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Structure of model building in fundamental physics.

Model building attempts in QFT.

Heuristic Feynman integral formulation.

Classical field theory.

Rigorous form of master Dyson-Schwinger (MDS) equation.

Existence condition for regularized MDS solutions.

Outlook: tentative rigorous definition for the Wilsonian renormalization.

Summary.
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Structure of model building in fundamental physics

Relativistic or non-relativistic point mechanics:

Take Newton equation over a fixed spacetime and fixed potentials.

Space of solutions turns out to be a symplectic manifold.

One can play classical probability theory on the solution space.

Relativistic or non-relativistic quantum mechanics:

Take Dirac etc. equation over a fixed spacetime and fixed potentials.

Space of finite charge weak solutions turns out to be a Hilbert space.

One can play quantum probability theory on the solution space.

Most important ingredient: a one-liner, the equation of motion or field equation.
−→ Then, one is working on the solution space.

Can one find a one-liner equation to summarize Quantum Field Theory?
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Model building attempts in QFT

Common QFT formalisms in physics:

Often non-manifestly covariant formalism.
(Hamiltonian, reminescents of non-relativistic QM as seen by an inertial observer.)

In momentum space.

Splitting Lagrangian to free + interacting terms.

Often perturbative handling.

Need for regularization and renormalization. (What this is precisely?)

Not easy to see what is legitimate and what is not.

In some cases the “right” thing is done, even without the adequate formalism.

Common formalisms in mathematical QFT:

Loop quantum gravity. (Spacetime is emergent, but far from finalized.)

Algebraic QFT: easy to understand math/physics concept, but no known 3+1d example.

Perturbative AQFT formalized over fixed spacetime, and known examples.
(Still cannot put down a one-liner.)

Feynman integral in Wick rotated signature one can. But still free + interaction splitting.
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Our guidelines:

Do not assume spacetime manifold to be affine space. (Spacetime not flat.)

Do not refer to a fixed spacetime metric. (Not even to a fixed causal structure.)

Only refer to underlying spacetime manifold and generic fields over it.
(Metric is not distinguished field – but spacetime manifold is usual 4d continuum.)

Do not refer to a known splitting of Lagrangian to free + interaction parts.
(No canonical way to split e.g. Yang-Mills or Einstein-Hilbert Lagrangian.)

Some consequences:

Cannot go to momentum space, have to stay in spacetime description.

Cannot refer to any affine property of Minkowski spacetime, e.g. asymptotics.
(No notion of space S of rapidly decreasing functions.)

Cannot use Wick rotation to Euclidean signature metric.

Even if Wick rotated, no free + interaction splitting, so no Gaussian Feynman measure.

We revisit Feynman integral formulation in Lorentz signature.
[We conclude that its differential reformulation can be well defined.]
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Heuristic Feynman integral formulation
Fix some ψ0 ∈ F reference field for transforming the problem F → F.
Let J1, ..., Jn ∈ F∗ be test functionals.

Then, Feynman type quantum expectation value of polynomial observable
(J1| · −ψ0) · ... · (Jn| · −ψ0) : F → R in vacuum state ρ postulated as:

∫

ψ∈F

(J1|ψ−ψ0) · ... · (Jn|ψ−ψ0) e
i

~
S(ψ) [dψ]ρ

/ ∫

ψ∈F

e
i

~
S(ψ) [dψ]ρ

Partition function is often invoked to book-keep all this (Fourier transform of eiS(ψ) [dψ]ρ):

Zψ0,ρ : F
∗ −→ C, J 7−→ Zψ0,ρ(J) :=

∫

ψ∈F

ei (J|ψ−ψ0) e
i

~
S(ψ) [dψ]ρ,

and from this one can define

G
(n)
ψ0,ρ

:=

(

(−i)n
1

Zψ0,ρ(J)
D(n)Zψ0,ρ(J)

)∣
∣
∣
∣
J=0

n-field correlator, and their collection Gψ0,ρ :=
(

G
(0)
ψ0,ρ

, G
(1)
ψ0,ρ

, ..., G
(n)
ψ0,ρ

, ...
)

∈
⊕

n∈N0

n
⊗F.

Above Feynman type quantum expectation value expressable as:
(

J1⊗...⊗Jn

∣
∣
∣ G

(n)
ψ0,ρ

)
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Problem: no “Lebesgue” measure [dψ]ρ in infinite dimensions.

Neither e
i

~
S(ψ)[dψ]ρ is meaningful. (Can be given some meaning in Euclidean signature.)

Neither formal Fourier transformation of this undefined measure is meaningful.

In usual QFT literature, e
i

~
S(ψ)[dψ]ρ is handled as if it existed

as finite measure, with finite moments and analytic Fourier transform.

Formally playing with Fourier transform, one infers:

Z : F∗ → C Fourier transform of e
i

~
S(ψ)[dψ]ρ “⇔” satisfies master-Dyson-Schwinger eq:

(

E
(
(−i)DJ + ψ0

)
+ ~ J

)

Z(J) = 0 (∀J ∈ F
∗)

with E(ψ) := DS(ψ) being the Euler-Lagrange functional at ψ ∈ F .
Looks kind of weird to interpret beyond formality. Does it have a meaning?
Yes, when expressed via field correlators G =

(
G(0), G(1), ..., G(n), ...

)
.
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Classical field theory

LetM be a smooth manifold (wannabe spacetime, but no metric, yet).

Let V (M) be vector bundle over it (its smooth sections are matter fields – also metric).

On this, one has the covariant derivation operators, they form a DV (M) affine bundle.
(Mediator fields – gauge fields.) Affine bundle over T ∗(M)⊗V (M)⊗V ∗(M) =: CV (M).

In total:
(v,∇)
︸ ︷︷ ︸

=:ψ

∈ Γ
(
V (M)×

M
DV (M)

)

︸ ︷︷ ︸

=:F

is a field configuration.

These with the E smooth function topology form a real topological affine space.

(δv, δC)
︸ ︷︷ ︸

=:δψ

∈ Γ
(
V (M)×

M
CV (M)

)

︸ ︷︷ ︸

=:F

is a field variation (difference of two field configurations).

These with the E smooth function topology form a real topological vector space.
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Let a Lagrange form be given, which is

L : V (M) ⊕ T ∗(M)⊗V (M) ⊕ T ∗(M)∧T ∗(M)⊗V (M)⊗V ∗(M) −→
dim(M)
∧ T ∗(M)

pointwise vector bundle homomorphism.

Lagrangian expression:

Γ
(
V (M)×

M
DV (M)

)
−→ Γ

( dim(M)
∧ T ∗(M)

)
, (v,∇) 7−→ L(v,∇v, P (∇))

where P (∇) is the curvature tensor.

Action functional:

S : Γ
(
V (M)×

M
DV (M)

)

︸ ︷︷ ︸

=:F

−→ Rad(M,R), (v,∇)
︸ ︷︷ ︸

=:ψ

7−→
(

K 7→ SK(v,∇)
)

where SK(v,∇) :=
∫

K

L(v,∇v, P (∇)) for all K ⊂M compact.

[Achtung: SM(v,∇) generally not finite, e.g. already for stationary fields etc.]
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Action functional S : F → Rad(M,R) Fréchet differentiable, its Fréchet derivative

DS : F × F −→ Rad(M,R), (ψ, δψ) 7−→
(

K 7→
(
DSK(ψ)

∣
∣ δψ

))

is the usual Euler-Lagrange integral on K + usual boundary integral on ∂K.
Jointly continuous in its variables, linear in second variable.

Let F
T

be the compactly supported field variations from F with usual D test function topology.
(space of test field variations)

Euler-Lagrange functional:
We restrict DS in its second variable to F

T
, to make the EL integral over fullM finite.

E : F × F
T
−→ R,

(
ψ, δψ

T

)
7−→

(
E(ψ)

∣
∣ δψ

T

)
:=

(
DSM(ψ)

∣
∣ δψ

T

)

Bulk Euler-Lagrange integral remains, no boundary term. Meaningful on fullM, real valued.
Jointly sequentially continuous, linear in second variable. (Also, E : F → F∗

T
continuous.)

The one-liner (field equation):

ψ ∈ F ? ∀ δψ
T
∈ F

T
:
(
E(ψ)

∣
∣ δψ

T

)
= 0.

Observables are the O : F → R continuous maps.
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Example: ϕ4 theory.

M is Minkowski spacetime, v is volume measure, � is wave operator.

F := F := C∞(M,R) and F
T

:= C∞
c (M,R).

Euler-Lagrange functional is

E : F × F
T
−→ R, (ψ, δψ

T
) 7−→

∫

M

δψ
T
�ψ v +

∫

M

δψ
T
ψ3 v.

Field equation selects physically realizable fields over spacetime manifold.

M
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Rigorous form of the master Dyson-Schwinger equation

The fundamental objects of interest is the collection of n-field correlators.

They sit in the tensor algebra T (F) :=
⊕

n∈N0

n
⊗F of field variations.

More precisely, they sit in a graded-symmetrized subspace, e.g.
∨
(F) or

∧
(F) of T (F).

They are tuples G =
(
G(0), G(1), G(2), ..., G(n), ...

)
of n-variate classical fields.

(Over n copies of spacetime manifold, n = 0, 1, 2, ....)

⊕

M

⊕

M

×
M

⊕

M

×
M

×
M

⊕

M

×
M

×
M

×
M

The multivariate fields
n
⊗F inherit a natural E smooth function topology from F.

(Schwartz kernel theorem.)

The tensor algebra T (F) inherits a natural (Tychonoff) topology from each
n
⊗F, entrywise.

(Theorem: similar in nature to E smooth function topology.)

It is a theorem that
(
T (F)

)∗
≡ Ta(F∗) and that

(
T (F)

)∗∗
≡ T (F).
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By construction it is unital algebra, so e.g. left-multiplication Lδψ by some δψ ∈ F meaningful.

Theorem: left-insertion ιp (tracing out) by some p ∈
(
T (F)

)∗
≡ Ta(F∗) also meaningful.

As usual
(

ιp Lδψ ± Lδψ ιp

)

G = (p|δψ) G (∀p ∈ F
∗ and δψ ∈ F and G )

graded-commutation relation.

[Important properties behave analogously as if F were finite dimensional.]
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Take a classical observable O : F → R, ψ 7→ O(ψ), let Oψ0
:= O ◦ (IF + ψ0).

[One has Oψ0
(ψ − ψ0) = O(ψ) ∀ψ ∈ F , with some fixed reference field ψ0 ∈ F .]

We say that O is multipolynomial iff for some ψ0 ∈ F there exists Oψ0
∈ Ta(F∗), such that

∀ψ ∈ F : Oψ0
(ψ−ψ0)

︸ ︷︷ ︸

=O(ψ)

=
(

Oψ0

∣
∣
∣
(
1,

1
⊗(ψ−ψ0),

2
⊗(ψ−ψ0), ...

) )

.
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Similarly E : F → F∗
T
, ψ 7→ E(ψ), let Eψ0

:= E ◦ (IF + ψ0) the same re-expressed on F.

[One has Eψ0
(ψ − ψ0) = E(ψ) ∀ψ ∈ F , with some fixed reference field ψ0 ∈ F .]

We say that E is multipolynomial iff ∃ Eψ0
∈ Ta(F∗)⊗ F∗

T
, such that

∀ψ ∈ F, δψ
T
∈ F

T
:
(

Eψ0
(ψ−ψ0)

∣
∣
∣ δψT

)

︸ ︷︷ ︸

=
(
E(ψ)

∣
∣ δψ

T

)

=
(

Eψ0

∣
∣
∣
(
1,

1
⊗(ψ−ψ0),

2
⊗(ψ−ψ0), ...

)
⊗ δψ

T

)

.

For fixed δψ
T
∈ F

T
, one has (Eψ0

| δψ
T
) ∈ Ta(F∗).

So one can left-insert with it on the field correlator algebra:

ι(Eψ0
| δψ

T
) meaningfully acting on T (F).
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The master Dyson-Schwinger (MDS) operator is:

(G, δψ
T
) 7−→

(

ι(Eψ0
| δψ

T
) − i ~Lδψ

T

)

G

The master Dyson-Schwinger (MDS) equation is:

we search for (ψ0, Gψ0
) such that: G

(0)
ψ0

︸ ︷︷ ︸

=: bGψ0

= 1,

∀ δψ
T
∈ F

T
:

(

ι(Eψ0
| δψ

T
) − i ~Lδψ

T

)

︸ ︷︷ ︸

=: Mψ0,δψT

Gψ0
= 0.

We argue that this is the tentative “one-liner” of QFT.
It says ∼ spontaneous local excitations decay in all modes according to classical EL.

[Feynman type quantum expectation value is then µ(ψ0,Gψ0
)(O) :=

(
Oψ0

∣
∣Gψ0

)
.]
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Example: φ4 model.

Euler-Lagrange functional is

E : F × F
T
−→ R, (ψ, δψ

T
) 7−→

∫

M

δψ
T
�ψ v +

∫

M

δψ
T
ψ3 v.

⇓

MDS operator is

(
Mψ0,δψT

G
)(n)

(x1, ..., xn) =

∫

y∈M

δψ
T
(y)�yG

(n+1)(y, x1, ..., xn) v(y) +

∫

y∈M

δψ
T
(y)G(n+3)(y, y, y, x1, ..., xn) v(y)

−i ~n 1
n!

∑

π∈Πn
δψ
T
(xπ(1))G

(n−1)(xπ(2), ..., xπ(n))

Pretty much well-defined, and clear recipe, if field correlators were functions.
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Theorem: no solutions with high differentiability.
Theorem: for free Minkowski case, distributional solution only.
Dang!

Distributional solution to free MDS equation: Gψ0
= exp(Kψ0

) where

K
(0)
ψ0

= 0,

K
(1)
ψ0

= 0,

K
(2)
ψ0

= i ~ K
(2)
ψ0

←− (symmetrized propagator)

K
(n)
ψ0

= 0 (n ≥ 2)

So we expect distributional solutions only, at best.

How can one evaluate on distributions interaction term like G(n+3)(y, y, y, x1, ..., xn) ?

With a sufficient condition called Hörmander’s criterion? (Theorem: no.)

Via approximation with functions? (Theorem: no.)

Surprising solution by physicists: Wilsonian regularization.
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Feynman integral “⇐⇒” MDS equation.

Wilsonian regularized Feynman integral:
integrate not on F, only on the image space Cκ[F] of a smoothing operator Cκ : F→ F.

[Smoothing operator: ∼ convolution, can be generalized to manifolds. Does UV damping.]

Wilsonian regularized Feynman integral “⇐⇒” regularized MDS equation:

we search for (ψ0, Gψ0,κ) such that: G
(0)
ψ0,κ

︸ ︷︷ ︸

=: bGψ0,κ

= 1,

∀ δψ
T
∈ F

T
:

(

ι(Eψ0
| δψ

T
) − i ~LCκδψT

)

︸ ︷︷ ︸

=: Mψ0,κ,δψT

Gψ0,κ = 0.

Removes no-go theorem for solutions with high differentiability.
Thus, brings back the problem from distributions to smooth functions.
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Smooth function solution to free regularized MDS equation: Gψ0,κ = exp(Kψ0,κ) where

K
(0)
ψ0,κ

= 0,

K
(1)
ψ0,κ

= 0,

K
(2)
ψ0,κ

= i ~ K
(2)
ψ0,κ

←− (smoothed symmetrized propagator)

K
(n)
ψ0,κ

= 0 (n ≥ 2)

No problem to evaluate on interaction term like G(n+3)(y, y, y, x1, ..., xn).

What we do with κ dependence? (Renormalization, work in progress with Zs.Tarcsay.)
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Existence condition for regularized MDS solutions

If Euler-Lagrange functional E : F → F∗
T

conformally invariant:
re-expressable on Penrose conformal compactification.

That is always a compact manifold with boundary, with sufficiently regular boundary.

E : F → F∗
T

reformulable over this compact base manifold with regular boundary.

So, one can assumeM compact with nice enough boundary.
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In such situation, F = F
T

and have nice properties:
countably Hilbertian nuclear Fréchet space.

F0 ⊃ F1 ⊃ ... ⊃ Fk ⊃ ... ⊃ F

(Intersection of shrinking Hilbert spaces Fk.)

Theorem:
without punishment, one can equip T (F) with a better topology, inheriting CHNF topology.

H0 ⊃ H1 ⊃ ... ⊃ Hk ⊃ ... ⊃ Th(F)

Regularized MDS operator is then a Hilbert-Schmidt linear map

Mψ0,κ : Hk ⊗ Fk −→ H0, G⊗ δψ
T
7−→Mψ0,κ,δψT

G

Theorem: one can legitimately trace out δψ
T

variable to form

M̂
2
ψ0,κ

: Hk −→ Hk, G 7−→
∑

i∈N0

M
†
ψ0,κ,δψT i

Mψ0,κ,δψT i
G
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By construction: G is κ-regularized MDS solution ⇐⇒ bG = 1 and M̂2
ψ0,κ

G = 0.

Theorem (A.László):

(i) the iteration

G0 := 1 and Gk+1 := Gk −
1
T
M̂

2
ψ0,κ

Gk (k = 0, 1, 2, ...)

is always convergent if T > 0 large enough.

(ii) the κ-regularized MDS solution space is nonempty iff

lim
k→∞

bGk 6= 0.

(iii) and in this case

lim
k→∞

Gk

is an MDS solution, up to normalization factor.

Use for lattice-like numerical method in Lorentz signature?
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Summary

Feynman integral has no rigorous definition in Lorentz
signature.

Can be substituted by master Dyson-Schwinger (MDS)
equation.

Function spaces and operators for MDS equation are
well defined, in suitable variables.

Wilsonian regularized version of MDS equation is well
defined, in suitable variables.

Does not need a pre-arranged fixed causal structure.

A necessary and sufficient existence condition was
proved for MDS equation.

Provides a convergent iterative approximation algorithm.
(Lattice is Lorentz signature?)

Outlook: rigorous definition of Wilsonian renormalization.
On generally covariant mathematical formulation of Feynman integral in Lorentz signature – p. 24/36



Backup slides
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Structure of model building in fundamental physics

Relativistic or non-relativistic point mechanics:

Take Newton equation over a fixed spacetime and fixed potentials.

Solution space to the equation turns out to be a symplectic manifold.

One can play classical probability theory on the solution space:

Elements of solution space X are elementary events.

Collection of Borel sets Σ of X are composite events.

A state is a probability measure W on Σ, i.e. (X,Σ,W ) is classical probability space.

Relativistic or non-relativistic quantum mechanics:

Take Dirac etc. equation over a fixed spacetime and fixed potentials.

Finite charge weak solution space to the equation turns out to be a Hilbert space.

One can play quantum probability theory on the solution space:

One dimensional subspaces of the solution space H are elementary events, X.

Collection of all closed subspaces Σ of H are composite events.

A state is a probability measure W on Σ, i.e. (X,Σ,W ) is quantum probability space.
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Fréchet derivative in top.vector spaces

Let F and G real top.affine space, Hausdorff.
Subordinate vector spaces: F and G.

A map S : F → G is Fréchet-Hadamard differentiable at ψ ∈ F iff:
there exists DS(ψ) : F→ G continuous linear, such that for all sequence n 7→ hn in F, and
nonzero sequence n 7→ tn in R which converges to zero,

(G) lim
n→∞

(
S(ψ + tn hn)− S(ψ)

tn
−DS(ψ)hn

)

= 0

holds.
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Fréchet derivative of action functional

Fréchet derivative of S : F −→ Rad(M,R) is

DS : F × F −→ Rad(M,R), (ψ, δψ) 7−→
(

K 7→
(
DSK(ψ)

∣
∣δψ

))

For (v,∇)
︸ ︷︷ ︸

=:ψ

∈ F given,

(δv, δC)
︸ ︷︷ ︸

=:δψ

7→
(
DSK(v,∇)

∣
∣ (δv, δC)

)
=

∫

K

(

D1L(v,∇v, P (∇)) δv +Da2L(v,∇v, P (∇)) (∇aδv + δCav) + 2D
[ab]
3 L(v,∇v, P (∇)) ∇̃[aδCb]

)

=

∫

K

(

D1L(v,∇v, P (∇))[c1...cm] δv −
(
∇̃aD

a
2L(v,∇v, P (∇))[c1...cm]

)
δv
)

+

(

Da2L(v,∇v, P (∇))[c1...cm] δCav − 2
(
∇̃aD

[ab]
3 L(v,∇v, P (∇))[c1...cm]

)
δCb

)

+ m

∫

∂K

(

Da2L(v,∇v, P (∇))[ac1...cm−1]
δv + 2D

[ab]
3 L(v,∇v, P (∇))[ac1...cm−1]

δCb

)

(m := dim(M))
[usual Euler-Lagrange bulk integral + boundary integral]
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Distributions on manifolds

V (M) vector bundle, V ×(M) := V ∗(M) ⊗
dim(M)
∧ T ∗(M) its de Rham dual.

V ××(M) ≡ V (M).

Correspondingly: F× and F×
T

are de Rham duals of F and F
T

.

F× F×
T
→ R, (δψ, p

T
) 7→

∫

M

δψ p
T

and F
T
× F× → R, (δψ

T
, p) 7→

∫

M

δψ
T
p jointly

sequentially continuous.

Therefore, F ⊂
(
F×
T

)∗ and F
T
⊂

(
F×

)∗ continuous dense injections in E → D∗ and
D → E∗ sense.
(distribution valued sections)

Let A : F→ F continuous linear.
It has formal transpose iff there exists At : F×

T
→ F×

T
continuous linear, such that

∀δψ ∈ F és p
T
∈ F×

T
:
∫

M

(Aδψ) p
T

=
∫

M

δψ (At p
T
).

Topological transpose of formal transpose
(
At

)∗
:
(
F×
T

)∗
→

(
F×
T

)∗ is the distributional
extension of A.
Not always exists.
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Fundamental solution on manifolds

Let E : F × F
T
→ R be Euler-Lagrange functional, and J ∈ F∗

T
.

K(J) ∈ F is solution with source J , iff ∀δψ
T
∈ F

T
: (E(K(J)) | δψT ) = (J |δψ

T
).

Specially: one can restrict to J ∈ F×
T
⊂ F× ⊂ F∗

T
.

A continuous map K : F×
T
→ F is fundamental solution, iff for all J ∈ F×

T
the field K(J) ∈ F

is solution with source J .

May not exists, and if does, may not be unique.

If Kψ0
: F×

T
→ F vectorized fundamental solution is linear (e.g. for linear Eψ0

: F→ F
T

∗):
Kψ0
∈ Lin(F×

T
,F) ⊂ (F×

T
)∗⊗(F×

T
)∗ is distribution.
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Generalization of convolution to manifolds

A continuous linear map C : (F×)∗ → F is called smoothing operator.
Schwartz kernels theorem: C ←→ κ ∈ F ⊠ F×, i.e. κ is field overM×M.

Cκ : F
T
→ F cont.lin., where

(
Cκ δψT

)
(x) :=

∫

y∈M κ(x, y) δψ
T
(y) ∀δψ

T
∈ F

T
, x ∈M.

Ctκ : F×
T
→ F× cont.lin., where

(
Ctκ pT

)
(y) :=

∫

x∈M p
T
(x)κ(x, y) ∀p

T
∈ F×

T
, y ∈M.

partially compactly supported κ: ∀K ⊂M compact
{(x, y) ∈M×M|x ∈ K, κ(x, y) 6= 0} and {(x, y) ∈M×M| y ∈ K, κ(x, y) 6= 0}

has compact closure.

Then Cκ cont.lin. F→ F and Ctκ cont.lin. F× → F×.
Then Cκ cont.lin. F

T
→ F

T
and Ctκ cont.lin. F×

T
→ F×

T
.

On distributions, the transpose of these.

E.g. ordinary convolution over Minkowski:
M (affine space), T (subordinate vector space), v (constant volume form).
Let η : T → R smooth compactly supported.

Let (x, y) 7→ κ(x, y) := η(x−y) v(y) I.

Then δψ ∈ F: Cκ δψ = η ⋆ δψ.
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Particular solutions to the free MDS equation

Distributional solutions to free MDS equation: Gψ0
= exp(Kψ0

) where

K
(0)
ψ0

= 0,

K
(1)
ψ0

= 0,

K
(2)
ψ0

= i ~ K
(2)
ψ0

K
(n)
ψ0

= 0 (n ≥ 2)

Smooth function solutions to free regularized MDS equation: Gψ0
= exp(Kψ0,κ) where

K
(0)
ψ0,κ

= 0,

K
(1)
ψ0,κ

= 0,

K
(2)
ψ0,κ

= i ~ (Cκ ⊗ Cκ)K
(2)
ψ0

K
(n)
ψ0,κ

= 0 (n ≥ 2)

[Here Cκ(·) := η ⋆ (·) is convolution by a test function η.]
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Renormalization from functional analysis p.o.v.

Let F and G real or complex top.vector space, Hausdorff loc.conv complete.

Let M : F ֌ G densely defined linear map (e.g. MDS operator).

Closed: the graph of the map is closed.

Closable: there exists linear extension, such that its graphs closed (unique if exists).

Closable⇔ where extendable with limits, it is unique.

Multivalued set:
Mul(M) :=

{
y ∈ G

∣
∣∃ (xn)n∈N in Dom(M) such that lim

n→∞
xn = 0 and lim

n→∞
Mxn = y

}
.

Mul(M) always closed subspace.

Closable⇔Mul(M) = {0}.

Maximally non-closable⇔Mul(M) = Ran(M). Pathological, not even closable part.

Polynomial interaction term of MDS operator maximally non-closable!
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MDS operator:

M : F
T
⊗ T (F)→ T (FC), G 7→MG

linear, everywhere defined continuous on D ⊗ E → E . So,

M : T (F×
T

∗) ֌ F
∗
T
⊗ T (F×

T

∗), G 7→MG

linear, densely defined as D∗
֌ D∗ ⊗D∗.

Similarly: Mκ regularized MDS operator (κ: a fix regularizator).
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Not good equation:

G ∈ T (F×
T

∗) ? G(0) = 1 and ∃ Gκ → G approximator sequence, such that :

lim
κ→δ

0

MGκ = 0.

All G would be selected, because Mul() set of interaction term is full space.

Not good equation:

G ∈ T (F×
T

∗) ? G(0) = 1 and ∃ Gκ → G approximator sequence, such that :

lim
κ→δ

0

MκGκ = 0.

All G would be selected, because Mul() set of interaction term is full space.
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Can be good:

G ∈ T (F×
T

∗) ? G(0) = 1 and ∃ Gκ → G approximator sequence, such that :

∀κ : MκGκ = 0.

That is, as implicit function of κ, not as operator closure kernel.

Running coupling:
If in Mκ EL terms are combined with weights g(κ).
(Not just with real factors.)
E.g.:

(g,G) ∈ T (F×
T

∗) ? G(0) = 1 and ∃ Gκ → G approximator sequence, such that :

∀κ : Mg(κ),κGκ = 0.
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