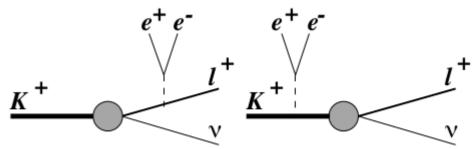


Study of the K+ \rightarrow e+ ν_e e+ e- Decay with the NA62 Experiment

RAG2


Wigner Seminar 24. 10. 2022.

Anna Fehérkuti CERN Summer Student 2022 (27. 6. - 23. 9.) Supervisors: Francesco Brizioli, Monica Pepe EP-UFT, Small Medium Expt

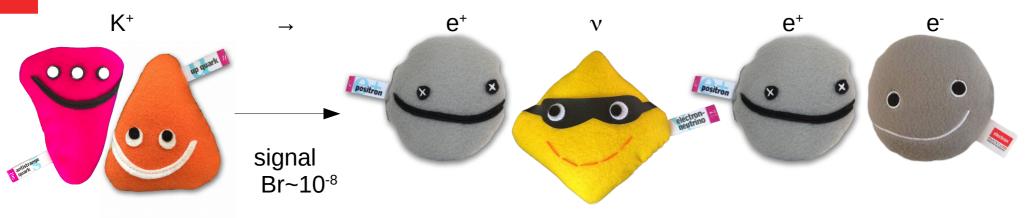
Motivation: K-physics

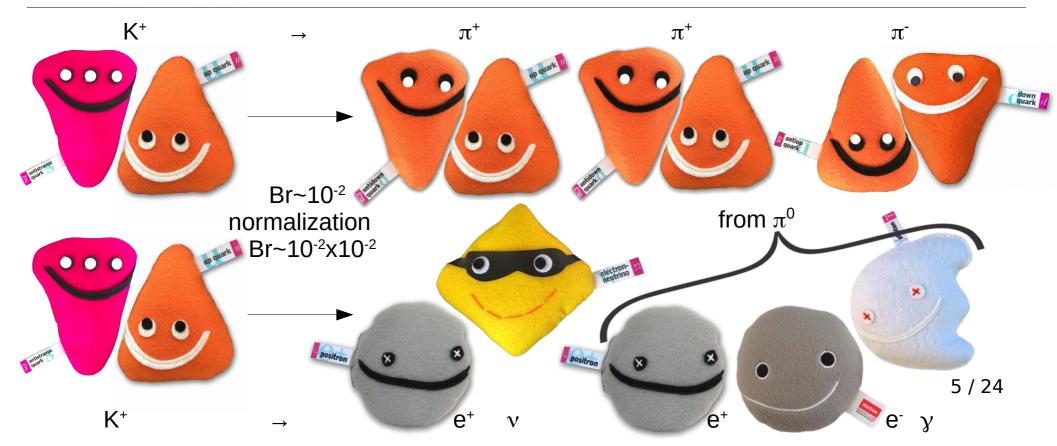
- K⁺ → I⁺ v I⁺ I⁻ described by Chiral Perturbation Theory (ChPT)
 → test & inputs
- Decay amplitude includes:
 - Inner Bremsstrahlung (IB) well predicted by $K^+ \rightarrow I^+ v$

- Structure-Dependent components (SD): form factors (F_A , F_V , R)
 - General K⁺-decay sensitive to $F_{A'}$, F_{V}
 - R contributes only to decays with $e^+ e^-$ from γ^*
- $K^+ \rightarrow e^+ v_e e^+ e^-$ (Ke2ee): SD > IB ($\leftarrow e^-$ -helicity suppression)

About Branching Ratios

Collecting either κ^+ (6 %), π^+ (70 %), p^+ (24 %) Secondary beam of 75 GeV (750 MHz)


- Absolute measurement (of N^{channel of interest}/N^{all}) impossible (interesting vs *everything*?)
- Normalization channel Br₂ from PDG: Br₁/Br₂
 - Likely process → small external uncertainty (propagated, but negligible vs syst/stat)
 - Similar process → small systematic error (many uncertainty factors fall out)
- Which one is better in this case?


Uncertainties

 $\frac{Br^{signal}}{Br^{norm}} = \frac{N^{signal}}{N^{norm}} \cdot \frac{\varepsilon^{norm}}{\varepsilon^{signal}} = \frac{N^{signal}}{N^{norm}} \cdot \frac{Acc^{norm}}{Acc^{signal}} \cdot \frac{Trig^{norm}}{Trig^{signal}}$ • Br: branching ratio

- N: actual measured counts
- *E*: selection efficiency
- Acc: acceptance, efficiency of the offline selection
 - From Monte Carlo (MC)
- *Trig*: efficiency of the online trigger selection
 - Different masks for signal and noralization
- Same cuts: Acc of signal vs normalization cancel
- Perfect MC: N & Acc balance each other

Studied Processes

Previous studies

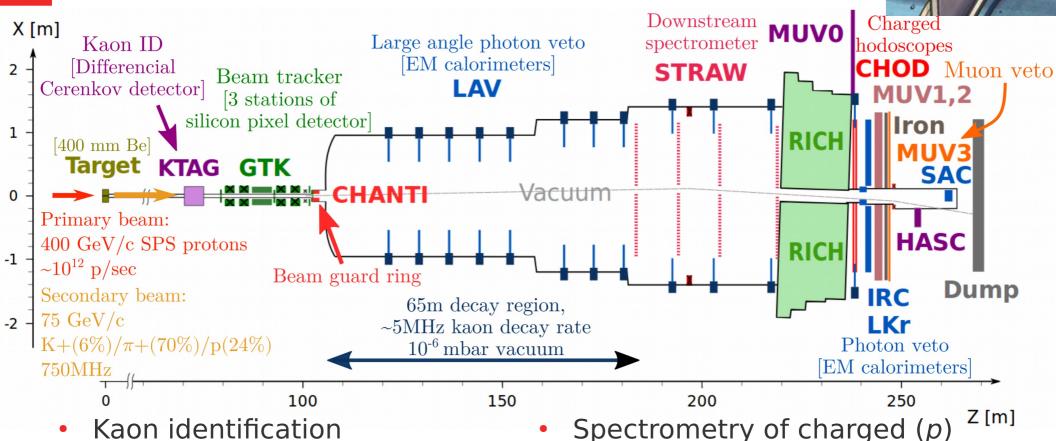
Table 7: Theoretical values for the branching ratios for the decay $K^+ \rightarrow e^+ \nu_e e^+ e^$ for various cuts.

• Theory [1]:

– *z*: m_{e-,e+}

	tree level	form factors as given by CHPT
full phase space	$\approx 4 \cdot 10^{-9}$	$1.8 \cdot 10^{-7}$
$z, z_1 \ge 10^{-3}$	$3.0 \cdot 10^{-10}$	$1.22 \cdot 10^{-7}$
$z, z_1 \ge (50 \ MeV/M_K)^2$	$5.2 \cdot 10^{-11}$	$8.88\cdot10^{-8}$
$z, z_1 \ge (140 \ MeV/M_K)^2$	$2.1 \cdot 10^{-12}$	$3.39\cdot 10^{-8}$

• Experimental results (BNL, 2002) [2]: $N_{signal} = 410$ (including 10% background contamination) $Br(m_{e,e+} > 140 \text{ MeV}) = [291 \pm 16(\text{stat}) \pm 17(\text{syst}))$


 \pm 0.7(ext from model)] \cdot 10⁻¹⁰

 \rightarrow NA62: data collected 2016-2021

	3
P	7
1	an .
-	C

- → Full 2017-18 sample
- + v3.1.3 MC: kenuee, k3pi, k2pi.pi0d

The NA62 Experiment

- Tracking the beam
- Collimator vs *upstream* → Fiducial Volume (FV): decay
- Photon vetoes (vs π⁰)

- Cherenkov radius of charged (β)
- Electromagnetic & hadronic calorimeters
- Muon vetoes

Event Selection I.

- General conditions:
 - 1 single 3 track event
 - − Precise enough vertex (χ^2 < 25) of charge +1, in FV ($z \in [105, 180]$ m) within 6 ns wrt trigger (vtx: CHOD vs trig: RICH)
 - Opposit-charged particles in time wrt trigger:

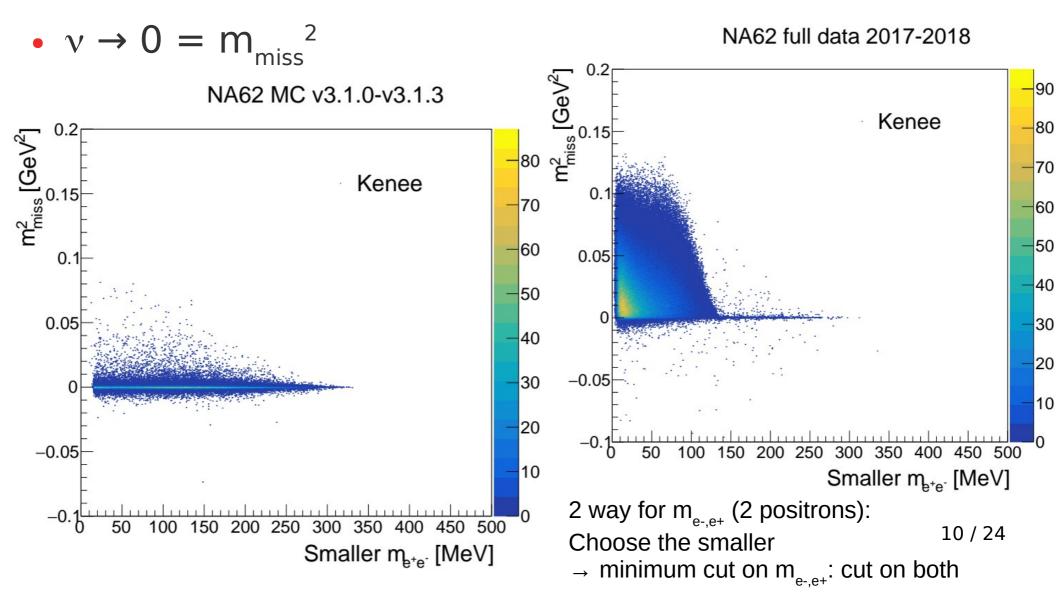
 $|t^{1}_{_{NewCHOD}} - t^{2}_{_{NewCHOD}}| < 2 \text{ ns, } |t^{i}_{_{NewCHOD}} - t_{_{CHOD}}| < 2 \text{ ns}$

- Tracks in detector acceptance (STRAW, RICH, CHOD, NewCHOD, LKr)
- Reasonable track separation (15 mm in each STRAW chamber, 200 mm in LKr plane)
- Extra activity vetos: ys, μs (reject event if activity within 2 ns wrt vertex)
- Good association between KTAG-GTK & RICH-CHOD:

 $|t_{_{GTK}} - t_{_{KTAG}}| < 1.4$ ns, $|t_{_{vertex}} - t_{_{RICH}}| < 2$ ns

- Vertex-building from the three downstream tracks and the GTK track, where the GTK candidate gives the minimal χ^2_{vertex}
- Momentum of each track separately \in [8, 50] GeV
- 3-track momentum < 78 GeV
- HLT (L1): KTAG was ok, no exotics in STRAW

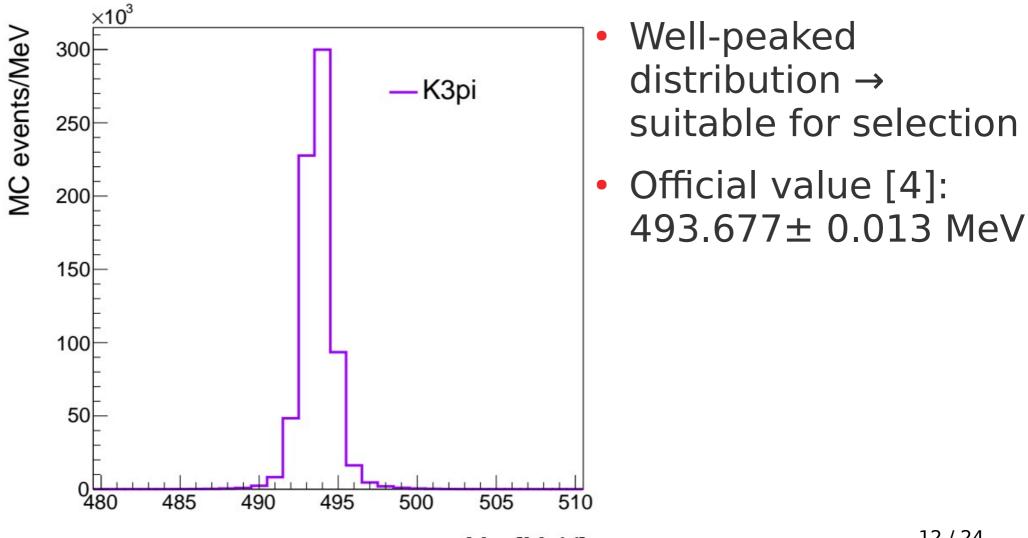
Event Selection II.


- Signal selection:
 - Particle identification (PID):
 - e⁻ probability from calorimetric BDT > 0.5 for the positive tracks (Boosted Decision Tree, BDT: neural algorithm)
 - e⁻ RICH likelihood > 0.5 for the positive (!) tracks
 - No EoP (from LKr) condition needed (EoP > 0.9 [3])!
 - Kinematics:
 - Neutrino momentum (lower boundary): p_v > 200 MeV
 - p^{T} in GTK (lower boundary): $p^{T}_{GTK} > 8 \text{ MeV}$
 - Electron-positron invariant mass (lower boundary): $m_{e-e+} > 140 \text{ MeV}$
 - Theory: vs divergence in the decay rate due to the small-energy γ
 - Experimetally: vs $K^+ \rightarrow e^+ \nu \pi^0$, $\pi^0 \rightarrow e^- e^+ \nu$ (Dalitz mode)
 - Missing mass (upper boundary): $m_{miss}^2 < 0.03 \text{ GeV}^2$
 - Trigger mask4 ("di-electron"), downscaling of 8: 9 / 24
 extra condition (over mask5*) on LKr total energy (minimum 20 MeV)

• Well-peaked distribution \rightarrow suitable for selection

Event Selection III.

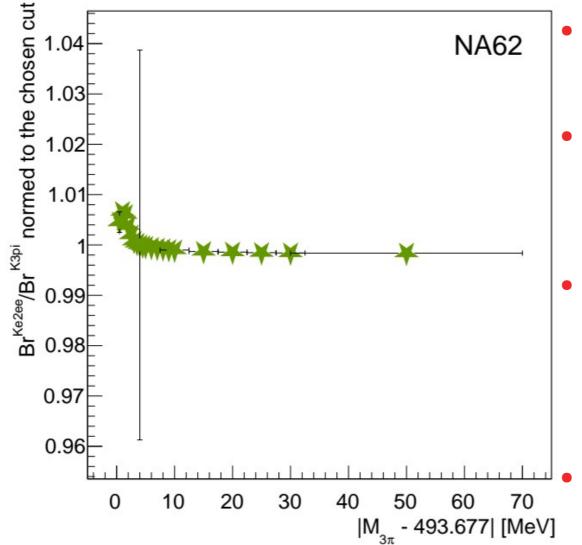
- Normalization selection:
 - Kinematics:



- Kaon invariant mass: $|m_{_{3\pi}} m_{_{K+}}| < 4$ MeV (check if GTK was ok first)
- No PID needed! (clean enough sample)
- Separating data (events already identified as signal shall not be analyzed again):
 EoP < 0.9
- Trigger mask5 ("multi-track"), downscaling of 100:
 - RICH was ok
 - Good newCHOD candidates

Kaon invariant mass (K3pi MC)

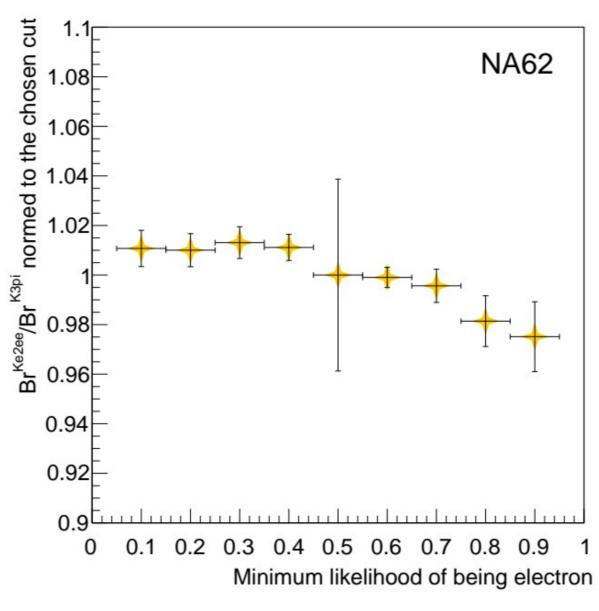
NA62 MC v3.1.0-v3.1.3



M_{3π} [MeV]

12/24

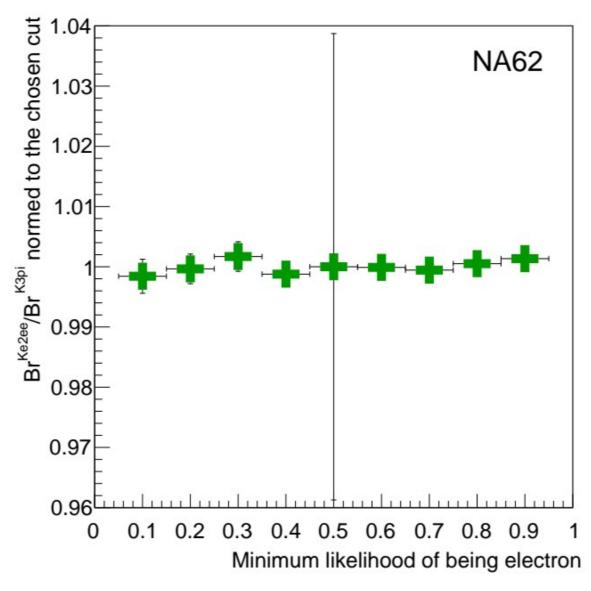
Stability studies: kaon invariant mass


Cut on kaon invariant mass

- Normed to the chosen cut
- Uncertainty of the central value: all stat + syst
- Uncertainty of the other values: relative to the central
 - (On the following plots as well...) ^{13/24}

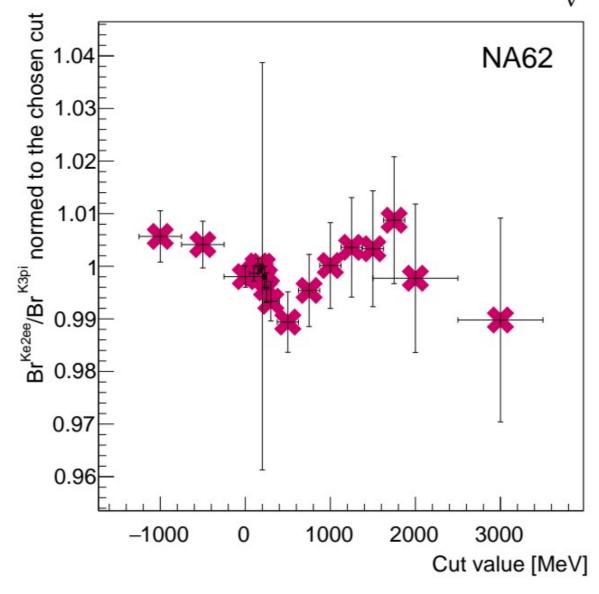
Stability studies: BDT PID

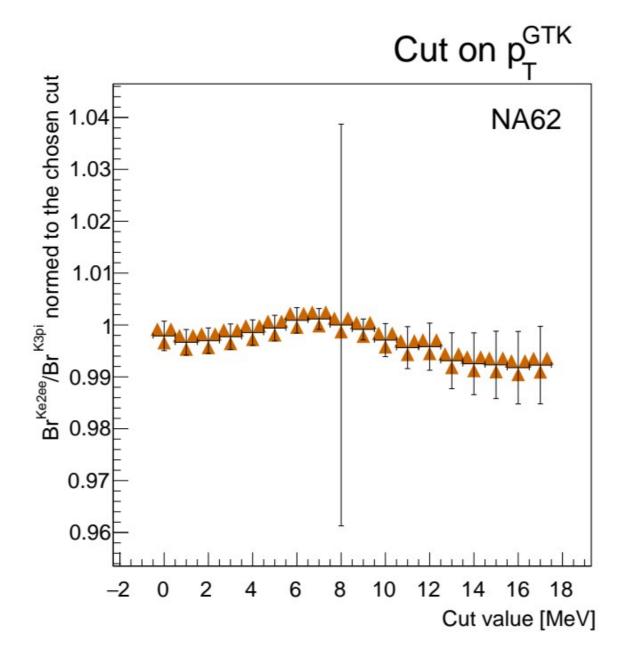
Cut on calorimetric PID likelihood



14/24

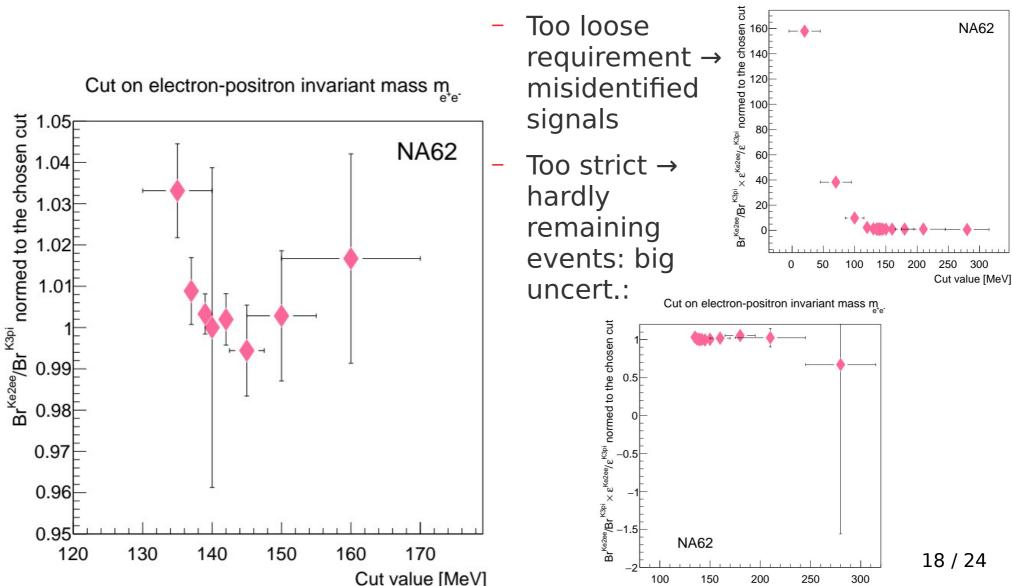
Stability studies: RICH PID


Cut on RICH PID likelihood



Stability studies: p_v

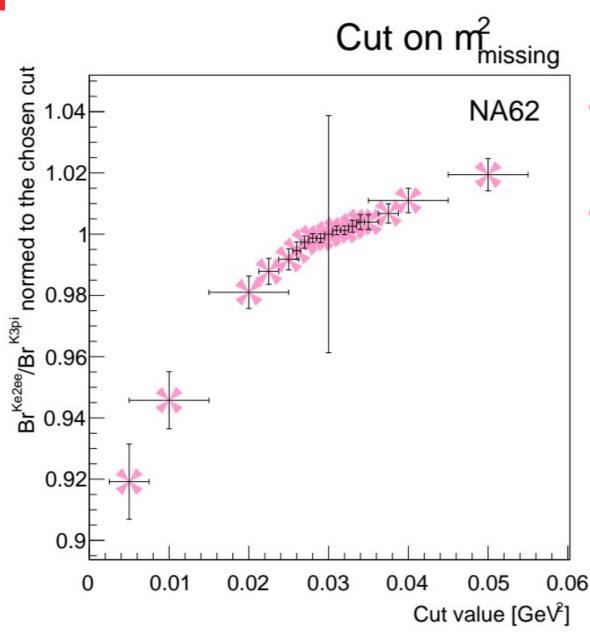
Cut on p



Stability studies: p_{T}^{GTK}

Stability studies: m e-,e+

Differently zoomed:



Cut value [MeV]

Cut on electron-positron invariant mass m

Stability studies: m_{miss}²

- Cut has to be where it is stable enough
- Not in the range of uncertainty: also almost different order of magnitude

Trigger efficiency

- Wrt selection
- From data: control (CTRL) data needed
 - Signal: mask4/CTRL = 708/11 \int (too low stat)
 - Normalization: mask5/CTRL = 91.7%
- From MC, emulating L0 triggers as well:
 - Signal (RICH, NewCHOD, LKr): 92.6%
 - Normalization (RICH, NewCHOD): 91.3% \rightarrow ratio: (98.5±0.8)%

/extra condition in mask4 and not in mask5 (LKr20): very small inefficiency/

Summary I. - The Task

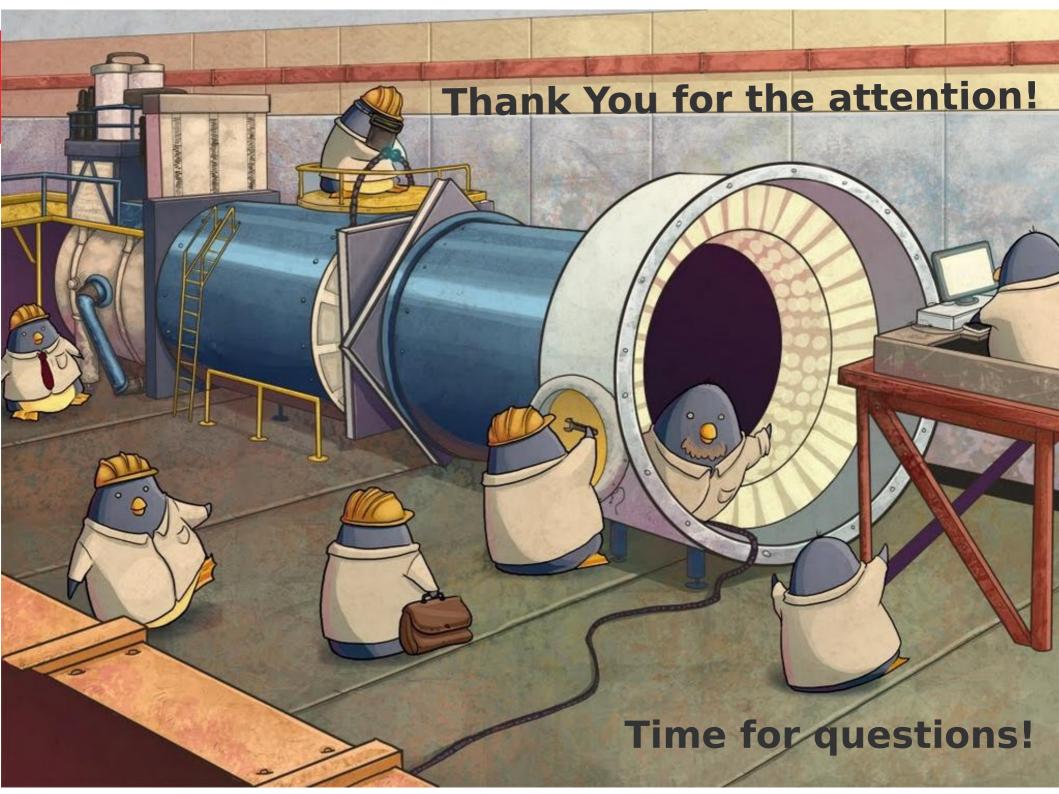
- Choosing a very likely normalization channel → small statistic uncertainty
- Using as many as possible common cuts → decrease systematic uncertainty
- Examining acceptance & trigger efficiency
- Get the branching ratio from the branching fraction
 - Propagate uncertainty from Br_{normalization}

Summary II. - Results in Numbers

- Values from the literature:
 - $Br_{normalization}^{PDG}$: (5.583 ± 0.024)% [4]
 - $Br_{signal}^{theory}(m_{e,e+} > 140 \text{ MeV}): 3.39 \cdot 10^{-8} [1]$

- $Br_{signal}^{measurement}(m_{e-,e+} > 140 \text{ MeV}): (2.91 \pm 0.34) \cdot 10^{-10} [2]$
- My analysis:

- $Br_{signal}(m_{e-,e+} > 140 \text{ MeV})$: (3.13 ± 0.12) • 10⁻⁸


	Signal	Normalization	Ratio
N	708±26.61	230419472±15180	$(3.073 \pm 0.116) \cdot 10^{-6}$
Acc	$0.02837 {\pm} 0.00015$	0.06300 ± 0.00008	2.221±0.012
Е	$0.9265 {\pm} 0.0069$	$0.9126 {\pm} 0.0017$	$0.9851 {\pm} 0.0076$

Outlook

- Examining background contamination in signal case (cca. 20 events [3] vs 708)
- Analysis on bigger data

Backup slides

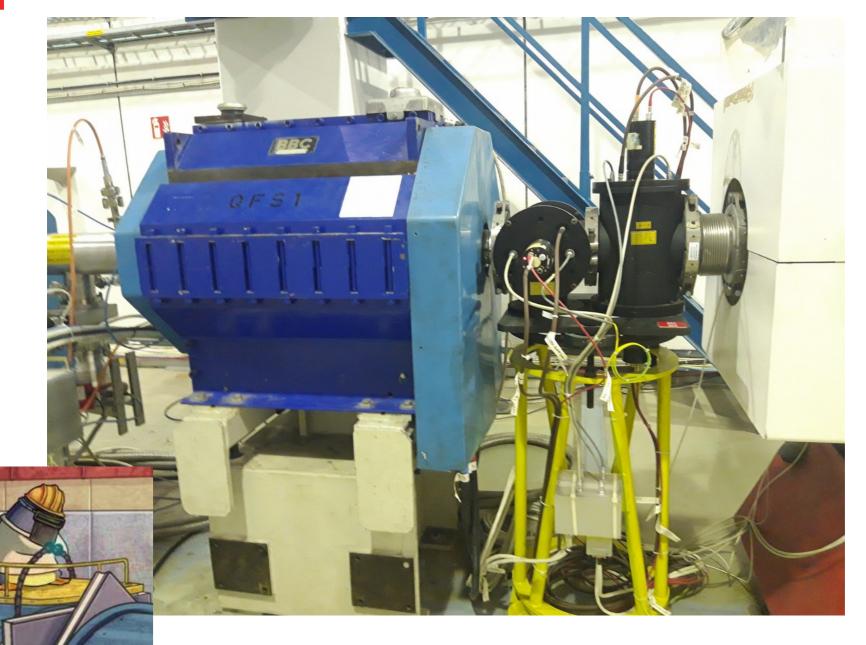
Parts of the NA62 Experiment

KTAG

- Kaon-tagging vs proton
- PMTs
- Front-end readout
- Flashed with N₂

CEDAR

- Differential Cherenkov
 with KTAG
- Chromatic correctors
 +Mirrors
- 1.6 m
- N₂


Safe Volume

• For emergency cases: leakage on beam pipe

CEDAR W O

 N₂ into CEDAR vs mechanical wave

Magnets

GTK

- GigaTracker: beam
- Between dipoles
 - 4 stations
- Si pixel

Collimator

- Rainbow :)
- Vs upstream

CHANTI

- Charged ANTIcounter
- Hodoscope: scintillators
- Veto vs upstream

Beginning of the Fiducial Volume

10/25

LAVs

- Vetoes against photons
- Leadglass scintillators

STRAW

Spectrometerp of particle

- 4 stations
- 35 m

Strong magnet for STRAW

- 0.9 Tm: horizontal momentum kick of 270 MeV/c
 - 75 GeV/c beam deflected too, by -3.6 mrad

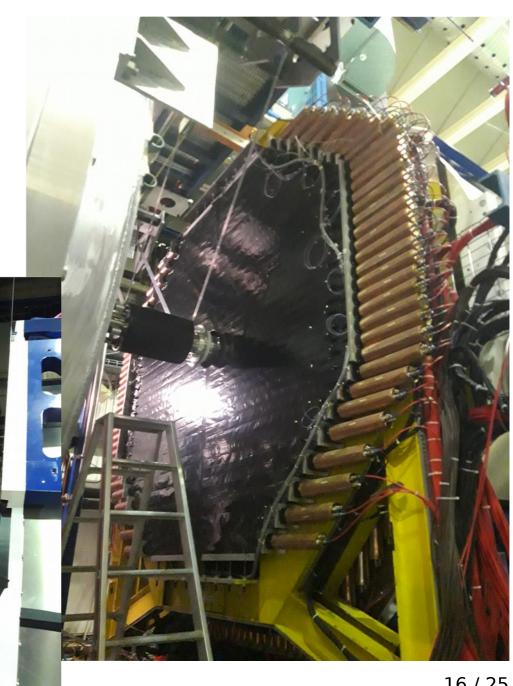
RICH

- Ring Imaging Cherenkov: Ne
- β of the charged particles

Mirror mosaicPM disk

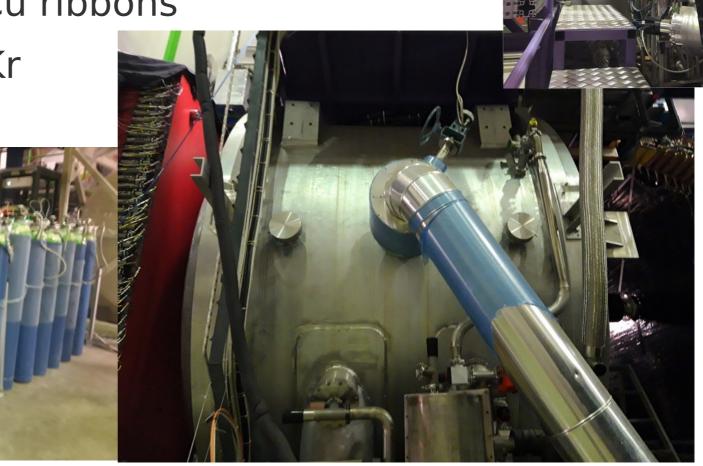
IRC

- Intermediate Ring Calorimeter
- Photon-veto
- Pb / scintillator
 Shashlyk



(New)CHOD

- Hodoscope: scintis
- Time → minimum bias trigger



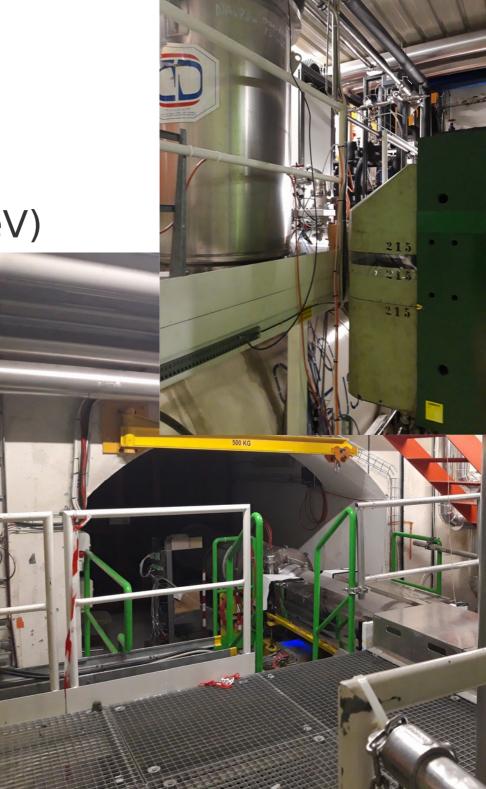
LKr

- EM calorimeter from NA48
- Accordeon Cu ribbons
- 9 m³ liquid Kr

MUV1,2

- Sampling hadronic calorimeters
- Fe / scintillators

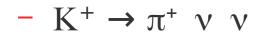
MUV3


- Extra iron before it
- Only muons
- Plastic scintillators

HASC, SAC

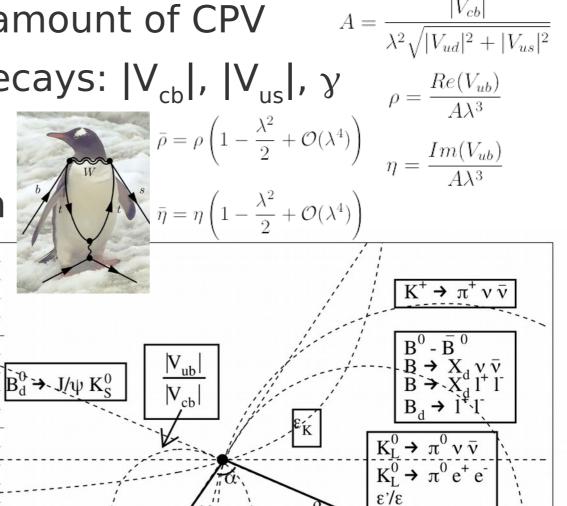
- HASC:
 - Vs multitrack ($\pi^+ > 50$ GeV)
 - Sampling calorimeter
- SAC ~ last LAV:
 - Small angle calorimeter
 - Photon veto
 - Shashlyk

About the theoretical background


BSM

00

Motivation of NA62: BSM Probes


-0.5

- CKM (Wolfenstein) → unitarity triangle
 - Area related to the amount of CPV
- (Semi)leptonic kaon decays: $|V_{cb}|$, $|V_{us}|$, γ

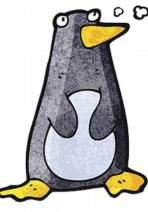
- Inconsistency between channels of measurement:
 - Hint to BSM

$$V_{CKM} = \begin{pmatrix} 1 - \frac{\lambda^2}{2} & \lambda & A\lambda^3(\rho - i\eta) \\ -\lambda & 1 - \frac{\lambda^2}{2} & A\lambda^2 \\ A\lambda^3(1 - \rho - i\eta) & -A\lambda^2 & 1 \end{pmatrix} + \mathcal{O}(\lambda^4)$$

0.5

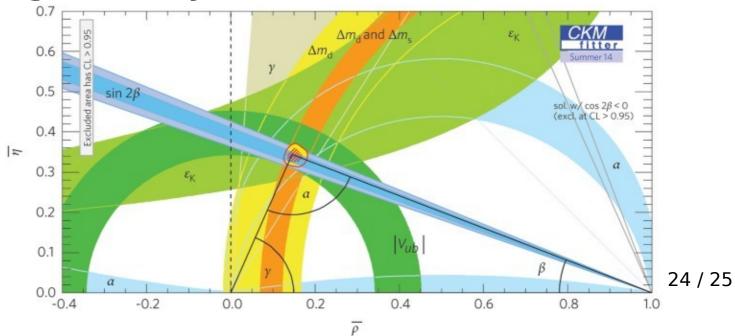
 $\lambda = \frac{|V_{us}|}{\sqrt{|V_{ud}|^2 + |V_{us}|^2}}$

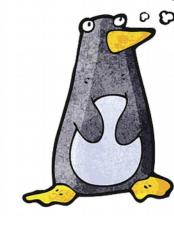
1.5


Unitarity triangle

• Restriction on matrix elements by unitarity:

$$\mathbb{1} \equiv \mathbf{V_{CKM}} \cdot \mathbf{V_{CKM}^{\dagger}} = \begin{pmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{pmatrix} \cdot \begin{pmatrix} V_{ud}^{*} & V_{cd}^{*} & V_{td}^{*} \\ V_{us}^{*} & V_{cs}^{*} & V_{ts}^{*} \\ V_{ub}^{*} & V_{cb}^{*} & V_{tb}^{*} \end{pmatrix} =$$


 $\begin{pmatrix} V_{ud}V_{ud}^* + V_{us}V_{us}^* + V_{ub}V_{ub}^* & V_{ud}V_{cd}^* + V_{us}V_{cs}^* + V_{ub}V_{cb}^* & V_{ud}V_{td}^* + V_{us}V_{ts}^* + V_{ub}V_{tb}^* \\ V_{cd}V_{ud}^* + V_{cs}V_{us}^* + V_{cb}V_{ub}^* & V_{cd}V_{cd}^* + V_{cs}V_{cs}^* + V_{cb}V_{cb}^* & V_{cd}V_{td}^* + V_{cs}V_{ts}^* + V_{cb}V_{tb}^* \\ V_{td}V_{ud}^* + V_{ts}V_{us}^* + V_{tb}V_{ub}^* & V_{td}V_{cd}^* + V_{ts}V_{cs}^* + V_{tb}V_{cb}^* & V_{td}V_{td}^* + V_{ts}V_{ts}^* + V_{tb}V_{tb}^* \end{pmatrix} \equiv \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$


- 3 angle per triangle
 - 6 triangles vs same: 1 CPV complex phase
- Area of the triangle \rightarrow CP violation
- Inconstistency in predictions in $(\bar{\varrho}, \bar{\eta})$ plane \rightarrow BSM

Unitarity triangle

- Tree-level: semi-leptonic K-, B-decays
 - $|V_{us}|$, $|V_{cb}|$, $|V_{ub}|$ & R_b within SM
- Other measurement channels \rightarrow apex A on the plane
 - Loop-induced decays & transitions
 - CP violating B decays

References

- [1] J. Bijnens, G. Ecker, and J. Gasser. "Radiative semileptonic kaon decays". In: Nucl.Phys. B 396 (1993), pp. 81–118. doi: 10.1016/0550-3213(93)90259-R. arXiv:hep-ph/9209261 (cit. on p.2).
- [2] A. A. Poblaguev et al. "Experimental study of the radiative decays K+ —> mu+ nu e+ e- and K+ —> e+ nu e+ e-". In: Phys. Rev. Lett. 89 (2002), p.061803. doi:10.1103/PhysRevLett.89.061803. arXiv: hep-ex/0204006 (cit. on p. 3).
- [3] G. Romolini, Study of the $K + \rightarrow e + v e + e decay$ with the NA62 experiment at CERN.
- [4] M. Tanabashi et al. (Particle Data Group), Charged Kaon Mass, Phys. Rev. D, 2018, 98, 030001.
- https://www.particlezoo.net/
- https://www.facebook.com/NA62Experiment
- https://phys.org/news/2020-07-cern-evidence-ultra-rare-physics.html
- https://cernbox.cern.ch/index.php/s/Q6l8onTbmJtSOID
- https://www.mdpi.com/2218-1997/4/11/119/htm
- https://www.istockphoto.com/de/fotos/penguin-thinking
- https://www.pinterest.ch/pin/cute-penguin-jumping-cartoon-notepad-baby-gifts-child-new-born-gift-idea-diycyo-special-unique-design--733664595519053629/
- https://en.wikipedia.org/wiki/Penguin_diagram
- https://www.nature.com/articles/nphys3464
- https://www.physik.uzh.ch/dam/jcr:8cb19cb1-d67a-4a44-9a73-c26871988dd8/chap05.pdf
 25 / 25
- https://arxiv.org/abs/hep-ph/0304132v2