each other so that quarks and gluons inside them can fly around freely in an extended volume
- Hadrons to QQP transition takes place at T ~ 10^4 times temperature of the core of the sun
- Big particle collider produces such extremely high T for a short period of time by colliding ions at relativistic energies

Relativistic colliders

Relativistic Heavy Ion Collider (RHIC) at BNL

Energy/(proton mass) ~ 500 Colliding energy ~ Few hundreds of GeV

Ideal places to study QGP

Large Hadron Collider (LHC) at CERN

Energy/(proton mass) ~ 14000 **Colliding energy ~ Few TeV**

Relativistic Heavy Ion Collider

E A ST

The future (>2025) : The Electron Ion collider

P Tribedy, Rutgers Nuclear Physics Seminars, 2018

The future (>2025) : The Electron Ion collider

)n Ior

Relativistic Heavy Ion Collider

The future (>2025) : The Electron Ion collider

)n Ior

Heavy Ion Collisions : QGP at the Lab

- RHIC circulates heavy nuclei (Au) almost at speed of light and smash them together
- Shortly after the collisions (~ 1 fm/c), an enormous amount of energy is released into a tiny volume
- As a result, a QGP medium possibly form
- The QGP expands and cools down rapidly, and when T falls below a critical T, quarks and gluons form bound states - Hadronization
- Then particles get captured in the detectors placed around collision point

Event display of Au+Au collisions at STAR detector

Au+Au 200 GeV Event# 1007 Run# 17172038

Ashik Ikbal, Particle Physics Seminar, Wigner RCP, Budapest

Au

What do we want to know from Au+Au collisions ?

Au+Au 200 GeV Event# 1007 Run# 17172038

Ashik Ikbal, Particle Physics Seminar, Wigner RCP, Budapest

Au

(100 GeV/A)

particles

Something interesting in particle emission pattern

• Particle emission w.r.t transverse plane of collisions in not isotropic

10/32

Something interesting in particle emission pattern

resembles an ellipse

11/32

Ashik Ikbal, Particle Physics Seminar, Wigner RCP, Budapest

Less particles

Initial state collision geometry is like an almond in position space

- Large internal pressure along minor axis than major axis of the position space ellipse => momentum space ellipse
- Position space anisotropy translated into momentum space anisotropy Elliptic flow

12/32

Preferred particle emission in one direction

- Particle emission might be emitted preferably in one direction
- flow

• This anisotropy describes sideward motion of the emitted particles - One directional => Directed

13/32

Characterization of anisotropic flow (v_n)

- Angular distribution is characterized by Fourier series
- Express particle angular distributions in Fourier series,

$$E\frac{d^3N}{dp^3} = \frac{d^2N}{2\pi p_T dp_T dy} \Big(1 + 2\sum_{n=1}^{+\infty} v_n \cos n\Big)$$

where $v_n = \langle \cos n(\phi - \Psi_{RP}) \rangle$

 $\Psi_{RP} \rightarrow Reaction Plane angle$ XZ -> Reaction Plane (RP)

- $V_n \longrightarrow$ flow harmonics
- $V_1 \longrightarrow$ directed flow, $V_2 \longrightarrow$ elliptic flow, $V_3 \longrightarrow$ triangular flow, and so on ...

14/32

What if there is non central collisions?

Spectators

- Non-central HICs (Non-zero impact parameter)
- Charged spectator nuclei produce electric currents (like two parallel current carrying wires in opposite directions
- The currents can produce magnetic fields
- Magnetic fields due to these two sources add up

15/32

Estimates of the produced magnetic field

A crude estimate of the magnetic field (using Biot-Savart Law): A crude estimate of the magnetic field (using Biot-Savart Law): A crude estimate of the magnetic field (using Biot-Savart Law): A crude estimate of the magnetic field (using Biot-Savart Law): A crude estimate of the magnetic field (using Biot-Savart Law): A crude estimate of the magnetic field (using Biot-Savart Law): A crude estimate of the magnetic field (using Biot-Savart Law): A crude estimate of the magnetic field (using Biot-Savart Law): A crude estimate of the magnetic field (using Biot-Savart Law):

 $-eB_y \sim 40m_\pi^2 \sim 10^{18}$ Gauss (At RHIC Au+Au collisions, $\sqrt{s_{NN}} = 200$ GeV, b = 5 fm, t = 0)

- Strongest magnetic field ever produced in the universe
- Field has observable effects on properties of produced particles, such as anisotropic flow

Earth ~0.5 Gauss

STAR magnet ~5000 Gauss

Neutron Star (Magentar) ~ 10¹⁴ Gauss

Heavy ion collisions ~ 10¹⁸ Gauss

Directed flow (v_1) and splitting (Δv_1)

Directed flow (v₁) describes sideward motion of particles and can be measured with particle rapidity

- Splitting: $\Delta v_1 = v_1 (q1, S1) v_1 (q2, s2)$

\odot EM field can have observable consequences on v₁ splitting between charged particles

17/32

EM field drives splitting

- Assume a non-central HIC $(b \neq 0)$
- ${\ensuremath{\, \bullet }}$ Beam direction: \hat{z} , Impact parameter: \hat{x}
- Reaction plane (RP): xz
- Or Charged spectators produce magnetic
 Ansatz in the second field - $\vec{B} \perp RP$

EM field drives splitting - Hall effect

Hall Effect -1 ⊙≡Â

Х

ĩ

- Lorentz force pushes positively and negatively charged particles in opposite directions
- Generated current $\perp B, \vec{u}$ => Hall effect

EM field drives splitting - Faraday and Coulomb effect

- Spectators fly away, \vec{B} decays down fast
- Time varying \vec{B} induces \vec{E} field => 0 Faraday effect
- Charged spectators also generate 0 **Coulomb field**

EM field drives splitting - Hall, Faraday and Coulomb effect

- Faraday, Coulomb and Hall are competing effects
- Net effect of Faraday, Hall and Coulomb affects v₁ and splitting between particles and antiparticles
- Direction of v_1 for positive particles shown by dashed arrows (when Faraday+Coulomb > Hall)
- \bullet Direction of v₁ for negative particles the other way around
- EM field drives v_1 splitting (Δv_1) between particles and anti-particles
- Output Can we measure this splitting?

Splitting (Δv_1): Challenge in measurements (Transport)

- The u, d quarks can be transported from beam rapidity
- Transported quarks suffer a lot more interactions than produced quarks
- Transported quarks have different v₁ than produced quarks
- There is already a v_1 splitting between quarks (transported) and anti-quarks (produced)
- This splitting interferes with the EM field driven splitting becomes difficult to isolate

Splitting (Δv_1): Interplay between transport and EM field

- This Δv_1 -slope difference between proton and anti-proton is negative (Hydro+EMF expectation)
- These two effects convolute Overall effect changes the sign
- This splitting acts as a background effect for EM-field-driven splitting This background should be subtracted

 $\bullet \Delta v_1$ -slope difference between transported proton and anti-proton is positive (UrQMD expectation)

23/32

Splitting (Δv_1): An approach to subtract transported quark effect

- In experiment, it is impossible to distinguish between produced and transported u and d quarks
- Avoid particles containing u, d quarks
- Use only produced particles (only produced constituent quarks) $= ar{u}, ar{d}, ar{s}, ar{s}$ $= K^-, ar{p}, ar{\Lambda}, \phi, ar{\Xi}^+, \Omega^- ext{ and } ar{\Omega}^+$
- With these particles, make a clean case to measure EM fielddriven-splitting
- Output Compare the combinations with same mass at the constituent level
- Apply and test Coalescence-inspired sum same $y - p_T/n_q$ space, with $n_q \rightarrow$ cons Constituent quarks q_i –

A. Ikbal, D. Keane, P. Tribedy, Phys. Rev. C 105, 014912 (2022)

rule:
$$v_1(hadron) = \sum v_1^i(q_i)$$
,
stituent quarks)

Splitting (Δv_1): Testing Coalescence sum rule

Combine particles and make identical quark combinations

• Charge difference, $\Delta q = 0$ and strangeness difference, $\Delta S = 0$

A. Ikbal, D. Keane, P. Tribedy, Phys. Rev. C 105, 014912 (2022)

25/32

Splitting: Combination with non-zero Δq and ΔS

Combine particles and make non-identical quark combinations, same mass at the constituent level

• Charge difference, $\Delta q = 4/3$ and strangeness difference, $\Delta S = 2$

26/32

Making more combinations

• Combinations having same or nearly same quark mass but different Δq and $\Delta S =>$ No transported quark effect

Index	Quark Mass	Charge	Strangeness	Expression
1	$\Delta m = 0$	$\Delta q = 0$	$\Delta S = 0$	$[\bar{p}(\bar{u}\bar{u}\bar{d}) + \phi(s\bar{s})] - [K(\bar{u}s) + \bar{\Lambda}(\bar{u}d\bar{s})]$
2	$\Delta m pprox 0$	$\Delta q = 1$	$\Delta S = 2$	$\left[\bar{\Lambda}(\bar{u}\bar{d}\bar{s})\right] - \left[\frac{1}{3}\Omega^{-}(sss) + \frac{2}{3}\bar{p}(\bar{u}\bar{u}\bar{d})\right]$
3	$\Delta m pprox 0$	$\Delta q = rac{4}{3}$	$\Delta S = 2$	$\left[\overline{\Lambda}(\overline{u}\overline{d}\overline{s})\right] - \left[K(\overline{u}s) + \frac{1}{3}\overline{p}(\overline{u}\overline{u}\overline{d})\right]$
4	$\Delta m = 0$	$\Delta q = 2$	$\Delta S = 6$	$\left[\overline{\Omega}^+(\overline{s}\overline{s}\overline{s}\overline{s}) ight] - \left[\Omega^-(sss) ight]$
5	$\Delta m pprox 0$	$\Delta q = \frac{7}{3}$	$\Delta S = 4$	$[\overline{\Xi}^+(\overline{d}\overline{s}\overline{s})] - [K(\overline{u}s) + \frac{1}{3}\Omega(sss)]$

Only 5 combination differences among many are independent

• Two degenerate combinations in $\Delta S = 2$ - Good cross check

• Measure splitting with Δq and ΔS , though they are correlated

A. Ikbal, D. Keane, P. Tribedy, Phys. Rev. C 105, 014912 (2022)

27/32

Towards measurements: STAR detector and datasets

• TPC+TOF for PID: TPC measures dE/dx of tracks ($|\eta| < 1$, $0 < \phi < 2\pi$) and TOF measures time of flight ($|\eta| < 0.9$)

• EPD ($2.1 < |\eta| < 5.1$) or ZDC ($|\eta| > 6.3$) for event plane reconstruction

Datasets analyzed:

• At $\sqrt{s_{NN}} = 27$ GeV Au+Au at BES-II, and $\sqrt{s_{NN}} = 200 \text{ GeV Au+Au}$ collisions

28/32

Coalescence sum rule at Au+Au @ 27 GeV

Sum rule with identical quark combinations

- Δv_1 slope (with y) ~ 10^{-4}
- Sum rule holds within measured uncertainties

 $v_1[K(\bar{u}s)] + v_1[\bar{\Lambda}(\bar{u}s\bar{d})] \stackrel{?}{=} v_1[\bar{p}(\bar{u}\bar{u}\bar{d})] + v_1[\phi(s\bar{s})]$

29/32

Splitting at non-zero Δq and ΔS (27 GeV)

- Δv_1 increases at larger y and pT/ng
- Significant non-zero slope (with y) for $\Delta q = 4/3$, $\Delta S = 2$
- AMPT has the opposite trend No EM field in AMPT

$v_1[K(\overline{u}s)] + \frac{1}{3}v_1[\overline{p}(\overline{u}\overline{u}d)]$

30/32

Splitting with charge and strangeness

- $\circ \Delta v_1$ slope (fit constrained to origin) increases with Δq and ΔS
 - Splitting increases going from $\sqrt{s_{NN}} = 200$ to 27 GeV
- AMPT can not explain the data (Nayak et al., Phys. Rev. C 100, 054903 (2019))
 - PHSD(+EMF) can describe the data within errors, but EMF is not the sole difference between these two models

Summary

- Heavy ion collisions are the tool to create QGP primordial matter
- Strong EM field is produced in non-central collisions and can affect the directed flow splitting
- directed flow splitting - free from the transported quark effect
- uncertainties
- Produced EM field can lead to the splitting

Discussed how to measure charge (Δq) and strangeness (ΔS) dependent

• Measured splitting increases with Δq and ΔS , stronger in lower collision energy

PHSD+EM field calculations can describe the charge-dependent splitting within

32/32

