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Targeting to record large minimum bias sample.

- All collisions stored for main detectors → no trigger

- Continuous readout → data in drift detectors overlap

- Recording time frames of continuous data, instead of events

- 50x more collisions, 50x more data

- Cannot store all raw data → online compression

→ Use GPUs to speed up online processing

- Overlapping events in TPC with realistic bunch structure @ 50 kHz Pb-Pb.

- Timeframe of 2 ms shown (will be 10 – 20 ms in production).

- Tracks of different collisions shown in different colors.

ALICE in Run 3
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The ALICE detector in Run 3

• ALICE uses mainly 3 detectors for barrel tracking: ITS, TPC, TRD + (TOF)

• 7 layers ITS (Inner Tracking System – silicon tracker)

• 152 pad rows TPC (Time Projection Chamber)

• 6 layers TRD (Transition Radiation Detector)

• 1 layer TOF (Time Of Flight Detector)

• Several major upgrades before Run 3:

• The TPC is equipped with a GEM readout

• The ITS is completely replaced by 7 layers of silicon pixels

• Major computing upgrade in the O² project

– Merges online and offline processing in the same

software framework. Same code (with different

cuts / parameters) running online and offline

• Drivers behind design decisions:

• Search for rare signals imposes large increase in statistics

wrt. Run 1+2

• Triggered TPC readout insufficient

– Huge out-of-bunch pile up during the TPC drift time

→ Need continuous readout

ITS

TPC

TRD

TOF
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• Synchronous processing (what we called online before):

• Extract information for detector calibration:

– Previously performed in 2 offline passes over the data after the data taking

– Run 3 avoids / reduces extra passes over the data but extracts all information in the sync. processing

– An intermediate step between sync. and async. processing produces the final calibration objects

– The most complicated calibration is the correction for the TPC space charge distortions

• Data compression:

– TPC is the largest contributor of raw data, and we employ sophisticated algorithms like

storing space point coordinates as residuals to tracks to reduce the entropy and remove

hits not attached to physics tracks

– We use ANS entropy encoding for all detectors

• Event reconstruction (tracking, etc.):

– Required for calibration, compression, and online quality control

– Need full TPC tracking for data compression

– Need tracking in all detectors for ~1% of the tracks for calibration

→ TPC tracking dominant part, rest almost negligible (< 5%)

• Asynchronous processing (what we called offline before):

• Full reconstruction, full calibration, all detectors

• TPC part faster than in synchronous processing (less hits, no clustering, no compression)

→ Different relative importance of GPU / CPU algorithms compared to synchronous processing

O2 Processing steps

Rows

Row, Pad, Time X, Y, Z

Forward-transformation

Clusters

Local distortions

remain

Back-transformation

Track

Track in distorted 

coordinates
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O2 Project organization

• O2 is composed of 3 projects: EPN, FLP, PDP:

FLP Farm in CR1: 202 Servers

Readout + local processing on CPU and FPGA

EPN Farm in CR0: 250 Servers / 2000 GPUs

Global processing on CPU and GPU

to storagedetector data

Reconstruction software 

developed by PDP
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O2/EPN

(Event Processing Nodes)

~2000 GPU & CPU 

CR1
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Tier 1

archival

Tier 0

archival

80 PB

disk storage, 360GB/s

(~25% redundancy)

~3.5 TB/s ~100 GB/s

Sub-time frames, 10-20 ms

CR0~635 GB/s

O2/FLP

(First Level Processors)

~200 2-socket Dell R740

up to 3 CRU per FLP

ALICE Raw Data Flow in Run 3

CTP

Central Trigger Processor
Distribution of timing info, heartbeat trigger

2
0

6
8

8

F
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Calibration data 

CTF: Compressed time frames

FLPs EPNs

Infiniband

Zero suppression

in FPGA

GPU computing
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Tier 1

archival

Tier 0

archival

80 PB

disk storage, 360GB/s

(~25% redundancy)

Synchronous and Asynchronous Processing

Calibration data 

CTF: Compressed time frames

Data links from detectors

Disk buffer

R
u

n
 3

 f
a
rm

Synchronous processing

- Local processing

- Event / timeframe building

- Calibration / reconstruction

Asynchronous processing

- Reprocessing with full 

calibration

- Full reconstruction

Permanent storage

Compressed 

Raw DataReconstructed Data
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> 3.5 TB/s

~ 100 GB/s

Readout nodes

> 600 GB/s

~100 GB/s
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Synchronous and Asynchronous Processing

Calibration data 

CTF: Compressed time frames

Data links from detectors

Disk buffer

R
u

n
 3

 f
a
rm

Synchronous processing

- Local processing

- Event / timeframe building

- Calibration / reconstruction

Asynchronous processing

- Reprocessing with full 

calibration

- Full reconstruction

Permanent storage

Compressed 

Raw DataReconstructed Data
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> 3.5 TB/s

~ 100 GB/s

Readout nodes

> 600 GB/s

Asynchronous 

processing 

GRID

Analysis Facilities

AOD

AOD

CCDB

conditions 

database(          ) 80 PB

disk storage, 360GB/s

(~25% redundancy)

Tier 1

archival

Tier 0

archival
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Synchronous and Asynchronous Processing

Data links from detectors

Disk buffer

R
u

n
 3

 f
a
rm

Synchronous processing

- Local processing

- Event / timeframe building

- Calibration / reconstruction

Asynchronous processing

- Reprocessing with full 

calibration

- Full reconstruction

Permanent storage

Compressed 

Raw DataReconstructed Data
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g
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 b
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> 3.5 TB/s

< 100 GB/s

Readout nodes

> 600 GB/s

• Calibration: Tracking for ITS / TPC / TRD / TOF for ~1% of 

tracks.

• Data compression: track-model compression requires full 

TPC tracking for all collisions.

→ TPC tracking dominant workload during synchronous 

reconstruction.

→ Well suited to run on GPUs, EPN farm designed for best TPC 

clusterization / tracking / compression performance.

• No clear single computational hot-spot.

• TPC reconstruction important but not dominant.

• Actually faster than in the synchronous phase: no 

clusterization / no compression / less hits after hit removal in 

synchronous phase overcompensates the slowdown of more 

elaborate fits.

• Full reconstruction for all other detectors.

→ More heterogeneous workload.
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• Overview of reconstruction steps considered for GPU-offload:

• Mandatory baseline scenario includes everything that must run on the GPU during synchronous reconstruction.

• Optimistic scenario includes everything related to the barrel tracking.

TPC Track 

Finding

TPC Track 

Merging

ITS Track 

Finding

ITS 

Track Fit

TPC ITS 

Matching

TPC 

dE/dx

ITS 

Afterburner

TRD 

Tracking

ITS 

Vertexing

TOF 

Matching

Global 

Fit

V0 

Finding

TPC Track Model 

Compression
TPC Entropy 

Compression

TPC 

Track Fit

In operation

Work in progress

Under study

TPC Cluster 

removal

Sorting Material Lookup Memory ReuseGPU API Framework
Common GPU 

Components:

TPC 

Calibration

GPU barrel tracking chain

Central barrel global tracking chain

TPC Cluster 

Finding

TPC Distortion Correction

Part of baseline 

scenario

Part of optimistic 

scenario

Identify hits 

below 10MeV/c
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TPC Track 

Finding

TPC Track 

Merging

ITS Track 

Finding

ITS 

Track Fit

ITS 

Vertexing

TPC Track Model 

Compression

TPC 

Track Fit

In operation

Work in progress

Under study

TPC Cluster 

removal

Sorting Material Lookup Memory ReuseGPU API Framework
Common GPU 

Components:

GPU barrel tracking chain

Central barrel global tracking chain

TPC Cluster 

Finding

TPC Distortion Correction

Part of baseline 

scenario

Baseline scenario
(ready except for 1 optional component)

• Baseline scenario fully implemented (module some improvements e.g. distrotion correction).

• Not mandatory to speed up the synchronous GPU code further, but we should try nonetheless.

• If we add / improve reconstruction steps, we have to speed it up accordingly to remain in the 2000 GPU budget.

• Worst case, can always trade higher speed for worse tracking resolution and less compression.

– Risky in compression strategy B (see later).
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TPC Track 

Finding

TPC Track 

Merging

ITS Track 

Finding

ITS 

Track Fit

TPC ITS 

Matching ITS 

Afterburner

TRD 

Tracking

ITS 

Vertexing

TOF 

Matching

Global 

Fit

V0 

Finding

TPC Track Model 

Compression
TPC Entropy 

Compression

TPC 

Track Fit

In operation

Work in progress

Under study

TPC Cluster 

removal

Sorting Material Lookup Memory ReuseGPU API Framework
Common GPU 

Components:

TPC 

Calibration

GPU barrel tracking chain

Central barrel global tracking chain

TPC Cluster 

Finding

TPC Distortion Correction

Part of baseline 

scenario

Part of optimistic 

scenario

Synchronous chain

only few % of eventsall events

Identify hits 

below 10MeV/c

• Baseline scenario fully implemented (module some improvements e.g. distrotion correction).

• 2 optional parts still being investigated for sync. reco on GPU: TPC entropy encoding / Looper identification < 10 MeV.
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TPC Track 

Finding

TPC Track 

Merging

ITS Track 

Finding

ITS 

Track Fit

TPC ITS 

Matching

TPC 

dE/dx

ITS 

Afterburner

TRD 

Tracking

ITS 

Vertexing

TOF 

Matching

Global 

Fit

V0 

Finding

TPC 

Track Fit

In operation

Work in progress

Under study Sorting Material Lookup Memory ReuseGPU API Framework
Common GPU 

Components:

TPC 

Calibration

GPU barrel tracking chain

Central barrel global tracking chain

TPC Cluster 

Finding

TPC Distortion Correction

Part of baseline 

scenario

Asynchronous chain

Part of optimistic 

scenario

• Several steps missing in asynchronous reconstruction:

• Matching to ITS

• Matching to TOF

• Secondary vertexing

• TPC interpolation for SCD calibration
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• All intermediate shared buffers

on GPU.

• Keep the component structure

• Create a super-component that runs

everything at once on GPU.

TPC Cluster 

Transformation

TPC Global 

Merger

In-Sector 

Merging

Between-Sector 

Merging

Final TPC

Track Fit

TPC Prolon-

gation to ITS

TPC Track 

Finder

CA Track 

Seeding

Kalman Track 

Following

GPU Buffer Management

GPU

Shared 

Buffer

TPC Transformation Component TPC CA Tracker Component TPC CA Global Merger Component

Shared 

Buffer

Shared 

Buffer

Shared 

Buffer

Shared 

Buffer

Input

Output

Shared 

Buffer

GPU Tracking Super-Component

TPC/ITS Tracker Component

P
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s
tp

o
n

e
 T

ra
c
k
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Message passing based approach, on host and GPU

Every component can still run on the host in the exact same way.

Shared buffers either in host memory or in GPU memory.

Shared 

Buffer
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• Generic common C++ Code compatible to CUDA, OpenCL, HIP, and CPU (with pure C++, OpenMP, or OpenCL).

• OpenCL needs clang compiler (ARM or AMD ROCm) or AMD extensions (TPC track finding only on Run 2 GPUs and CPU for testing)

• Certain worthwhile algorithms have a vectorized code branch for CPU using the Vc library

• All GPU code swapped out in dedicated libraries, same software binaries run on GPU-enabled and CPU servers

• Screening different platforms for best price / performance.
(including some non-competitive platforms for cross-checks and validation.)

• CPUs (AMD Zen, Intel Skylake)

C++ backend with OpenMP, AMD OCL

• AMD GPUs

(S9000 with OpenCL 1.2, MI50 /

Radeon 7 / Navi with HIP / OCL 2.x)

• NVIDIA GPUs

(RTX 2080 / RTX 2080 Ti / Tesla T4

with CUDA)

• ARM Mali GPU with OCL 2.x

(Tested on dev-board with Mali G52)

Compatibility with several GPU frameworks

mailto:drohr@cern.ch


20.6.2022 David Rohr, drohr@cern.ch 15

Memory requirements

• ALICE reconstructs timeframes (TF) independently (128 – 256 orbits → ~10 - ~20 ms → ~500 - ~1000 collisions).

• One TPC drift time of data not reconstructible at TF border (~ 90 us) → < 0.5 – 1 % of statistics lost (baseline is 0.5 %).

• Timeframe should fit in GPU memory. If not, could use kind of ring buffer, or reduce TF length to 128 orbits.

• Trying to avoid the ring buffer approach, could be added later if needed.

• Custom allocator: grabs all GPU memory, gives out chunks manually, memory will be reused when possible.

• Classically: reuse memory between events, collisions are not that large.

• ALICE reuses memory between different algorithms in a TF, possibly also between independent collisions.

• Some memory must persist during timeframe processing.

Memory
TPC 

Raw 1

TPC 

Hits 1

Non-persisting input dataPersistent data

TPC cluster 

finder
TPC raw data can be 

removed after 

clusterization, memory 

will re reused.

TPC hits must persist, 

needed for final refit.
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Memory requirements

• ALICE reconstructs timeframes (TF) independently (128 – 256 orbits → ~10 - ~20 ms → ~500 - ~1000 collisions).

• One TPC drift time of data not reconstructible at TF border (~ 90 us) → < 0.5 – 1 % of statistics lost (baseline is 0.5 %).

• Timeframe should fit in GPU memory. If not, could use kind of ring buffer, or reduce TF length to 128 orbits.

• Trying to avoid the ring buffer approach, could be added later if needed.

• Custom allocator: grabs all GPU memory, gives out chunks manually, memory will be reused when possible.

• Classically: reuse memory between events, collisions are not that large.

• ALICE reuses memory between different algorithms in a TF, possibly also between independent collisions.

• Some memory must persist during timeframe processing.

Memory
TPC 

Raw 3

TPC 

Hits 1

Non-persisting input dataPersistent data

TPC cluster 

finder
Memory is reused, 

multiple inputs are 

queued.

TPC 

Raw 2

TPC 

Hits 2
Scratch

Memory is reused, 

multiple inputs are 

queued.

Non-persistent scratch data for algorithms
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Memory requirements

• ALICE reconstructs timeframes (TF) independently (128 – 256 orbits → ~10 - ~20 ms → ~500 - ~1000 collisions).

• One TPC drift time of data not reconstructible at TF border (~ 90 us) → < 0.5 – 1 % of statistics lost (baseline is 0.5 %).

• Timeframe should fit in GPU memory. If not, could use kind of ring buffer, or reduce TF length to 128 orbits.

• Trying to avoid the ring buffer approach, could be added later if needed.

• Custom allocator: grabs all GPU memory, gives out chunks manually, memory will be reused when possible.

• Classically: reuse memory between events, collisions are not that large.

• ALICE reuses memory between different algorithms in a TF, possibly also between independent collisions.

• Some memory must persist during timeframe processing.

Memory
TPC 

Raw 3

TPC 

Hits 1

Non-persisting input dataPersistent data

TPC cluster 

finder

Can run multiple 

instances, in parallel…

TPC 

Raw 4

TPC 

Hits 2
Scratch

Non-persistent scratch data for algorithms

Scratch
TPC 

Hits 3

TPC 

Hits 4

TPC cluster 

finder
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Memory requirements

• ALICE reconstructs timeframes (TF) independently (128 – 256 orbits → ~10 - ~20 ms → ~500 - ~1000 collisions).

• One TPC drift time of data not reconstructible at TF border (~ 90 us) → < 0.5 – 1 % of statistics lost (baseline is 0.5 %).

• Timeframe should fit in GPU memory. If not, could use kind of ring buffer, or reduce TF length to 128 orbits.

• Trying to avoid the ring buffer approach, could be added later if needed.

• Custom allocator: grabs all GPU memory, gives out chunks manually, memory will be reused when possible.

• Classically: reuse memory between events, collisions are not that large.

• ALICE reuses memory between different algorithms in a TF, possibly also between independent collisions.

• Some memory must persist during timeframe processing.

Memory
TPC 

Hits 1

Non-persisting input dataPersistent data

TPC tracking

… or run multiple 

algorithms in parallel

TPC 

Hits 2
Scratch

Non-persistent scratch data for algorithms

Scratch
TPC 

Hits 3

TPC 

Hits 4

ITS tracking

ITS 

Hits

Input data may also be 

persistent, ITS hits are 

reused in the final fit.

TPC 

Tracks

ITS 

Tracks
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Memory requirements

• ALICE reconstructs timeframes (TF) independently (128 – 256 orbits → ~10 - ~20 ms → ~500 - ~1000 collisions).

• One TPC drift time of data not reconstructible at TF border (~ 90 us) → < 0.5 – 1 % of statistics lost (baseline is 0.5 %).

• Timeframe should fit in GPU memory. If not, could use kind of ring buffer, or reduce TF length to 128 orbits.

• Trying to avoid the ring buffer approach, could be added later if needed.

• Custom allocator: grabs all GPU memory, gives out chunks manually, memory will be reused when possible.

• Classically: reuse memory between events, collisions are not that large.

• ALICE reuses memory between different algorithms in a TF, possibly also between independent collisions.

• Some memory must persist during timeframe processing.

Memory
TPC 

Hits 1

Non-persisting input dataPersistent data

TPC 

Compression
Available memory for 

scratch buffers decreases, 

but most memory is needed 

at the beginning for TPC 

clustering and tracking.

TPC 

Hits 2

Non-persistent scratch data for algorithms

Scratch
TPC 

Hits 3

TPC 

Hits 4

ITS 

Hits
TPC 

Tracks

ITS 

Tracks

Compressed 

TPC Hits

- Gaps can appear when size is 

not known exactly in advance.

- Minor problem with time frames

since most fluctuations average 

out.

- Could compact the memory but 

Probably not needed.

Some output can 

be moved to the 

host immediately, 

and the memory 

reused.

Non-persistent    output

mailto:drohr@cern.ch


20.6.2022 David Rohr, drohr@cern.ch 20

Memory requirements

• ALICE reconstructs timeframes (TF) independently (128 – 256 orbits → ~10 - ~20 ms → ~500 - ~1000 collisions).

• One TPC drift time of data not reconstructible at TF border (~ 90 us) → < 0.5 – 1 % of statistics lost (baseline is 0.5 %).

• Timeframe should fit in GPU memory. If not, could use kind of ring buffer, or reduce TF length to 128 orbits.

• Trying to avoid the ring buffer approach, could be added later if needed.

• Custom allocator: grabs all GPU memory, gives out chunks manually, memory will be reused when possible.

• Classically: reuse memory between events, collisions are not that large.

• ALICE reuses memory between different algorithms in a TF, possibly also between independent collisions.

• Some memory must persist during timeframe processing.

Memory
TPC 

Hits 1

Non-persisting input dataPersistent data

TPC ITS 

Matching
Preload TPC raw 

data of next TF 

before current TF is 

finished.

TPC 

Hits 2

Non-persistent scratch data for algorithms

Scratch
TPC 

Hits 3

TPC 

Hits 4

ITS 

Hits
TPC 

Tracks

ITS 

Tracks
Matches

TPC 

Raw 1
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GPU Performance (standalone benchmark)

GPU Model Performance GPU Model Performance

NVIDIA RTX 2080 Ti 100.0% NVIDIA V100s 122.7%

NVIDIA Quadro RTX 6000 (active) 105.8% NVIDIA RTX 3090 187.3%

NVIDIA Quadro RTX 6000 (passive) 96.1% NVIDIA T4 59.3%

NVIDIA RTX 2080 83.5% AMD MI50 67.8%

NVIDIA GTX 1080 60.1% AMD Radeon 7 71,2%

• MI50 GPU replaces ~80 Rome cores in 

synchronous reconstruction.

• Includes TPC clusterization, which is not 

optimized for the CPU!

• ~55 CPU cores in asynchronous reconstruction

(more realistic comparison).

50 kHz Pb-Pb

time frame

Need

~1500

MI50

GPUs.
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Synchronous processing full system test results

• Full system test setup:

• 1 Supermicro server, 8 * AMD MI50 GPUs, 2 * 32 core Rome CPU, 512 GB of memory

• Replaying data at 1/250 of the rate expected during 50 kHz Pb-Pb, measuring CPU load, memory load, temperatures

• If memory doesn’t increase over time → no backpressure → server can sustain the rate

• Load / memory usage:

• Max memory consumption 280 GB, max. CPU load 44 cores

• Final setup needs +10 GB / 6 cores for the network transfer and +20% for remaining CPU processing

Test replaying Pb-Pb

data at 50kHz

Interaction rate

CPU load and

memory utilization

reach a plateau

after 1-2 minutes

of startup time

→ O2 can cope with

highest expected rate

Buffer utilization 

stable from here on

Start of time frame 

distribution
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Synchronous processing full system test results

• Full system test setup:

• 1 Supermicro server, 8 * AMD MI50 GPUs, 2 * 32 core Rome CPU, 512 GB of memory.

• Replaying data at 1/250 of the rate expected during 50 kHz Pb-Pb, measuring CPU load, memory load, temperatures.

• If memory doesn’t increase over time → no backpressure → server can sustain the rate.

• Load / memory usage:

• Max memory consumption 280 GB, max. CPU load 44 cores.

• Final setup needs +10 GB / 6 cores for the network transfer and +20% for remaining CPU processing.

• Temperatures:

• Max GPU temperature: 75 °C.

• Max CPU temperature: 53 °C.

• (Environmental temperature: 21 °C.)

GPU temperature 

drops in idle phases 

due to rate limitation.
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Fraction of workload that can use the GPU

• Majority of synchronous processing already on GPU:

• GPUs fully loaded during synchronous processing

• Perfect use of EPN farm

• Trying to optimize GPU usage during asynchronous phase

• Work in progress!

• Software and threading optimizations not final yet

• For a fair comparison, which fraction we can run on a GPU,

we need an optimized CPU reference

– Can run each step on the host fully-multithreaded:

Guarantees to use all cores all the time, but large granularity effects

– Can use less cores and parallelize over processing steps:

higher efficiency per processing step, but more difficult to use

all cores (insufficient memory)

• 1st corner case: full parallel processing of all steps, 1 time frame at a time:

– > 85% of workload currently already on GPU

• 2nd corner case: everything single-threaded on CPU:

– Only 60% of workload can currently run on GPU

– But everything single-threaded not feasible due to insufficient memory

• Truth is somewhere in between, with moderate threading

– Currently work in progress to obtain good CPU reference measurements

– Of course also still work in progress: further general software optimizations

• For reference: for our software, around 90% of the compute capacity of the EPNs is provided by the GPU → no need to aim for >90%

Measurement for first corner case from May 2021

Fully multi-threaded CPU processing

(not ideal from efficiency standpoint)
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Summary

• O2 (Online Offline processing) is the online computing scheme for ALICE in Run 3, including hardware and software, 

covering the data flow from the readout to the final reconstruction results

• Main reconstruction steps:

• Synchronous processing: calibration and compression (reconstruction as much as needed)

• Asynchronous processing: full final reconstruction

• ALICE uses hardware accelerators for the processing

• Bulk of reconstruction runs on GPUs on the EPNs

– > 95% of synchronous reconstruction

– Depending on the measurement, 60% - 85% of asynchronous workload on the GPU

– Still work in progress, aiming to further improve the GPU usage

• Local processing on FPGAs on the FLPs

• EPN processing tested in full system test at 50 kHz Pb-Pb data rates: successful with 20% margin

• O2 successfully handled the processing of the pilot beam

• More a test of stability and infrastructure and not of processing performance

• Compute-intense reconstruction steps are designed to run on GPU

• This uses a vendor-independent shared source code approach

• Can run on CPUs with OpenMP and on GPUs via CUDA, OpenCL, and ROCm

• Synchronous processing deployed in time for pilot beam, now focusing on asynchronous reconstruction
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