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millions of nodes
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renewables

2 / 12



Introduction Methods and results Summary

Power-grid networks

Power-grid networks

Power grids are critical for human
civilization: generating, transmitting and
distributing electric energy
Hierarchical: high – medium – low voltages,
millions of nodes
Crutial to maintain stability
Challenges: nonlinear&complex system,
multiple scales, growing number of
renewables

2 / 12



Introduction Methods and results Summary

Power-grid networks

Consequences of blackouts and their statistics

en.wikipedia.org/wiki/List_of_major_power_outages

Blackout size dist. follow power laws
Extreme events occur more frequently
than predicted by Gaussian models
Self-Organized Criticality (SOC), DC
threshold model
Objective: modeling AC systems

blackout → AC desynchronization cascade ∼ DC threshold models

1B. Carreras et al., IEEE 33rd conference on system sciences (2000).
2I. Dobson et al., Chaos 17, 026103 (2007).
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Power-grid networks

US and EU HV grids

N E L ⟨k⟩ C σ d
US 4194 6594 18.7 2.67 0.08 9.334 3.0(1)
EU 13478 33844 49.51 2.51 0.089 98.63 2.6(1)

N: Number of nodes
E: Number of edges
L: average shortest path length
C: Watts-Strogatz clustering coefficient

C =
1

N
∑

i
2ni/ki(ki − 1)

σ:
σ =

C/Cr
L/Lr

⇒ EU HV is small world.
This study will focus on HV nets.
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HV: from operators
MV an LV: generated
w.r.t. empirical electrical
distributions 1.

1 G. Ódor and B. Hartmann. Phys. Rev. E, 98 022305 (2018).
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Power-grid networks

The synchronization model
Blackouts can be modeled by desynchronization of AC power grids

Power transmission: a mismatch “∆θ” in the phases between “G”
and “M” ⇒ the Kuramoto model with inertia 1:

Psource = Pacc.kinetic + Pdiss. + Ptransmitted

=
1

2
I d
dt θ̇

2
1 + Pdiss. − PMAX sin(∆θ)

⇒ θ̈1 = P − αθ̇1 + PMAX sin(∆θ). (1)
Δ
θ=
θ 2
-
θ 1

θ1

θ2 θ3 θ4

For a network of N oscillators:
θ̇i(t) = ωi(t)

ω̇i(t) = ωi(0)− αθ̇i(t) + K
N∑

j=1

Aij sin [θj(t)− θi(t)] . (2)

α: damping factor; K: global coupling; ωi(0) ∼ N(0, 1)

1 G. Filatrella et al., Eur. Phys. J. B, 61, 485–491 (2008).
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Methods and benchmarks

Method and measured quantities

For large N, solved Eqs. (2) by numeric
solvers: 4th-order Runge-Kutta,
Bulirsch-Stoer

For large K: adaptive Bulirsch-Stoer
GPU code (kuramotoGPU) by utilizing
VexCL’s vector capability.
Partial synchronization in d < dl = 4 1,2;
hysteresis curve ⇒ first-order transition.
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Measured quantities
1 Phase order parameter

z(tk) =
1

N

∣∣∣∣∣∑
j

exp [iθj(tk)]

∣∣∣∣∣
R(tk) = ⟨r(tk)⟩ . (3)

2 Frequency variance: Ω(tk) = ⟨var(ωi(tk))⟩.
Thermalization followed by removing one link ⇒ cascade line failures.

1 H. Hong et al., Phys. Rev. E, 72, 036217 (2005).
2 G. Ódor and B. Hartmann. Phys. Rev. E, 98 022305 (2018).
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Methods and benchmarks

Benchmarks
CPU: Intel Xeon X5650 @ 2.67GHz (debrecen)
GPU:

1 GeForce RTX 3070 Ti (local cluster)
2 Quadro K6000 (debrecen2)
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Cascade failures

The effect of one line cut

After thermalization, randomly remove a link w.r.t. the overload condition:
| sin(θj − θi)| > T ⇒ Aij := 0.
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EU network K = 80
1 Stronger damping effect only slows down R, but leads to a smaller Ω.
2 For certain T, R may even increase: islanding effects?
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Cascade failures

Relative change in R
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Phase order may increase after an attack for not very strongly
coupled systems; resemblance to the islanding effect 1,2.
There may exist a critical line along (Kc,Tc) as indicated by σ(R).

1 R. Baldick et al., 2008 IEEE Power and Energy Society General Meeting.
1 A. Esmaeilian et al., IEEE Trans. Ind. Appl. 53, 622 (2016).
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Cascade failures

Cascade failure statistics
US HV K = 30, α = 0.4 EU HV K = 60, α = 0.4
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The distribution of the total line failures Nf follows non-universal
power laws in the vicinity of (Kc,Tc)

p(Nf) ∼ N−τ
f . (4)

GPU support is quite crucial.
“Dragon King” bumps for unexpected rare events may emerge for
certain T.
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Cascade failures

Chimera state
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Conclusion and outlook

1 The synchronization and desynchronization of AC power grids could
be best modeled by the second-order Kuramoto equations;

2 The damping factor slows down the dynamics of the order
parameter, but would be desirable for achieving better frequency
entrainment;

3 One line cut after thermalization triggers cascade failures:
1 For moderate K and T values, islanding effects;
2 In the vicinity of (Kc,Tc), cascade sizes follow non-universal power

laws.
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