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Motivation: representation matters!

What is in the images?
First seems to be noise … although it is just a transformed variant of the second!

Human visual system uses a recognition function class that relies on the specific 
properties of the natural images (eg. solid bodies, forms). 



  

Motivation: representation matters!

No “general learning machine”

                                          , for 1Mpx images
a class can be any subset: number of subsets 
information in 1Pbyte 
we can describe only a vast minority of all possible classes
for success we must exploit the specific properties of the observed class!
e.g. in images: important details are slowly changing, shapes, textures, translation 
and scale invariance           
              included in the Convolutional Neural Network (CNN) architecture

I={N×M color images } |I|≈107000000

2|I|≈10107000000

≈101015



  

Motivation: representation matters!

Difference between understanding and training:

neural network                     maps input to output using a parametrizable 
function class
training: in a given function class we refine the parametrization to fit to the 
external requirements (supervision)
understanding: find the function class that best fits to the set of the inputs 
(unsupervised, data-driven)
understanding should precede training! (representation learning)

f (x ,α)= y



  

Examples of data modeling

The most elementary, but generic task is to tell if an item is element of a set.
Continuous examples: single 2D data point: S={p} one element set.

We can represent it with the (x,y) coordinates.

Other representations are also appropriate.

For a single data all representations are equivalent.



  

Examples of data modeling

The most elementary, but generic task is to tell if an item is element of a set.
Continuous examples: multiple 2D data points

In the (x,y) representation the coordinates are not 
independent.

In the polar coordinate system (r,φ) we find r=R for all 
data points! The r and φ coordinates are independent.



  

Examples of data modeling

The most elementary, but generic task is to tell if an item is element of a set.
Continuous examples: multiple 2D data points

In the (x,y) representation the coordinates are not 
independent.

In the polar coordinate system (r,φ) we find r=R for all 
data points! The r and φ coordinates are independent.

In a well-chosen coordinate system the data coordinates are independent, and they are 
either constant (relevant or selective coordinates, or laws),
or variable (irrelevant or descriptive coordinates).



  

Coordination and understanding

If we understand a system well, elementary training is trivial!
Features: independent coordinates over C, either selective or descriptive
Let     be the common features for 

classification:             iff selective bits of             selective bits of 

decoding: to produce            we have to chose the relevant bits characteristic to    
and the irrelevant bits independently, uniform randomly

lossless data compression: if we know that           , the relevant bits can be built 
into the static part of the code, and we have to store the irrelevant bits.

All the AI tasks can be solved by inspecting certain bits.

ξ C1,C2, ... ,Ca ,C=∪ iC i
x∈C i ξ(x)= C i

x∈C i C i 

ξ−1(σrelevant=C i ,relevant ,σirrelevant=random) ∈C i
x∈C i



  

Publications in the topic

Using this technique we studied some topics:
[D.Berenyi, AJ, P. Pósfay, 2020]: paper about the theoretical basics
[AJ, 2021]: treating linear laws, application for musical data compression
[TS. Biró, AJ, 2022] : entropy associated to representations
[M. Kurbucz, P. Pósfay, AJ, 2022] using linear laws we examined 
Bitcoin prices and identified potential external influence
[M. Kurbucz, P. Pósfay, AJ, 2022]: reconstruction of mechanical 
motions using nonlinear laws
… more in preparation

https://arxiv.org/abs/2010.13482
https://arxiv.org/abs/2104.10970
./Universe%208%20(1),%2053
https://arxiv.org/abs/2201.09790
https://arxiv.org/abs/2202.11447


  

Entropy of the intelligence

Intelligence or understanding is the choice of correct representation.
Is there a universal measure to decide, how good a given representation is?

               entropy of a representation with respect to a subset

Shannon entropy: 
● independent of the representation
● yields the true information content of the set (i.e. the number of necessary bits)
representation entropy:      coordination implies                    bitwise distribution

SSH= ∑
σ∈BN

pC (ξ=σ) log2 pC (ξ=σ)=log2|C|

ξ pC (ξi=σ i)

Srepr=∑
i=1

N

[ ∑
σ∈0,1

pC (ξi=σi) log2 pC (ξi=σ)]



  

Entropy of the intelligence

Representation entropy

Mathematical properties

                , equality if the coordination is independent

minimality of         implies independence, and the least # of descriptive coordinates

                                    can be used in practice, with type one and two errors (false 
negative and false positive)

Srepr=∑
i=1

N

[ ∑
σ∈0,1

pC (ξi=σi) log2 pC (ξi=σ)]

Srepr≥SSH
Srepr

representation entropy is a general unsupervised loss function:
in a general learning process, by minimizing the representation entropy, we get closer to 
the learning of the proper representation

Loss=Srepr+λα+μβ



  

Reconstruction of mechanical 
motions

Task:

observe a motion                                                
‘n’ is a (discrete) time variable for           , maximal observed time 
D dimensional motion

describe/characterize the motion
continue for t>T in a ”plausible” way 

{ xn∈ℝD ∣ n∈{0 ,…, N }}
T=N Δ tt=nΔ



  

Reconstruction of mechanical 
motions

Method:

local characterization of the motion: 

look for different level “laws”/constraints:
level 0, holonomic contraints: 
level 1: anholonomic constraints, conserved quantities: 
level 2: lows for acceleration / discrete Newton’s laws: 

In a consistent mechanical system Newton’s laws are compatible with lowest order 
constraints, but in numerical observations they are independent.
from discrete Newton’s laws a recursion can be obtained  

C(0)(xn)=C
(0)(x0)

C(1)(xn , vn)=C
(1)(x0 , v0)

vn=
xn−xn−1

Δ t
,  an=

xn+1−2 xn+xn−1

Δ t 2

an=f (xn , vn)

(xn−1 , xn)⇒ xn+1



  

Reconstruction of mechanical 
motions

Numerical implementation:

input:                2D dimensional

output:                     conserved quantity or                 force function

network: Extreme Learning Machine, 1 hidden layer, only last weights are trained, 
nonlinear activation function ensures smoothness of output

Issues:

chaoticity: if nearby motions diverge fast, even “exact” methods
give different results. Comparison: force and qualitative features

renormalization: recursion can be determined for different      , 
multi-step algorithms are possible.

(xn , vn)

C(1)(xn , vn) f (xn , vn)

Δ t



  

Reconstruction of mechanical 
motions
Results:

gravity pendulum: integrable motion  
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Reconstruction of mechanical 
motions
Results:

gravity pendulum: integrable motion  
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Reconstruction of mechanical 
motions
Results:

gravity pendulum: integrable motion  
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Reconstruction of mechanical 
motions
Results:

double pendulum: 2D chaotic motion
“exact solution” can not be found

Python scipy DOP853

Python scipy RK45
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Reconstruction of mechanical 
motions
Results:

double pendulum: 2D chaotic motion
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Reconstruction of mechanical 
motions
Results:

double pendulum: 2D chaotic motion
reconstructed force with 93% accuracy
motion qualitatively correct, no runaway 
solutions



  

Conclusions

independent features (coordinates) over a set C: either selective or descriptive

selective/relevant features: constant over C, good for classification

descriptive/irrelevant features: variable over C, good for compression

representation entropy: universal unsupervised loss function, by minimizing it we 
improve understanding

in mechanical systems laws ≡ conserved quantities & Newton’s law

good reconstruction for integrable systems

qualitatively correct reconstruction for chaotic motions

understanding ≡ best representation of data



  

The end



  

Interpretation of AI



  

Interpretation of AI



  

Interpretation of AI



  

Interpretation of AI



  

Interpretation of AI



  

Interpretation of AI



  

Interpretation of AI



  

Interpretation of AI



  

Interpretation of AI



  

Examples of data modeling

The most elementary, but generic task is to tell if an item is element of a set.
Discrete examples: consider 2x2 bitmap “images”, and choose a subset. Can we find the 
proper representation of the set where the identification of the subset is easy?

We can list all images:
X = {      ,      ,      ,      ,      ,      ,      ,       ,      ,      ,      ,      ,      ,       ,     ,       }

choose an arbitrary subset, our abstract “cat images”: C={      ,      ,      ,       }

the pixel-wise coordination C={0001,0110,1010,1011} : no regularity

the pixels are not independent in C:

P (ξ1=0, ξ2=0)=1/4 ≠ P(ξ1=0)P (ξ2=0)=1 /2∗3/4



  

Examples of data modeling

Find a coordination that fits the best to the problem!

X = {     →0100,      →0000,      →0101,      →0110,      →0111,     →1000,     →0001,     →1001,

             →1010,      →1011,      →0010,      →0011,      →1100,     →1101,     →1110,     →1111}

This is not the original bit coordinates, but it fits well to our chosen C subset!

In the new coordinates: C = {0000,0001,0010,0011}

first two bits are 0 for elements of C: these are the relevant (selective) coordinates:
                                  :appropriate to select the elements of C
last two bits are variable: these are the irrelevant (descriptive) coordinates:
to tell apart elements of C (compression) we need to consider only these coordinates

x∈C⇔ x0=x1=0
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