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Motivation

● System identification techniques  → Quantum mechanics.

● Many nonlinear phenomenon → well established methods in 
engineering (BLA, Volterra, ARX models,...) → not used in QM.

● In particular : low energy scattering

– The observables (phase shifts,transmission coefficients, ...) depend 
nonlinearly from the inputs (Energy, angular momenta, …) ← VPA 
eq. (later)

– Inversion == determining the potential (real, complex, …) from 
observables.

● Usually ill-conditioned and/or ill-defined problem

  



  

● Existing methods:

– Fixed energy: Newton-Sabatier method, Cox-Thompson method

– Fixed angular momentum: Gelfand-Levitan-Marchenko equation

– Mixed methods: using energy and angular momenta
● The proposed method:

– Data-driven

– Solving the inverse problem by identifying the inverse nonlinear 
system.

– Easily extendable

– … more of this later ….



  

System identification

● Classification of systems:
– Number of inputs and outputs: SISO, MISO, MIMO,...

– Linear or nonlinear

– Stable or unstable

– Time variant or time invariant

– Dynamic or static

– Causal or non-causal

– Invertible or non-invertible



  

● Linear systems can be well-described by the transfer function 
'method'.

● In Fourier domain → Y(s)=H(s)U(s)

– Better suited for identification

– Amplitude (Bode-diagram) and Phase information are both 
important

● For MIMO, MISO systems → transfer matrix has to be identified

● Stability criteria (only for LTI systems):

– Nyquist criteria

– Hurwitz criteria 



  

● The 'closed loop' system → control → achieving optimal 
working conditions for the LTI systems

● Nonlinear systems:

– Something in the dynamics is nonlinear e.g. feedback or the PDE's...

– Modeling is much harder

– Stability also problematic



  

● Modeling nonlinear systems:

– Best Linear Approximation
● Weak nonlinearities
● Linear (transfer function) approximation in the least 

squares sense.

– Volterra series: 
● Extension of the transfer function method
● Infinite dimensional convolutional integral representation

– Neural Networks
● Dynamic representation with NN constructions
● MLP, SVM, NARX, C(ellular)NN, C(onv)NN,...  



  

● Volterra series:

– Extension of the linear model with higher order polynomial 
terms

– For MIMO systems: 
● Cross-terms are important 



  

● The Volterra kernels can be identified by multiple methods

– Frequency domain identification

– Discretization → finite memory, finitre order + Linear in 
parameters → linear system of eq's

– Neural networks + Taylor expansion

● Problems: 

– Too many parameters at higher order

– Usually ill-conditioned → regularization

– Monomial basis → correlated coefficients → Wiener series.



  

Neural Networks

● Interconnected layers with nonlinear and /or linear activation 
functions.

● Universal approximator.
● Static and dynamic nonlinearities can be modeled.
● Multilayer-Perceptrons (MLP):



  

Inverse scattering basics
● In inverse scattering the characteristics of an object is examined, 

based on scattering data

● Typical observables:
– Phase shifts
– Transmission coefficients
– Polarization
– Total and differential cross-sections

● Low-energy elastic scattering can be described by the Schrödinger 
equation → electron+A, N+N, alpha+N, A+A … reactions.

● Scattering ~ incoming plane wave + outgoing spherical wave :

● Cross section:



  

● For spherical potentials at low energies → partial wave expansion + 
radial Sch. eq. → phase shift can be expressed:

● Generate training data for identification:

– 1D Lippmann-Schwinger equation

– 3D Variable Phase Approximation (VPA)

 



One-dimensional scattering problem (non-causal Volterra)

● Incoming wave scattered on a bounded 
potential, giving a scattered wave 
function.

● Inputs: Real and Imaginary parts of the 
scattered wave-function

●

● In the example:
– m=1 MeV, k=0.5 MeV
– V     [-2,0] MeV
– V(x)=0 , if |x|>2 MeV-1

–

● Identify a non-causal Volterra model
– 10000 samples, with uniformly 

distributed random noise as 
potentials

– Lippmann-Schwinger eq. → training 
data





  

Scattering problem in Fourier space (non-causal Volterra)
● Observables: phase shifts and 

transmission coefficients
● Identify a non-causal MISO 

Volterra system with:
– Inputs: Phase shifts & 

Transmission coefficients
– Output: Fourier transform of 

x     [-4,4] MeV-1, N=50), with 
k      [0,20] MeV, Δk =0.2 
MeV

● Only symmetric potentials → 
Fourier transform is real

● One 2nd order non-causal 
Volterra system for every k, with 
1st order cross-terms, and M=35 
memories (+/-35Δk).





NEURAL NETWORK MODEL 

● Radially symmetric potentials, and fixed angular momenta
● Method:

– The last point V(r
M
) is estimated only from the phase shift information.

– V(r
M-1

) is then estimated from the phase shift and the estimated V(r
M
), and so 

on...
– In each block a multilayer-perceptron (or a Volterra model) is identified.



Model parameters (EXAMPLE 1):

● m=1 GeV, r     [0,6] fm, V(r)     [-10,0] MeV.
● 20 inversion points
● Input:                    , with Tlab=[1,6,11,...,99] MeV  
● Training/validation/error (10000/2000/1000)

● Network complexity: 



● Simple well-defined problem 
in the operating range

● Nonlinear dynamics

● Accuracy shows the typical 
behaviour for MLP's





The main application : NN 3S
1
 phase shifts

● neutron+proton scattering
● Preliminary knowledge → define the operating range

– 1 bound state (the deuteron) → 180° phase shift 'jump'
– Typical nuclear force

● Attractive at 'large' distance (few fm)  
● Strongly repulsive core (below r~0.5 fm) 

– Coulomb 
–  nonperturbative QCD

● Vanishing potential at r~5-6 fm 
● The operating range is set to be:

– V(r) goes to zero at r~3-4 fm
– V(r) bounded in the whole range (no infinities at zero) 
– V(r)       [-500,500] MeV at r>0.5 fm
– V(r)      [-500,20000] MeV at r<0.5 fm
– No restriction to the number of bound states



● Generating training data → want to 
generate random potentials in the desired 
operating range

● Method:

1. Generate 3 random numbers →
● number of control points
● Place of control points
● Values of control points

3. Use Picewise cubic hermitian 
interpolating polynomials (PCHIP) to 
interpolate between the control points.



● Model structure:
– 30 inversion points in r     [0,3] fm
– Tlab= [1 5 10 15 20 25 50 75 100 125 150 175 200 225 250 275 300] MeV
– 10000 training and 2000 validation samples





Summary

● The inverse scattering problem is usually hard to solve, but very important 
in nuclear physics.

● Nonlinear system identification techniques can be used to obtain good 
estimates to the scattering potentials.

● Two models were proposed:

– Volterra series

– Neural networks
● The low-energy neutron+proton interaction potential is estimated by the 

Neural Network inversion method → comparable results between the 
measured and the calculated phase shifts.

● The method can be easily extended to describe other systems/problems as 
well.
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