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How to gain insight into the structure of hadrons
Important question: How do hadronic properties emerge from the
properties of the constituent partons?
Experimentally: Perform high-energy scattering experiments that can
resolve the inner hadron structure (e.g. scatter electrons off a proton)
Depending on the kinematics (inclusive vs. exclusive): Different
properties of hadron structure
In QCD: Factorization between short range and long range physics
Long range functions provide information on partons within proton

Sam Van Thurenhout Theory seminar Wigner RCP 2 / 50



Table of contents

1 Part I: Probing the proton inclusively

2 Part II: Probing the proton exclusively

Sam Van Thurenhout Theory seminar Wigner RCP 3 / 50



Part I: Probing proton structure inclusively (DIS)

Assumptions:
Photon highly virtual, Q2 ≡ −q2 � p2

s � m2
p
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The DIS cross section
The physical cross section of DIS is proportional to

1
q4 LµνW µν

Here, Lµν represents the leptonic tensor and Wµν the hadronic one.
Lµν encodes the polarization information of the electrons and the
off-shell photon. Applying standard techniques it is easy to find that

Lµν =
1
2Tr [/k ′γµ/kγν ].

W µν encodes the information of the γ∗p+ → Γ process, the
amplitude of which is

M(γ∗p+ → Γ) ∼ 〈Γ| Jµ
∣∣p+(p)

〉
with

Jµ =
∑

f
Qf ψ̄f γµψf the electromagnetic current.
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The DIS hadronic tensor

The hadronic tensor appearing in the DIS cross section can then be
written as

Wµν =

∫
d4x eiq·x 〈p+(p)

∣∣ Jµ(x)Jν(0) ∣∣p+(p)
〉
.

Note that this is independent of the final states Γ.

Hence, the calculation of the hadronic tensor of DIS boils down to
calculating the product of two current operators.

The standard formalism to deal with this type of problem is the operator
product expansion (OPE).
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The OPE
The OPE was first introduced by Wilson [Wilson, 1969] and later proven in
perturbation theory by Zimmerman [Zimmermann, 1973].

The main idea is that the time-ordered product of two local operators J(x)
and J ′(y) can be expanded in a series of regular operators, multiplied by
functions (called Wilson coefficients) encoding the singularity of the
operator product as x = y

T J(x)J ′(y) =
∞∑

n=0
Cn(x − y)On

(x − y
2

)
.

To apply the OPE to the DIS hadronic tensor, we use the optical theorem
to relate the rate of γ∗p+ → Γ to the imaginary part of the forward
scattering rate γ∗p+ → γ∗p+:

Wµν = 2 ImTµν ,

Tµν = i
∫

d4x eiq·x 〈p+(p)
∣∣ T Jµ(x)Jν(0)

∣∣p+(p)
〉
.
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Application of the OPE to DIS

Tµν can be explicitly calculated as the forward matrix element for
Compton scattering, γ∗q → γ∗q (photon off-shell and no polarizations
included). This gives

Tµν ∼ −ū(p)
γµ(/p + /q)γν
(p + q)2 u(p).

As we are interested in the regime of large Q2, we expand the denominator
for Q2 � p2

1
(p + q)2 = − 1

Q2

∑
n

(2p · q
Q2

)n

such that

Tµν ∼ 1
Q2 ū(p)γµ(/p + /q)γνu(p)

∑
n

(2p · q
Q2

)n
.
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Application of the OPE to DIS

The ingredients of the OPE, i.e. the Wilson coefficients and the operators,
can be read of from the momentum expansion in a relatively
straightforward manner:

Factors of pµ should come from factors of i∂µ from the operators,
acting on the external states
The dependence on the short-distance scale should be incorporated
into the Wilson coefficients

This implies that the Wilson coefficients for DIS will be of the following
form

Cµ1...µn ∼ 2n

Q2n+1 qµ1...µn .
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Application of the OPE to DIS

For the extraction of the operators, it is customary to use a basis of
gauge-invariant operators, meaning that ordinary derivatives are replaced
by covariant ones

∂µ → Dµ = ∂µ − igsAµ.

Furthermore, the OPE is dominated by leading-twist operators, where
twist = dimension - spin. These operators are symmetric in the Lorentz
indices and traceless.

Hence, the operators appearing in the OPE for DIS are gauge-invariant
leading-twist spin-N operators (focus on flavor non-singlet operators in this
talk)

ONS
µ1...µN = Sψ̄′γµ1Dµ2 ...DµNψ.
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PDFs and DIS

Finally, one has to consider the forward matrix element of these operators〈
p+(p)

∣∣Oµ1...µN

∣∣p+(p)
〉
∼ MN(Q) pµ1 . . . pµN .

The functions MN are directly related to the parton distribution functions
(PDFs)

fq(x) ∼
∑

n

Im Mn
xn ,

which can be interpreted to give the probability to find a quark inside the
proton with momentum xp (0 ≤ x ≤ 1). They encode the longitudinal
momentum/polarization carried by partons within fast-moving hadrons.

Since the PDFs are defined in terms of hadronic states, they are
non-perturbative
⇒ Direct extraction from experimental data (see e.g. [Brock et al., 1995]) or
using lattice QCD (see e.g. [Alexandrou et al., 2020], [Ji et al., 2021], [Wang et al., 2021])
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Scale dependence of PDFs

Besides the PDFs themselves, phenomenologically it is also important to
understand how PDFs vary when we change the energy scale of the
process. Because of their direct relation to operator matrix elements, the
scale dependence of the distributions is determined by the scale
dependence of the operators

d[O]

d lnµ2 = γ[O], γ ≡ asγ
(0) + a2

s γ
(1) + ...

The operator anomalous dimension can be calculated perturbatively!

Explicitly, we gain access to the operator anomalous dimensions by
considering the forward partonic matrix elements of the operators

〈ψ(p)|ONS
µ1...µN (0)|ψ(p)〉

and renormalizing.
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Operator anomalous dimensions

⊗

p1 p2

p3

In the present case we have p1 = p2 and p3 = 0. For practical convenience
we consider ON ≡ ∆µ1 . . .∆µN ONS

µ1...µN with ∆2 = 0.
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Operator anomalous dimensions
In forward kinematics, the operators simply renormalize multiplicatively

ON+1 = ZN,N [ON+1].

The anomalous dimensions are extracted from the Z -factors as

γN,N = − 1
ZN,N

dZN,N
d lnµ2

and are related to the splitting functions by a Mellin transformation

γN,N = −
∫ 1

0
dx xNPNS(x).

The latter determine the scale dependence of the PDFs through the
DGLAP equation [Gribov and Lipatov, 1972], [Altarelli and Parisi, 1977], [Dokshitzer, 1977]

df (x , µ2)

d lnµ2 =

∫ 1

x

dy
y P(y)f

(x
y , µ

2
)
.
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Operator anomalous dimensions
A special case is N = 0, which is just the vector current ψ̄γψ (conserved
quantity!)

O1 = Z0,0[O1] = 1 × [O1]

These forward anomalous dimensions are known completely up to the
3-loop level, and in certain limits up to the 5-loop level [Gross and Wilczek, 1973],

[Floratos et al., 1977], [Gracey, 1994], [Moch et al., 2004], [Velizhanin, 2012], [Ruijl et al., 2016], [Moch et al., 2017],

[Herzog et al., 2019], [Velizhanin, 2020]

At the l-loop level, the forward anomalous dimensions in general consist of
harmonic sums of maximum weight w = 2l − 1 and denominators in
N + α (with α ∈ N) up to the same maximum power.

Harmonic sums at argument N are recursively defined
by [Vermaseren, 1999, Blümlein and Kurth, 1999]

S±m(N) =
N∑

i=1
(±1)i i −m, S±m1, m2, ..., md (N) =

N∑
i=1

(±1)i i −m1 Sm2, ..., md (i) .
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Summary of part I

We can learn about the structure of the proton by scattering an
electron off it.
In inclusive DIS, this information is summarized in the hadronic tensor

Wµν =

∫
d4x eiq·x 〈p+(p)

∣∣ Jµ(x)Jν(0) ∣∣p+(p)
〉
.

Through the OPE, this tensor was related to the hadronic matrix
elements of leading-twist spin-N operators 〈p+(p)| Oµ1...µN |p+(p)〉.
These are directly related to the PDFs

� Probability to find a quark inside the proton with momentum
xp (0 ≤ x ≤ 1)

� Encode the longitudinal momentum/polarization carried by partons
within the proton

� Studied in detail using e.g. HERA data [Abramowicz et al., 2015], [Accardi et al., 2016]

� Scale dependence determined by anomalous dimensions of defining
operators
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Part II: Probing the proton exclusively (DVCS)
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DVCS vs DIS
We can play the same game as for DIS, with a few important differences

The hadronic tensor will now be related to the following time-ordered
product of currents

Tµν = i
∫

d4x ei(q+q′)·x 〈p′∣∣ T Jµ(x)Jν(0) |p〉 .

Again applying the machinery of the OPE, one finds that the same
operators as those in DIS appear. However, because p − p′ 6= 0, one
now also has to take into account total derivative operators.
Similarly as in DIS, hadronic matrix elements of the operators in
DVCS are related to generalized parton distributions (GPDs), which
also depend on the momentum transfer between the initial and final
state proton.
→ Transverse distributions of partons + contributions partonic orbital
angular momentum to total hadronic spin
→ Will be measured with unprecedented precision at the future EIC
[Boer et al., 2011], [Abdul Khalek et al., 2021]
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Scale dependence of GPDs

Like PDFs, GPDs are defined as hadronic matrix elements of QCD
operators, and thus cannot be calculated in perturbation theory.

⇒ Direct extraction from experimental data (see e.g. [Brock et al., 1995]) or
using lattice QCD (see e.g. [Alexandrou et al., 2020], [Ji et al., 2021], [Wang et al., 2021])

Their scale dependence however is directly determined by the scale
dependence of the defining operators, which is characterized by the
operator anomalous dimensions

d[O]

d lnµ2 = γ[O], γ ≡ asγ
(0) + a2

s γ
(1) + ...

The operator anomalous dimensions can be calculated perturbatively!
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Operator anomalous dimensions
Explicitly, we gain access to the operator anomalous dimensions by
considering the non-forward partonic matrix elements of the operators

〈ψ(p′)|ONS
µ1...µN (p − p′)|ψ(p)〉

and renormalizing.

⊗

p1 p2

p3

For simplicity we take p1 = p, p2 = 0 and p3 = −p. For practical
convenience we consider ON ≡ ∆µ1 . . .∆µN ONS

µ1...µN with ∆2 = 0.
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Determination of non-forward anomalous dimensions

The calculations follow a standard workflow:
Generate the Feynman diagrams using QGRAF [Nogueira, 1993]

Feed the output to a FORM [Vermaseren, 2000],[Kuipers et al., 2013] program to
determine the topologies and color factors
[Larin et al., 1997],[van Ritbergen et al., 1999],[Herzog et al., 2016]

Perform the actual diagram calculations with the FORCER
program [Ruijl et al., 2020], which can efficiently deal with massless
propagator-type diagrams in d = 4 − 2ε
Extract the anomalous dimensions from the 1/ε-pole through
renormalization
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Operator renormalization: Non-forward kinematics

〈ψ(p1)|O(p3)|ψ′(p2)〉

In non-forward kinematics (p3 6= 0), there is mixing with total derivative
operators

ON+1
∂ON

...
∂NO1

 =


ZN,N ZN,N−1 ... ZN,0

0 ZN−1,N−1 ... ZN−1,0
...

... ...
...

0 0 ... Z0,0



[ON+1]
[∂ON ]

...
[∂NO1]


Hence we now also have an anomalous dimension matrix (ADM)

γ̂ = − d ln Ẑ
d lnµ2 =


γN,N γN,N−1 ... γN,0

0 γN−1,N−1 ... γN−1,0
...

... ...
...

0 0 ... γ0,0

 .
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Operator renormalization: Non-forward kinematics

The elements of the ADM determine the scale dependence of non-forward
(exclusive) distributions through the ERBL equation
[Efremov and Radyushkin, 1980a],[Efremov and Radyushkin, 1980b],[Lepage and Brodsky, 1979],
[Lepage and Brodsky, 1980]

dH(x , χ, t, µ2)

d lnµ2 =
1
|χ|

∫ 1

−1
dy V (x , y)H(y , χ, t, µ2).

N∑
k=0

γN,kyk = −
∫ 1

0
dx xNV (x , y).

We now have to choose a basis for the additional operators. We briefly
discuss two possibilities which have appeared in the literature.

Diagonal elements = forward anomalous dimensions
Triangular
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The Gegenbauer basis

In this basis the operators are expanded in terms of Gegenbauer
polynomials

OGN,k = (∆ · ∂)kψ′ /∆C3/2
N

(←
D ·∆−∆·

→
D

←
∂ ·∆+∆·

→
∂

)
ψ

with [Olver et al., 2010]

Cν
N(z) =

Γ(ν + 1/2)
Γ(2ν)

N∑
l=0

(−1)l
(

N
l

)
(N + l + 2)!

(l + 1)!

(1
2 − z

2

)l
.

This choice of operator basis is used in conformal symmetry studies
[Efremov and Radyushkin, 1980a], [Belitsky and Müller, 1999], [Braun et al., 2017]

The anomalous dimensions of the Wilson operators in this basis are
known up to O(a3

s ) [Braun et al., 2017].
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The total derivative basis

In this approach we identify operators by counting powers of derivatives

ODk,N−k = (∆ · ∂)k{ψ′ /∆(∆ · D)N−kψ}

E.g. for N = 1 we have{
ψ′ /∆(∆ · D)ψ, (∆ · ∂)ψ′ /∆ψ

}
.

This choice of operator basis is used for hadronic studies on the
lattice, see e.g. [Göckeler et al., 2005] and [Gracey, 2009]

In this basis, the Wilson anomalous dimensions for low-N operators
are known up to O(a3

s ) (see [Gracey, 2009] for analytical results and
[Kniehl and Veretin, 2020] for a numerical extension of these).
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What are the goals of our work?

Hence we see that knowledge of the mixing matrices is limited in the total
derivative basis. Furthermore, because of the different bases the above
results cannot be directly compared. The goals of the thesis can now be
summarized by the following two questions:

1 Can we extend and formalize the calculations in the total derivative
basis from first principles?

2 Can we relate the calculations of anomalous dimensions in different
operator bases to each other?
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Relating operator bases
Can we relate the calculations of anomalous dimensions in different operator bases to
each other?

To relate operator bases to the total derivative one, we consider a
generalization of the D-basis

ODp,q,r = (∆ · ∂)p
{
(∆ · D)qψ′ /∆(∆ · D)rψ

}
Assuming the chiral limit (mq = 0), the following relations hold

Total derivatives act as
ODp,q,r = ODp−1,q+1,r +ODp−1,q,r+1,

Left- and right-derivative operators renormalize with the same
renormalization constants

OD
k,0,N =

N∑
j=0

ZD
N,N−j [OD

k+j,0,N−j ] ,

OD
k,N,0 =

N∑
j=0

ZD
N,N−j [OD

k+j,N−j,0]
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Relating the total derivative and Gegenbauer bases
Can we relate the calculations of anomalous dimensions in different operator bases to
each other?

We have derived a relation between the operators in the Gegenbauer basis
and the operators in the total derivative basis

OGN,k =
1

2N!

N∑
l=0

(−1)l
(

N
l

)
(N + l + 2)!

(l + 1)! ODk−l ,0,l .

Writing the corresponding relation for the renormalized operators, this in
turn relates the anomalous dimensions in both bases to each other

N∑
j=0

(−1)j (j + 2)!
j! γGN, j =

1
N!

N∑
j=0

(−1)j
(

N
j

)
(N + j + 2)!

(j + 1)!

j∑
l=0

γDj,l .
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Constraints on the anomalous dimensions
Can we extend and formalize the calculations in the total derivative basis from first
principles?

ODp,q,r = (∆ · ∂)p
{
(∆ · D)qψ′ /∆(∆ · D)rψ

}
Assuming the chiral limit (mq = 0), the following relations hold

Total derivatives act as

ODp,q,r = ODp−1,q+1,r +ODp−1,q,r+1,

Left- and right-derivative operators renormalize with the same
renormalization constants

ODk,0,N =
N∑

j=0
ZDN,N−j [ODk+j,0,N−j ] ,

ODk,N,0 =
N∑

j=0
ZDN,N−j [ODk+j,N−j,0]
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Constraints on the anomalous dimensions
Can we extend and formalize the calculations in the total derivative basis from first
principles?

Applying the first relation successively on ODN,0,0 we derived a
recursion-type relation for the bare operators

OD0,N,0 − (−1)N
N∑

j=0
(−1)j

(
N
j

)
ODj,0,N−j = 0.

Implementing the renormalization then led to a relation between the
renormalization factors ZDN,k and hence between the anomalous dimensions

γDN,k =

(
N
k

) N−k∑
j=0

(−1)j
(

N − k
j

)
γj+k, j+k

+
N∑

j=k
(−1)k

(
j
k

) N∑
l=j+1

(−1)l
(

N
l

)
γDl , j
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Constraints on the anomalous dimensions
Can we extend and formalize the calculations in the total derivative basis from first
principles?

γDN,k =

(
N
k

) N−k∑
j=0

(−1)j
(

N − k
j

)
γj+k, j+k

+
N∑

j=k
(−1)k

(
j
k

) N∑
l=j+1

(−1)l
(

N
l

)
γDl , j

X Order-independent consistency check
X Can be used to construct the full mixing matrix from the knowledge

of the forward anomalous dimensions γN,N (and a boundary
condition, see below)
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4-step algorithm for constructing the ADM
Can we extend and formalize the calculations in the total derivative basis from first
principles?

1 Calculate (
N
k

) N−k∑
j=0

(−1)j
(

N − k
j

)
γj+k, j+k

and construct an Ansatz for the off-diagonal piece
2 Calculate

N∑
j=k

(−1)k
(

j
k

) N∑
l=j+1

(−1)l
(

N
l

)
γDl , j

3 Substitute into the consistency relation ⇒ System of equations,
solution not necessarily unique ⇒ Need boundary condition!

4 Determine all-N expression for γDN,0 from Feynman diagrams
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Feynman diagrams and γD
N,0

Can we extend and formalize the calculations in the total derivative basis from first
principles?

From the general consistency relation for k = 0 we can derive a
recursion-type relation for the last column

γDN,0 = (−)N

[ N∑
i=0

γDN,i −
N−1∑
j=0

(−)j
(

N
j

)
γDj,0

]

So, if we can compute the first sum on the RHS, we can recursively build
up the last column. For this, let us look at the renormalization pattern for
the right-derivative operators

ODN+1 = ZN,N [ON+1] + ZDN,N−1[∂ON ] + · · ·+ ZDN,0[∂
NO1]
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Feynman diagrams and γD
N,0

Can we extend and formalize the calculations in the total derivative basis from first
principles?

It then follows that there is a direct relation between the bare OMEs and
the sum of anomalous dimensions

ODN+1
ε

∼
N∑

i=0
γDN,i ≡ B(N + 1).

E.g. at O(as) we simply have

OD,(0)N+1
ε

=
N∑

i=0
γ
D,(0)
N,i = B(0)(N + 1).

Hence, it follows that there is a direct relation between the bare OMEs
and the last column of the mixing matrix

γDN,0 =
N∑

i=0
(−1)i

(
N
i

)
B(i + 1).
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Structure of the anomalous dimensions and sums

As we saw before, the forward (diagonal) anomalous dimensions consist of
harmonic sums and denominators. We expect the off-diagonal elements of
the ADM to have a similar structure. So, to apply our algorithm, we need
to calculate single and double sums over such structures.

γDN,k =

(
N
k

) N−k∑
j=0

(−1)j
(

N − k
j

)
γj+k,j+k

+
N∑

j=k
(−1)k

(
j
k

) N∑
l=j+1

(−1)l
(

N
l

)
γDl ,j .

These types of sums appearing can be dealt with using the principles of
symbolic summation, see e.g. [Graham et al., 1989, Kauers and Paule, 2011] for extensive
overviews. In particular, the MATHEMATICA package SIGMA [Schneider, 2004],
which uses creative telescoping to solve summation problems, is very
helpful.
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Structure of the anomalous dimensions and sums

Telescoping: Suppose we have a summation
∑N

k=a f (k)

→ Find function g(N) such that the summand can be written as

f (k) = ∆g(k) ≡ g(k + 1)− g(k)

⇒
N∑

k=a
f (k) =

N∑
k=a

g(k + 1)−
N∑

k=a
g(k)

= g(N + 1)− g(a)
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Structure of the anomalous dimensions and sums
Creative telescoping [Zeilberger, 1991]: Suppose we have the summation

b∑
k=a

f (n, k) ≡ S(n)

→ Find functions c0(n), ..., cd(n) and g(n, k) such that

g(n, k + 1)− g(n, k) = c0(n)f (n, k) + ...+ cd(n)f (n + d , k)

Now apply summation on both sides of the equation

⇒ g(n, b + 1)− g(n, a) = c0(n)
b∑

k=a
f (n, k) + ...+ cd(n)

b∑
k=a

f (n + d , k)

⇒ Inhomogeneous recurrence for original sum

q(n) = c0(n)S(n) + ...+ cd(n)S(n + d)
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Calculating sums

In this way, SIGMA generates and solves recurrence for given
summation problem
Solution consists of solution set for homogeneous recurrence +
particular solution
For final closed expression of summation: Determine linear
combination of solutions that has same initial values as the given sum

Let us now, as an example, look at the computation of the 1-loop ADM
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Example: 1-loop ADM

At the 1-loop level, there are only 2 Feynman diagrams
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Feynman rules for operator insertions

Contract OMEs with ∆µ1 ...∆µN , ∆2 = 0
For L = 1: Need up to 1 gluon attached to operator

See e.g. [Moch et al., 2017].
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Example: 1-loop ADM

The calculation of the bare OMEs is then straightforward and we find

O(0)
N+1 = 1 +

as
ε

CF

(
2S1(N + 1)− 2

N + 2 − 1
)
.

The last column of the mixing matrix can be calculated as

γN,0 =
N∑

i=0
(−)i

(
N
i

)
B(i + 1)

which in this example implies

γ
(0)
N,0 = CF

N∑
i=0

(−)i
(

N
i

)(
2S1(i + 1)− 2

i + 2 − 1
)
.
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Example: 1-loop ADM

Using [Vermaseren, 1999]

N′∑
j=0

(−1)j
(

N ′
j

)
=δN′,0

N′∑
j=0

(−1)j
(

N ′
j

)
1

m + j =
1(N′+m
N′

) 1
m

N′∑
j=0

(−1)j
(

N ′
j

)
S1(m + j) = −1(N′+m

N′

) 1
N ′ ,

we find
γ
(0)
N,0 = CF

( 2
N + 2 − 2

N

)
.

Sam Van Thurenhout Theory seminar Wigner RCP 42 / 50



Example: 1-loop ADM

Next we need the single sum of the forward anomalous dimensions(
N
k

) N−k∑
j=0

(−1)j
(

N − k
j

)
γ
(0)
j+k,j+k .

Using SIGMA we find(
N
k

) N−k∑
j=0

(−1)j
(

N − k
j

)
γ
(0)
j+k,j+k = CF

(
−2(k + 1)

N + 2 +
2(k + 2)
N + 1 − 4

N − k

)
.

Based on this, we then choose the following Ansatz for the off-diagonal
piece

γ
(0)
N,k = CF

( a1
N + 2 +

a2
N + 1 +

a3
N − k

)
.
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Example: 1-loop ADM
Again using SIGMA for the double sum of the Ansatz

1
CF

N∑
j=k

(−1)k
(

j
k

) N∑
l=j+1

(−1)l
(

N
l

)
γ
(0)
l ,j =

a1
[−2 − k

N + 1 +
2 + k
N + 2

]
− a2

N + 1 − a3
N − k .

We now substitute the results into the consistency relation( a1
N + 2 +

a2
N + 1 +

a3
N − k

)
=

(
−2(k + 1)

N + 2 +
2(k + 2)
N + 1 − 4

N − k

)

+ a1
[−2 − k

N + 1 +
2 + k
N + 2

]
− a2

N + 1 − a3
N − k

⇒ γ
(0)
N,k = CF

(
2

N + 2 − 2
N − k

)
.
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Results and discussion

Wilson anomalous dimensions:
To O(a5

s ) in the leading-nf approximation
O(a2

s ) expression in leading-color limit
Complete N = 4 matrix in full QCD, with some entries of the
anomalous dimension matrix to O(a5

s )
See [Moch and Van Thurenhout, 2021] for the explicit expressions

Focused in this talk on Wilson operators. However, nowhere in the analysis
do we actually refer to the Dirac structure of the operators, and hence the
methods and our algorithm also hold for operators with γµ → Γ

Transversity (γµ → σµν) anomalous dimensions:
To O(a4

s ) order in the leading-nf approximation
See [Van Thurenhout, 2022] for the explicit expressions

Extend expressions in Gegenbauer basis to O(a4
s ) in leading-nf limit

Leading-nf limit: Consider generic flavor group SU(nf ) and send nf → ∞
Leading-color limit: Consider generic color group SU(Nc) and send Nc → ∞
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Results and discussion

γ
D
3,2 = −2.13333 as+(−23.1028 + 2.14519 nf ) a2

s + (−405.973 + 67.6368 nf + 0.51977 n2
f ) a3

s

+(−7071.4 + 1807.36 nf − 74.6209 n2
f − 1.23872 n3

f ) a4
s + O(a5

s )

γ
D
3,1 = −0.8 as+(−8.66775 + 0.693333 nf ) a2

s + (−142.057 + 25.4966 nf + 0.289975 n2
f ) a3

s + O(a4
s )

γ
D
3,0 = −0.355556 as+(−5.27039 + 0.209383 nf ) a2

s + (−95.1612 + 12.9537 nf + 0.193624 n2
f ) a3

s + O(a4
s )

γ
D
2,1 = −2 as+(−22.5556 + 1.96296 nf ) a2

s + (−385.466 + 66.1992 nf + 0.532922 n2
f ) a3

s

+(−6437.94 + 1751.72 nf − 71.158 n2
f − 1.1502 n3

f ) a4
s

+(−147044 + 43307.7 nf − 3728.02 n2
f − 15.8471 n3

f + 0.293057 n4
f ) a5

s + O(a6
s )

γ
D
2,0 = −0.666667 as+(−9.50617 + 0.481481 nf ) a2

s + (−170.654 + 24.8232 nf + 0.3107 n2
f ) a3

s + O(a4
s )

γ
D
1,0 = −1.77778 as+(−24.1646 + 1.58025 nf ) a2

s + (−429.724 + 66.7191 nf + 0.61454 n2
f ) a3

s

+(−8331.61 + 1873.78 nf − 58.8907 n2
f − 0.954217 n3

f ) a4
s

+(−200373 + 51918.3 nf − 3724.15 n2
f − 30.7867 n3

f + 0.171853 n4
f ) a5

s + O(a6
s )

Blue results: New
Green results: Agreement with previous calculations [Gracey, 2003],
[Kniehl and Veretin, 2020]
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Cross-checks

X Gauge independence of the anomalous dimensions
→ When performing Feynman diagram computations: Work in
general covariant gauge, keep gauge parameter

pν, b µ, a = − i
p4 (p

2gµν − ξpµpν)δab

X Agreement with previous computations in the same operator basis
X Cross-check with results in different bases using derived basis

transformation formulae
X Leading-nf results agree with all-order computation based on

conformal symmetry, see [Van Thurenhout and Moch, 2022] for details.
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Summary and outlook

We can gain insight into proton structure by scattering elementary
particles off protons. The relevant information is then typically represented
by parton distributions

Inclusive processes (forward kinematics): PDFs
Exclusive processes (non-forward kinematics): GPDs.

These distributions are defined in terms of hadronic matrix elements of
QCD operators and hence non-perturbative objects. However, their scale
dependence is determined by the anomalous dimensions of the
corresponding operators, which can be calculated order per order in
perturbation theory.

The calculation of these anomalous dimensions is in principle
straightforward in the forward case. For non-forward kinematics life
becomes more complicated because of mixing with total derivative
operators.
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Summary and outlook

New method for calculating off-diagonal elements of the mixing
matrix, based purely on renormalization structure in chiral limit
Independent check of previous calculations in different bases
New results, e.g. 5-loop anomalous dimensions in leading-nf limit
Nice advantage of our method: Well-suited for automation with
computer algebra programs
Generalize method to different operators (e.g. flavor singlet operators)
in QCD and different models altogether → needs to be studied
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End

Thank you for your attention!
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Some comments on FORCER

FORM [Vermaseren, 2000], [Kuipers et al., 2013] program for the reduction of four-loop
massless propagator-type integrals to master integrals
Parametric IBP reductions
Often possible to avoid explicit IBP reductions by reducing topologies
to simpler ones (1-loop integrals, triangle rule, ...) → Automatized!
Less diagrams for which actual IBP reductions are necessary, special
rules for these

More details can be found in the original paper [Ruijl et al., 2020].
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GPDs

F q ≡
∫ dz−

2π eixχ+z− 〈p′∣∣ψ(−z/2)γ+ψ(z/2) |p〉 ∼ H(x , χ, t)ψ(p′)γ+ψ(p)

+ E (x , χ, t)ψ(p′) iσ+ν∆̃ν

2mp
ψ(p)

+ higher twist∫
dx xNF q ∼ ψ(0)γ+DNψ(0)

see e.g. [Diehl, 2003]. Here χ is the skewedness

χ =
p+ − p′+

p+ + p′+
.

For some four-vector v ≡ (v0, v1, v2, v3) light-cone coordinates are defined
as

v± =
1√
2
(v0 ± v3), ~v = (v1, v2).
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ADM in the Gegenbauer basis
We start by introducing the renormalized non-local light-ray operators [O],
which act as generating functions for local operators, see e.g. [Braun et al., 2017],
as

[O](x ; z1, z2) =
∑
m,k

zm
1 zk

2
m! k!

[
ψ(x)(

←
D ·n)m/n(n·

→
D)kψ(x)

]
.

The renormalization group equation for these light-ray operators can be
written as (

µ2∂µ2 + β(as)∂as +H(as)
)
[O](z1, z2) = 0

The evolution operator H(as) is an integral operator and acts on the
light-cone coordinates of the fields [Balitsky and Braun, 1989]

H(as)[O](z1, z2) =

∫ 1

0
dα
∫ 1

0
dβ h(α, β)[O](zα12, z

β
21)

with zα12 ≡ z1(1 − α) + z2α and the evolution kernel h(α, β). The
moments of the evolution kernel correspond to the anomalous dimensions
of the local operators.
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ADM in the Gegenbauer basis
The light-ray operators admit an expansion in a basis of local operators in
terms of Gegenbauer polynomials, see e.g. [Belitsky and Müller, 1999],

OGN,k = (∂z1 + ∂z2)
kC3/2

N

(∂z1 − ∂z2

∂z1 + ∂z2

)
O(z1, z2)

∣∣∣∣
z1=z2=0

,

where k ≥ N is the total number of derivatives. The Gegenbauer
polynomials can be written as [Olver et al., 2010]

Cν
N(z) =

Γ(ν + 1/2)
Γ(2ν)

N∑
l=0

(−1)l Γ(2ν + N + l)
l! (N − l)! Γ(ν + 1/2 + l)

(1
2 − z

2

)l
.

The renormalized operators [OGN,k ] obey the evolution equation

(
µ2∂µ2 + β(as)∂as

)
[OGN,k ] =

N∑
j=0

γGN,j [O
G
j,k ] .
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ADM in the Gegenbauer basis
Beyond the one-loop level, also the mixing matrix in the Gegenbauer basis
gets non-zero off-diagonal contributions. These can be calculated in
general as [Müller, 1994, Braun et al., 2017]

γ̂G(as) = G
{
[γ̂G(as), b̂]

(
1
2 γ̂
G(as) + β(as)

)
+ [γ̂G(as), ŵ(as)]

}
, (3)

in terms of the matrix commutators denoted as [∗, ∗] and with

G{M̂}N,k = −
MN,k

a(N, k) , (4)

and
a(N, k) = (N − k)(N + k + 3) , (5)

b̂N,k = −2kδN,k − 2(2k + 3)ϑN,k . (6)
The discrete step-function in the last term is defined as

ϑN,k ≡

{
1 if N − k > 0 and even
0 else.

(7)
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ADM in the Gegenbauer basis

The N − k even condition originates from the fact that, in the Gegenbauer
basis, only CP-even operators are considered. The conformal anomaly,
ŵ(as), can be written as a power series in the strong coupling

ŵ(as) = asŵ (0) + a2
s ŵ (1) + . . . . (8)

For the determination of the mixing matrix at order al
s , the conformal

anomaly is only needed up to order al−1
s [Müller, 1991].
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ADM in the Geyer basis

Here we define the operators as

OBN,k ≡ ψγ(
→
D +

←
D)N−k(

←
D −

→
D)kψ,

see e.g. [Geyer, 1982] and [Blümlein et al., 1999]. The contraction with an arbitrary
light-like vector is understood, i.e.

γ ≡ ∆µ γµ,

D ≡ ∆µ Dµ

and ∆2 = 0. These operators, and correspondingly their anomalous
dimensions, can be related to those in the derivative basis. For this the
relation

OD0,N−k,k = (−1)k
k∑

j=0
(−1)j

(
k
j

)
ODj,N−j,0

for the operators in the derivative basis is useful.
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ADM in the Geyer basis

For the bare operators we then find (apply binomial theorem twice)

OBN,k =
N−k∑
i=0

k∑
j=0

(−1)i
(

N − k
i

)(
k
j

) i+j∑
l=0

(−1)l
(

i + j
l

)
ODl ,N−l ,0

which leads to

[OBN,k ] =
N−k∑
i=0

k∑
j=0

(−1)i
(

N − k
i

)(
k
j

) i+j∑
l=0

(−1)l
(

i + j
l

) N−l∑
m=0

(−1)m γDN−l ,m

×
m∑

n=0
(−1)n

(
m
n

)
[ODN−m+n,0,m−n]

for the renormalized ones.
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ADM in the Geyer basis

The evolution of the local operators in this basis can be summarized as

µ2 d
dµ2O

B
N,N =

N∑
k=0

1 ± (−1)k

2 γBN,k [OBk,N ].

The relation between the anomalous dimensions in the Geyer and
derivative bases then becomes

γ
(0)
N,N +

N−1∑
j=0

1 ± (−1)j

2 γ
(0),B
N,j = ±(−1)N

N∑
l=0

2l(−1)l
(

N
l

)
γ
(0),D
l ,0

at the 1-loop level with the upper (lower) sign for even (odd) N. This
provides an additional consistency check at this order.
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Five-loop ADM in the leading-nf limit

By analyzing the leading-nf anomalous dimensions up to 4 loops, it
becomes clear that certain patterns start to emerge.
The majority of terms in the L-loop anomalous dimensions can be
deduced from the expression of the (L − 1)-loop ones.
What is left then is a small number of unknown terms, which can be
fixed by using our consistency relation.
This is how we determined the expression for the 5-loop Wilson
anomalous dimensions. Note that this in principle can be extended to
arbitrary orders.
This method is also used to determine the leading-nf mixing matrices
for the transversity operators.
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All-order results in the leading-nf limit

The forward anomalous dimensions in the leading-nf limit have been
determined to all orders in perturbation theory
The computation was based on exact conformal symmetry at the
Wilson-Fisher critical point, see [Gracey, 1994] and [Gracey, 2003]

This technique was recently extended for the non-forward anomalous
dimensions, and the results presented here agree with the more
general ones.
See [Van Thurenhout and Moch, 2022] for details and explicit expressions.
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Example of an inclusive process

Inclusive polarized Drell-Yan

Distributions: Transversity distributions (TDFs) hT (x , µ2
f )

[Ralston and Soper, 1979], [Artru and Mekhfi, 1990], [Jaffe and Ji, 1991], [Jaffe and Ji, 1992], [Cortes et al., 1992]

� Difference in probabilities of finding a parton in a transversly polarized
nucleon polarized parallel to the nucleon spin and an oppositely
polarized one

� Studied e.g. by the STAR experiment at RHIC [Adamczyk et al., 2015]
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Example of an exclusive process

Exclusive production of transversely polarized ρ-meson

Distributions: Transverse distribution amplitudes (DAs) φ(x , µ2
F )

[Lepage and Brodsky, 1980]

� Measure parton distributions within mesons
� Important input for e.g. LHCb [Aaij et al., 2013]
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Relations in x -space
We start from the evolution kernel in x -space, V (x , y). The Mellin
transform of this kernel with respect to x is given by a polynomial of
degree N in y , the coefficients of which are the N-space anomalous
dimensions

−
∫

dx xNV (x , y) =
N∑

k=0
γN,k yk . (9)

In the limit of y → 1, the RHS of Eq.(9) simply reduces to a sum of
anomalous dimensions

− lim
y→1

∫
dx xNV (x , y) =

N∑
k=0

γN,k (10)

which is equivalent to the binomial transform of the elements in the last
column of the ADM in the total derivative basis

− lim
y→1

∫
dx xNV (x , y) =

N∑
k=0

(−1)k
(

N
k

)
γk,0. (11)
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Relations in x -space

Furthermore, from Eq.(9) it follows that the last column corresponds to
the y → 0 limit of the Mellin transform

γN,0 = − lim
y→0

∫
dx xNV (x , y). (12)

Hence, we find the following relation for the x -space evolution kernel

lim
y→1

∫
dx xNV (x , y) = lim

y→0

N∑
k=0

(−1)k
(

N
k

)∫
dx xkV (x , y). (13)
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Relations in x -space
We can also relate sums of anomalous dimensions multiplied by the
summation parameter to derivatives of the Mellin transform of the kernel,
e.g.

N∑
k=1

kγN,k = − lim
y→1

d
dy

∫
dx xNV (x , y). (14)

In the total derivative basis, this sum is related to the binomial transform
of the first column

N∑
k=1

kγN,k = −
N∑

k=1
(−1)k

(
N
k

)
γk,1. (15)

Hence using the conjugation property of the binomial transform we could
write

γN,1 = lim
y→1

d
dy

N∑
j=0

(−1)j
(

N
j

)∫
dx x jV (x , y). (16)

Sam Van Thurenhout Theory seminar Wigner RCP 17 / 0



Relations in x -space

We can also access γN,1 directly from Eq.(9) as

γN,1 = − lim
y→0

d
dy

∫
dx xNV (x , y). (17)

Combining Eqs.(16) and (17) then gives

lim
y→1

d
dy

N∑
j=0

(−1)j
(

N
j

)∫
dx x jV (x , y) = − lim

y→0

d
dy

∫
dx xNV (x , y). (18)
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Relations in x -space

This type of relation can be generalized to have an arbitrary number of
derivatives acting on the Mellin transform of the kernel. First we can write

lim
y→1

dk

dyk

∫
dx xNV (x , y) = −

N∑
j=k

(j)kγN,j (19)

= −k!
N∑

j=k

(
j
k

)
γN,j (20)

with
(k)n = k(k − 1)(k − 2) . . . (k − n + 1) (21)

the Pochhammer symbol.
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Relations in x -space

Multiplying twice with a factor of (−1)k and using that the anomalous
dimensions in the total derivative basis satisfy

N∑
j=k

(−1)k
(

j
k

)
γN,j =

N∑
j=k

(−1)j
(

N
j

)
γj,k (22)

we can rewrite this as

lim
y→1

dk

dyk

∫
dx xNV (x , y) = −(−1)kk!

N∑
j=k

(−1)j
(

N
j

)
γj,k (23)

= −(−1)kk!
N∑

j=0
(−1)j

(
N
j

)
γj,k . (24)

The second equality again follows from the triangularity of the ADM.
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Relations in x -space

Applying the binomial transform then yields

lim
y→1

dk

dyk

N∑
j=0

(−1)j
(

N
j

)∫
dx x jV (x , y) = −(−1)kk! γN,k . (25)

Finally, from Eq.(9) it follows that

γN,k = − 1
k! lim

y→0

dk

dyk

∫
dx xNV (x , y) (26)

such that

lim
y→1

dk

dyk

N∑
j=0

(−1)j
(

N
j

)∫
dx x jV (x , y) = (−1)k lim

y→0

dk

dyk

∫
dx xNV (x , y).

(27)
This identity is valid for all k ≥ 0.
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