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Distribution Grid

upto
=150 MW

@ Power grids are critical for human
civilization: generating, transmitting and
distributing electric energy

@ Hierarchical: high — medium — low voltages, i ﬂ””

millions of nodes L & 4 N
@ Crutial to maintain stability ™ ~ |\

Challenges: nonlinear&complex system, S

multiple scales, growing number of vnaram

renewables

2/12



Introduction
o] le]e]
Power-grid networks

Consequences of blackouts and their statistics

Article B P"‘::;::‘;“d B Location B Date ~ References
2021 Pakistan blackout 200 (90% population) | Pakistan January 9, 2021 L
2018 Java backout 120 Indonesia August 4-5, 2019 )
2020 Sri Lankan blackouts 2 SiiLanka August 171, 2020 @
2019 Argentina, Paraguay and Uruguay biackout | 48 Argentina, Paraguay, Uruguay | June 16, 2019 [
2019 Venezuelan blackouts 30 Venezuela March 7, 2019-July 23, 2019 | (22123241125
2016 SriLanka blackout 2 SiiLanka March 13,2016 @
2015 Turkey blackout 70 Turkey March 31,2015 ]
2015 Pakistan blackout 140 Pakistan January 26, 2015 mn
2014 Bangiadesh blackout 150 Bangladesh November 1,2014 G
2012 India backouts 20 India July 30-31,2012 2
2009 Brazil and Paraguay blackout & Brazil, Paraguay. November 10-20, 2009 [C]
2005 Java-Bali blackout 100 Indonesia ‘August 18, 2005 02
2003 aly blackout 5 Haly, Swizeriand September 28, 2003 e
Northeast blackout of 2003 55 Canada, United States August 14-28, 2003 o

en.wikipedia.org/wiki/List_of_major_power_outages

LB. Carreras et al., IEEE 33rd conference on system sciences (2000).
2|. Dobson et al., Chaos 17, 026103 (2007).
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2020 5 Lok blackouts 2 SiLarka
2010 Argontna, Paraguay and Uriguay biackout | 43 sl s
2016 5 Lanka lckout 2 SiLarka
. 2014 Bangadesh backout 150 Bangladesn
==P= 0.00455 *(MWh) > "\ 2012 ndi bsckouts a0 inda
107 2009 Bra ana Praguay Hackaut o B, Paraginy
10! 10 10° 10* 10° 2005 ave-Bal Hickout 100 indonesia
2009 el beckout 5 ol Swizarand
MWhOLll' unserved Northeast blackout of 2003 55 Canada, United States

Figure 4. Probability distribution function of
for North American blackouts 1993-1998.

en.wikipedia

IB. Carreras et al., IEEE 33rd conference on system
2|. Dobson et al., Chaos 17, 026103 (2007).
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Probability

10*
10°
10
07 ==P= (.00455 *(MWh)*%
10! 10* 10° 10* 10°

MWhour unserved

Figure 4. Probability distribution function of energy unserved
for North American blackouts 1993-1998.
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-19
OPA model on trec-like 382-node (Ref. 8) 16
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en.wikipedia.org/wiki/List_of_major_power_outages

@ Blackout size dist. follow power laws

@ Extreme events occur more frequently
than predicted by Gaussian models

LB. Carreras et al., IEEE 33rd conference on system sciences (2000).
2|. Dobson et al., Chaos 17, 026103 (2007).
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@ Extreme events occur more frequently
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@ Objective: modeling AC systems

LB. Carreras et al., IEEE 33rd conference on system sciences (2000).
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@ Extreme events occur more frequently
than predicted by Gaussian models

@ Self-Organized Criticality (SOC), DC

threshold model
@ Objective: modeling AC systems

blackout — AC desynchronization cascade ~ DC threshold models

LB. Carreras et al., IEEE 33rd conference on system sciences (2000).
2|. Dobson et al., Chaos 17, 026103 (2007).
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US and EU HV grids

N E L (K C - d

UsS | 4194

6594 187 267 008 9334 3.0(1)
EU | 13478 33844 49.51 251 0.089 98.63 2.6(1)

N: Number of nodes
E: Number of edges
L: average shortest path length

C: Watts-Strogatz clustering coefficient

c= % Z 2mi/ ki(ki — 1)

c/C
o=
L/L,

= EU HV is small world.
@ This study will focus on HV nets.

HV: from operators

MV an LV: generated
w.r.t. empirical electrical
distributions 1.

1 G. Odor and B. Hartmann. Phys. Rev. E, 98 022305 (2018).
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L G. Filatrella et al., Eur. Phys. J. B, 61, 485-491 (2008).
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The synchronization model

@ Blackouts can be modeled by desynchronization of AC power grids
@ Power transmission: a mismatch “A#" in the phases between “G”
and “M" = the Kuramoto model with inertia :

Psource = 'Dacc.kinotic + 'Ddiss. +
1 d. N
51&9% + 'Ddiss. - &

= 91 =P- Ozél + . (1) M 6, M o,

1 G. Filatrella et al., Eur. Phys. J. B, 61, 485-491 (2008).

M) 6,
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The synchronization model

@ Blackouts can be modeled by desynchronization of AC power grids
@ Power transmission: a mismatch “A#" in the phases between “G”
and “M" = the Kuramoto model with inertia !

Psource = Pacc.kinetic 1 'Ddiss. + G o
1 d N
== 2 d 92 + PdlSS - v%,,wf \
=0, =P— 0491 + . (1) M6, M o ™ o

@ For a network of N oscillators:

é,‘(t) = w,-(t)
N

wi(t) = wi0) — afi(t) + KD _ Agsin[;(t) — 6:(8)] . (2)

j=1

a: damping factor; K: global coupling; w;(0) ~ N(0,1)

1 G. Filatrella et al., Eur. Phys. J. B, 61, 485-491 (2008).
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Method and measured quantities

@ For large N, solved Egs. (2) by numeric
solvers: 4th-order Runge-Kutta,
Bulirsch-Stoer

L H. Hong et al., Phys. Rev. E, 72, 036217 (2005).
2 G. Odor and B. Hartmann. Phys. Rev. E, 98 022305 (2018).
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@ For large N, solved Egs. (2) by numeric
solvers: 4th-order Runge-Kutta,
Bulirsch-Stoer

@ For large K: adaptive Bulirsch-Stoer

@ GPU code (kuramotoGPU) by utilizing
VexCL's vector capability.

@ Measured quantities
@ Phase order parameter

z(tx) N Zexp [i6;(t)]
R(tx) = (r(t ))- 3)
@ Frequency variance: Q(tx) = (var(wi(tk))).
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AL ALl e s e masii g
@ For large N, solved Egs. (2) by numeric F S 02 e :‘: _
solvers: 4th-order Runge-Kutta, 08 R e e E
Bulirsch-Stoer ek 101107 “’:_15’.’«‘»‘15—“’("' A

@ For large K: adaptive Bulirsch-Stoer <~ I ’ 1
@ GPU code (kuramotoGPU) by utilizing o4 E
VexCL's vector capability. i e E

@ Partial synchronization in d < d; =4 1.2; Pt I —
hysteresis curve = first-order transition. oo—\l ST " umu\; . \\\\\\\\4 T - mmr#(

10 10° 10 10 10° 10°

K

@ Measured quantities
@ Phase order parameter

z(tx) N Zexp [i6;(t)]
R(ti) = (r(t ))- (3)
(var(wi(ty)))-

@ Frequency variance: Q(tx) =

L H. Hong et al., Phys. Rev. E, 72, 036217 (2005).
2 G. Odor and B. Hartmann. Phys. Rev. E, 98 022305 (2018).
6/12



Methods and results
[ Je]

Methods and benchmarks

Method and measured quantities

Lo gy
@ For large N, solved Egs. (2) by numeric P _
solvers: 4th-order Runge-Kutta, o8 E

Bulirsch-Stoer ek
@ For large K: adaptive Bulirsch-Stoer ~ I ]
@ GPU code (kuramotoGPU) by utilizing o4 E
VexCL's vector capability. b E
@ Partial synchronization in d < d; =4 1.2; . 2 e
hysteresis curve = first-order transition. oo—\l vl umu\; . muu\4 Ll mmr#(
10 10° 10 10 10° 10°

K

@ Measured quantities

@ Phase order parameter

z(tx) N Zexp [i6;(t)]

R(tk) = <()>- (3)
(va

@ Frequency variance: Q(tx) = (var(wi(tk))).
@ Thermalization followed by removing one link = cascade line failures.

L H. Hong et al., Phys. Rev. E, 72, 036217 (2005).
2 G. Odor and B. Hartmann. Phys. Rev. E, 98 022305 (2018).
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Benchmarks

Methods and results

oe

@ CPU: Intel Xeon X5650 @ 2.67GHz (debrecen)

e GPU:

@ GeForce RTX 3070 Ti (local cluster)
@ Quadro K6000 (debrecen2)

Run time / s

8192~

4096 [~

2048 -

1024

512~

256~

128

64

| =

}‘39" = 38 4y o 30% } >
. L1 B T

[ [ N 24XI?°X
square 5002 | cube 100° | EUHV
T=500K=10 T=100K=10 T=500 K=80

[ CPU, RK4
W 3070 Ti, RK4
W 3070 Ti, BS
17 K6000, RK4
[ K6000, BS
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Cascade failures

The effect of one line cut

1.0 1.0 T T T
0.8F B 0.8F B
0.6F . 3 0.6F
~ - = -
0.4F 04F E
a=04 £ - .
02EThermalization ™ =3 A 0'2§After one line cut E
0.0 L L L L L L OAGT L L L L i
102 10" 10° 10 10> 10° 10 102 10" 100 100 102 10
t t
10° g QO T T Ty
3 10
] -of
3o 0
B ERR TR
10-20F e 107205 1Lz omibiggeitein, YR
B v i ™ B i G i
10° 10! 10 10° 10* 102 107" 100 10! 10210}

t t
EU network K = 80
@ Stronger damping effect only slows down R, but leads to a smaller €.
@ For certain T, R may even increase: islanding effects?
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Cascade failures

The effect of one line cut

After thermalization, randomly remove a link w.r.t. the overload condition:

|sin(9j — 9,)| >T= A,'j :=0.

1.0 1.0 T T T
0.8F B 0.8F B
0.6F E 0.6F
~ - = -
0.4F 04F E
a=04 £ - .
02EThermalization ™ =3 A 0'2§After one line cut E
0.0 L L L L L L OAOT L L L L i
102 10" 10° 10 10> 10° 10 102 10" 100 100 102 10
t t
10° g QO T T Ty
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E -of
3o 0
B ERR TR
10-20F e 107205 1Lz omibiggeitein, YR
B v i ™ B i G i
10° 10! 10 10° 10* 102 107" 100 10! 10210}

t t

EU network K = 80
@ Stronger damping effect only slows down R, but leads to a smaller €.
@ For certain T, R may even increase: islanding effects?
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Cascade failures

Relative change in R

on /’If:‘_‘*’*“
. ey
g
€on

007 |/

R(TYR(1)
R(TYR(1)

0 02 04 06 08 1
T

@ Phase order may increase after an attack for not very strongly
coupled systems; resemblance to the islanding effect 12.

@ There may exist a critical line along (K., T,) as indicated by o(R).

1 R. Baldick et al., 2008 IEEE Power and Energy Society General Meeting.

L A. Esmaeilian et al., |IEEE Trans. Ind. Appl. 53, 622 (2016).
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Cascade failures

Cascade failure statistics

10"

USHV K=30,aa =04 EU HV K=60,a=0.4

107

@ The distribution of the total line failures N follows non-universal
power laws in the vicinity of (K¢, T¢)

p(ND) ~ N; . (4)

@ GPU support is quite crucial.

@ “Dragon King" bumps for unexpected rare events may emerge for
certain T.
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Cascade failures

Chimera state

t=0.010000




Summary
[ ]

Conclusion and outlook

@ The synchronization and desynchronization of AC power grids could
be best modeled by the second-order Kuramoto equations;

@ The damping factor slows down the dynamics of the order
parameter, but would be desirable for achieving better frequency
entrainment;

© One line cut after thermalization triggers cascade failures:

@ For moderate K and T values, islanding effects;
@ In the vicinity of (K, T.), cascade sizes follow non-universal power
laws.
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